武汉大学测绘学院空间大地测量学考试复习要点整理
(整理)大地测量学考试复习资料
大地测量学考试复习资料㈠考试题型:填空题、选择题、名词解释、简答题、绘图题、计算题㈡名词解释:1.大地测量学的定义:大地测量学是测量和描述地球并监测其变化,为人类活动提供关于地球等行星体的空间信息的一门地球信息学科,既是基础学科,又是应用学科。
2.大地主题解算:如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地主题解算。
3.大地主题正算: 已知P1点的大地坐标,P1至P2的大地线长及其大地方位角,计算P2点的大地坐标和大地线在P2点的反方位角。
4.大地主题反算:已知椭球面上两点的大地经纬度求解两点间的大地线长度与正反方位角。
5.地图投影:将椭球面上元素(包括坐标,方位和距离)按一定的数学法则投影到平面上,研究这个问题的专门学科叫地图投影学。
6.大地水准面:假定海水面完全处于静止和平衡状态(没有风浪、潮汐及大气压变化的影响),把这个海水面伸延到大陆下面,形成一个封闭曲面,在这个面上都保持与重力方向正交的特性,则这个封闭曲面称为大地水准面。
7.球面角超:球面多边形的内角和与相应平面上的内角和与(n-2)×180°的差值(或答为球面三角形和180°也可)。
8.底点纬度:在y =0时,把x直接作为中央子午线弧长对应的大地纬度B,叫底点纬度。
9.高程异常:似大地水准面与椭球面的高程差。
10.水准标尺零点差:一对水准标尺的零点误差之差。
11.总椭球体:总椭球体的中心与地球的质心重合,其短轴与地球的地轴重合,起始子午面与起始天文子午面重合,而且与地球体最佳密合的椭球体。
12.子午线收敛角:高斯投影面上任意点子午线的投影线的切线方向与该点坐标的正北方向的夹角。
13.水准标尺基辅差:精密水准标尺同一视线高度处的基本分划与辅助分划之差。
14.子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈。
15.卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈。
大地测量学复习资料(考试必备)
⼤地测量学复习资料(考试必备)1.垂线同总地球椭球(或参考椭球)法线构成的⾓度称为绝对(或相对)垂线偏差2.以春分点作为基本参考点,由春分点周⽇视运动确定的时间,称为恒星时3.以真太阳作为基本参考点,由其周⽇视运动确定的时间,称为真太阳时。
⼀个真太阳⽇就是真太阳连续两次经过某地的上中天(上⼦午圈)所经历的时间。
4.以格林尼治平⼦夜为零时起算的平太阳时称为世界时5.原⼦时是⼀种以原⼦谐振信号周期为标准6.归算:就是把地⾯观测元素加⼊某些改正,使之成为椭球⾯上相应元素。
7.把以垂线为依据的地⾯观测的⽔平⽅向值归算到以法线为依据的⽅向值⽽加的改正定义为垂线偏差改正7.⼤地线椭球上两点间的最短程曲线。
8.设椭球⾯上P点的⼤地经度L,在此⼦午⾯上以椭圆中⼼O为原点建⽴地⼼纬度坐标系; 以椭球长半径a为半径作辅助圆,延长P2P与辅助圆相交P1点,则OP1与x 轴夹⾓称为P点的归化纬度u。
9.仪器加常数改正因测距仪、反光镜的安置中⼼与测距中⼼不⼀致⽽产⽣的距离改正,称仪器加常数改正,包括测距仪加常数和反光镜加常数。
10.因测距仪的基准频率等因素产⽣的尺度参数成为乘常数。
11.基本分划与辅助分划相差⼀个常数301.55cm,称为基辅差,⼜称尺常数12.控制⽹可靠性:控制⽹能够发现观测值中存在的粗差和抵抗残存粗差对平差的影响13.M是椭球⾯上⼀点,MN是过M的⼦午线,S为连接MP的⼤地线长,A为⼤地线在M点的⽅位⾓。
以M为极点;MN为极轴;P点极坐标为(S, A)⼀点定位,如果选择⼤地原点:则⼤地原点的坐标为:多点定位,采⽤⼴义弧度测量⽅程1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京,⽽在前苏联的普尔科沃。
相应的椭球为克拉索夫斯基椭球。
1954年北京坐标系的缺限:①椭球参数有较⼤误差。
②参考椭球⾯与我国⼤地⽔准⾯存在着⾃西向东明显的系统性的倾斜,在东部地区⼤地⽔准⾯差距最⼤达+68m。
大地测量学复习重点
名词解释1.岁差地球绕地轴旋转,可以看做巨大的陀螺旋转,由于日、月等天体的影响,类似于旋转陀螺在重力场中的进动,地球的旋转轴在空间围绕黄极发生缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角23.5度,旋转周期为26000年,这种运动称为岁差2.章动月球绕地球旋转的轨道白道对于黄道约5度的倾斜,使得月球引力产生的转矩的大小和方向不断变化,从而导致地球旋转轴在岁差的基础上叠加18.6年的短周期圆周运动,振幅9.21秒,这种现象称为章动。
3.极移地球自转轴除了岁差和章动外,还存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化,这种现象称为极移。
4.大地基准用以代表地球形体的旋转椭球,建立大地基准就是求顶旋转椭球的参数及其定向(椭球旋转轴平行于地球的旋转轴,椭球的起始子午面平行于地球的起始子午面)和定位(旋转椭球中心与地球中心的相对关系)5.天球以地球质心为中心,以无穷大为半径的假想球体称为天球6.大地经度大地坐标系中,点P的子午面与起始子午面所构成的二面角L,叫做P点的大地经度。
7.大地纬度P点法线Pn与赤道面的夹角B,称为P点的大地纬度。
8.参考椭球具有确定参数(长半轴和扁率),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球9.总地球椭球满足地心定位和双平行条件,在确定地球参数时能使它在全球范围内与大地体最密合的地球椭球。
10.地心坐标系以总地球椭球为基准(1)地心空间直角坐标系原点O与地球质心重合,Z轴指向地球北极,X轴指向格林尼治平均子午面与地球赤道的交点,Y轴垂直于XOZ平面构成右手坐标系。
(2)地心大地坐标系地球椭球的中心与地球质心重合,椭球面与大地水准面在全球范围内最佳符合,椭球的短轴与地球自转轴重合(过地球质心并指向北极),大地纬度为过地面点的椭球法线与椭球赤道面的夹角,大地经度为过地面点的椭球子午面与格林尼治的大地子午面之间的夹角,大地高为地面点沿椭球法线至椭球面的距离。
【大学考试资料】-大地测量学基础复习重点
《大地测量学基础》1.大地测量学是通过在广大的地面上建立大地控制网,精确测定大地控制网点的坐标,研究测定地球形状、大小和地球重力场的理论、技术与方法的学科。
现代大地测量学包括空间、物理和几何大地测量学2.现代大地测量的三个分支是几何:确定地球的形状和大小及确定地面点的几何位置。
物理:用物理方法(重力测量)确定地球形状及其外部重力场。
空间:以人造地球卫星及格其他空间探测器为代表的空间大地测量的理论、技术与方法。
3.大地测量是测绘学的一个分支。
主要任务是测量和描绘地球并监测其变化,为人类活动提供关于地球的空间信息。
是一门地球信息学科。
是一切测绘科学技术的基础。
4.人类认识地球阶段地球圆球阶段,首次用子午圈弧长测量法来估算地球半径。
这是人类应用弧度测量概念对地球大小的第一次估算。
地球椭球阶段,在这阶段,几何大地测量在验证了牛顿的万有引力定律和证实地球为椭球学说之后,开始走向成熟发展的道路,取得的成绩主要体现在一下几个方面:1)长度单位的建立2)最小二乘法的提出3)椭球大地测量学的形成4)弧度测量大规模展开5)推算了不同的地球椭球参数。
这个阶段为物理大地测量学奠定了基础理论。
大地水准面阶段,几何大地测量学的发展:1)天文大地网的布设有了重大发展,2)因瓦基线尺出现物理大地测量学的发展1)大地测量边值问题理论的提出2)提出了新的椭球参数现代大地测量新时期以地磁波测距、人造地球卫星定位系统及其长基线干涉测量等为代表的新的测量技术的出现,使大地测量定位、确定地球参数及重力场,构筑数字地球等基本测绘任务都以崭新的理论和方法来进行。
由于高精度绝对重力仪和相对重力仪的研究成功和使用,有些国家建立了自己的高精度重力网,大地控制网优化设计理论和最小二乘法的配置法的提出和应用。
5.现代大地测量技术传统方法:几何法和物理法。
随着人造地球卫星的出现,又产生了卫星法。
6.大地测量基本任务是技术任务:精确测定大地控制点的位置及其随时间的变化也就是它的运动速度场,建立精密的大地控制网,作为测图的控制,为国家经济建设和国防建设服务.科学任务:测定地球形状、大小和重力场,提供地球的数学模型,为地球及其相关科学服务。
大地测量学基础期末重点2024
大地测量学基础2024下期末重点问题整理(教材:大地测量学基础武汉大学出版)1.了解大地测量学是哪三个分支?P4.几何大地测量学、物理大地测量学、空间大地测量学2.P4,大地测量学的基本内容(选择题),一共6点,其中最重要的是第一点:地球的形状,后面几点作为了解。
P4①确定地球形状及外部重力场及其随时问的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移), 测定极移以及海洋水面地形及其变化等。
②研究月球及太阳系行星的形状及重力场。
③建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制,以满足国民经济发展和国防建设的需要。
④研究为获得高精度测量成果的仪器和方法等。
⑤研究地球表面向椭球面或平面的投影数学变换及相关的大地测量计算。
⑥研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理和理论方法, 测量数据库建立及应用等。
3.大地测量同其他学科的关系看一下大致p5作为大地测量学的理论基础学科:数学、计算机科学、物理学4.地轴方向相对于惯性空间的变化:岁差、章动。
P19①岁差:地球绕地轴旋转,可以看着巨大的陀螺旋转,由于日、月等天体影响,类似于陀螺旋转在重力场中的进动,地球的旋转轴在空间围绕黄极发生缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角23.5度,其旋转周期为26000年。
②章动:章动是指地球自转轴在岁差的基础上叠加的短期圆周运动,振幅为9.21秒。
5.地轴相对于地球本体内部结构的相对位置变化:极移。
P20极移:地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间变化。
6.P22,时间系统,了解恒星时、世界时、历书时、力学时、原子时、协调世界时的概念重点掌握,几个时间的对比(EG.恒星时和世界时是以什么参考自传?什么运动参照地球自传P26);各自的区别重点掌握。
①恒星时:以春分点作为基本参考点,由春分点周日视运动确定的时间。
武汉大学《大地测量学基础》复习题
考试复习重点资料(最新版)资料见第二页封面第1页《大地测量学基础》复习题第1章思考题1、什么是大地测量学?它的地位和作用体现在哪几个方面?2、普通测量学和大地测量学有何区别和联系?常规大地测量学和现代大地测量学主要有哪些分支?现代大地测量学有何特征?3、了解大地测量的发展过程。
4、为什么说现代大地测量是以空间测量技术为代表的?第2章思考题1、简述开普勒三大行星运动定律。
2、掌握岁差、章动、极移的基本概念和相关的术语。
3、什么是国际协议原点?4、研究时间的重要性?时间的两个含义?作为时间基准的周期运动应满足哪三项要求?5、掌握恒星时、世界时、历书时、原子时、协调世界时的基本概念。
6、什么是大地水准面和大地体,大地水准面有何特点?7、什么是总地球椭球体和参考椭球体?8、什么是高程异常和大地水准面差距?9、掌握天球上的主要的点、线、面的定义。
10、何谓大地测量参考系统和大地测量参考框架?11、掌握大地坐标系和天文坐标系的定义。
12、质心和参心空间直角坐标系是怎样定义的?13、什么是椭球定位和定向?局部定位和地心定位?定向满足的两个平行条件? 14、什么是参考椭球一点定位和多点定位?15、什么是大地原点及大地起算数据?16、熟悉1954北京坐标系,1980年国家大地坐标系、新1954年北京坐标系,WGS-84世界大地坐标系和国际地球参考框架(ITRF)的基本情况。
17、掌握二维直角坐标变换的四参数公式和三维直角坐标变换的七参数公式。
第3章思考题1、了解描述地球基本形状的基本数据。
2、地球大气如何分层?每层的基本特性?3、什么是地球引力、离心力、重力?重力的单位是什么?4、什么是位函数?引力位和离心力位的具体表达式如何?5、什么是重力位和重力等位面?重力等位面的性质有哪些?6、什么是正常重力位?为什么要引入正常重力位?的正常重力公式?并搞清各项的意义,高出椭球面H米的正常重7、顾及α和2力如何计算?8、地球大地基准常数的意义?9、什么是水准面的不平行性?对几何水准测量影响如何?10、掌握正高、正常高、力高的定义、基准面及计算公式。
(完整word版)《大地测量学》复习知识点总结word汇编
大地测量学第一章1.大地测量学的定义?大地测量学与普通测量学有哪些主要区别?大地测量学是研究精确测定和描绘地面控制点空间位置、研究地球形状和大小、研究地球表面和外部重力场及其变化的学科。
区别在于:(1)测量的精度等级更高,工作更加严密。
(2)测量的范围更加广阔,常常是上百平方公里乃至整个地球。
(3)侧重研究的对象不同。
普通测量学侧重于研究如何测绘地形图以及进行工程施工测量的理论和方法。
大地测量学侧重于研究如何建立大地坐标系、建立科学化、规范化的大地控制网并精确测定控制网点坐标的理论和方法。
2.大地测量学的任务和主要研究内容是什么?简述其在国民经济建设中的地位。
一·基本任务可以概括为:1.在地球表面的陆地上建立高精度的大地测量控制网,并监测其数据随时间的变化;2.确定地球重力场及其随时间的变化,测定和描述地球动力学现象;3.根据地球表面和外部空间的观测资料确定地球形状和大小。
二·主要研究内容:1.确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。
2.研究月球及太阳系行星的形状及重力场。
3.研究建立和维持高科技水平的工程和国家水平控制网和精密水准网的原理和方法;4.研究获得高精度测量成果的精密仪器和科学的使用方法;5.研究地球表面测量成果向椭球及平面的数学投影变换及有关问题的测量计算;6.研究高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法。
三·国民经济建设中的地位:(1)为地形测图和大型工程测量提供基本控制;(2)大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用;(3)大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着特殊的作用;(4)大地测量是发展空间技术和国防建设的重要保障;(5)大地测量在当代地球科学研究中的地位显得越来越重要。
大地测量学笔记--武大
大地测量学1、垂线偏差同一测站点上铅垂线与椭球面法线之间的夹角u,即是垂线偏差。
u通常用南北方向分量ζ和东西方向分量η表示。
垂线同平均地球椭球(或参考椭球)法线之间的夹角称为绝对垂线偏差(或相对垂线偏差),统称天文大地垂线偏差,实际重力场中的重力向量g同正常重力场中的正常重力向量γ之间的夹角称重力垂线偏差。
2、法截面、法截线、大地线包含椭球面上一点的法线的平面叫法截面它是法截面与椭球面的交截线,也叫法截线大地线(geodesic)是指地球椭球面上连接两点的最短程曲线。
在球面上,大圆弧(球面上的法截线)是对应的大地线。
但在地球椭球体面上,除两点均位于大地子午线或纬线上外,大地线均位于它两个端点的正反法截线之间。
3、总(平均)地球椭球与参考椭球大地体:大地水准面所包围的形体总地球椭球:顾及地球的几何和物理参数,在全球范围内与大地体最佳吻合的地球椭球。
参考椭球:具有确定椭球参数,经过局部定位和定向,与某国(或地区)大地水准面最佳拟合的地球椭球。
与某国(或地区)大地水准面最佳拟合的旋转椭球面叫参考椭球面。
4、大地水准面、似大地水准面瞬时、静止的平均海水面延伸到大陆内部,处处与铅垂线相垂直的连续封闭曲面称为大地水准面。
(或:把完全静止的海水面所形成的重力等位面,专称它为大地水准面)似大地水准面:与大地水准面很接近的基准面。
5.水准面上各点的重力加速度g随纬度和物质分布不同而变化(即水准面不同点上的重力值是不同的)。
使高差h不等,因而两水准面不相平行。
6、正常重力位是一个函数简单,不涉及地球形状和密度,便可直接计算得到地球重力位近似值的辅助重力位。
与此相关的力就叫做正常重力。
7、正常椭球、水准椭球、地球大地基准常数正常椭球:正常椭球面所包围的形体,是大地水准面的规则形状。
可有多个水准椭球:水准椭球面所包围的形体,是大地水准面的规则形状。
仅有一个。
地球大地基准常数:地球正常(水准)椭球的基本参数,即 ,,,2fM J a8.大地基准、高程基准、重力基准大地基准是建立国家大地坐标系统和推算国家大地控制网中各点大地坐标的基本依据,它包括一组大地测量参数和一组起算数据,其中,大地测量参数主要包括作为建立大地坐标系依据的地球椭球的四个常数,即地球椭球赤道半径啊,地心引力常数GM ,带球谐系数J2(由此导出椭球扁率f)和地球自转角度w ,以及用以确定大地坐标系统和大地控制网长度基准的真空光速c ;而一组起算数据是指国家大地控制网起算点(成为大地原点)的大地经度、大地纬度、大地高程和至相邻点方向的大地方位角。
武汉大学《大地测量学基础》复习题
考试复习重点资料(最新版)资料见第二页封面第1页《大地测量学基础》复习题第1章思考题1、什么是大地测量学?它的地位和作用体现在哪几个方面?2、普通测量学和大地测量学有何区别和联系?常规大地测量学和现代大地测量学主要有哪些分支?现代大地测量学有何特征?3、了解大地测量的发展过程。
4、为什么说现代大地测量是以空间测量技术为代表的?第2章思考题1、简述开普勒三大行星运动定律。
2、掌握岁差、章动、极移的基本概念和相关的术语。
3、什么是国际协议原点?4、研究时间的重要性?时间的两个含义?作为时间基准的周期运动应满足哪三项要求?5、掌握恒星时、世界时、历书时、原子时、协调世界时的基本概念。
6、什么是大地水准面和大地体,大地水准面有何特点?7、什么是总地球椭球体和参考椭球体?8、什么是高程异常和大地水准面差距?9、掌握天球上的主要的点、线、面的定义。
10、何谓大地测量参考系统和大地测量参考框架?11、掌握大地坐标系和天文坐标系的定义。
12、质心和参心空间直角坐标系是怎样定义的?13、什么是椭球定位和定向?局部定位和地心定位?定向满足的两个平行条件? 14、什么是参考椭球一点定位和多点定位?15、什么是大地原点及大地起算数据?16、熟悉1954北京坐标系,1980年国家大地坐标系、新1954年北京坐标系,WGS-84世界大地坐标系和国际地球参考框架(ITRF)的基本情况。
17、掌握二维直角坐标变换的四参数公式和三维直角坐标变换的七参数公式。
第3章思考题1、了解描述地球基本形状的基本数据。
2、地球大气如何分层?每层的基本特性?3、什么是地球引力、离心力、重力?重力的单位是什么?4、什么是位函数?引力位和离心力位的具体表达式如何?5、什么是重力位和重力等位面?重力等位面的性质有哪些?6、什么是正常重力位?为什么要引入正常重力位?的正常重力公式?并搞清各项的意义,高出椭球面H米的正常重7、顾及α和2力如何计算?8、地球大地基准常数的意义?9、什么是水准面的不平行性?对几何水准测量影响如何?10、掌握正高、正常高、力高的定义、基准面及计算公式。
大地测量学知识点
大地测量学知识点第一篇:大地测量学知识点1.大地坐标系:地面点在参考椭圆的位置用大地经度和纬度表示,若地面的点不在椭球面上,它沿法线到椭球面的距离称为大地高2.空间大地直角坐标系:是大地坐标系相应的三维大地直角坐标系3.地心坐标系:定义大地坐标系时,如果选择的旋转椭球为总地球椭球,椭球中心就是地质中心,再定义坐标轴的指向,此时建立的大地坐标系叫做地心坐标系大地方位角:p点的子午面与过p点法线及Q点的平面所成的角度正高系统:地面上一点沿铅垂线到大地水准面的距离正常高系统:一点沿铅垂线到似水准面的距离国家水准网布设的原则:从高级到低级,从整体到局部,分为四个等级布设,逐级控制,逐级加密4.理论闭合差:在闭合的环形水准路线中,由于水准面不平行所产生的闭合差5.大地高系统:地面一点沿法线到椭球面的距离6.平面控制网的测量方法三角测量:在地面上按一定的要求选定一系列的点,他们与周围的邻近点通视,并构成相互联接的三角网状图形,称为三角网,网中各点称为三角点,在各点上可以进行水平角测量,精确观测各三角内角,另外至少精确测量一条三角形边长度D和方位角,作为网的起始边长和起始方位角,推算边长,方位角进而推算各点坐标三边测量:根据三角形的余弦公式,便可求出三角形内角,进而推算出各边的方位角和各点坐标7.国家高程基准的参考面有平均海水面,大地水准面,似大地水准面,参考椭球面1956年黄海高程系统1985年国家高程基准8.角度观测误差分析视准轴误差:视准轴不垂直于水平轴产生水平轴误差:水平轴不垂直于垂直轴产生这2个的消除误差方法为取盘左盘右读数取平均值垂直轴倾斜误差:垂直轴本身偏离铅垂线的位置,即不竖直解决的方法:观测时,气泡不得偏离一格,测回之间重新整理仪器,观测目标的垂直角大于3度,按气泡偏离的格数计算垂直轴倾斜改正9.方向观测法是在一测回内将测站上所有要观测的方向先置盘左位置,逐一照准进行观测,再盘右的位置依次观测,取盘左盘右的平均值作为各方向的观测值。
大地测量学基础习题与思考题及答案含重点及两份武大测绘试题@
大地测量学基础习题与思考题及答案含重点及两份武大测绘试题@《大地测量学基础》习题与思考题一绪论1.试述您对大地测量学的理解?2.大地测量的定义、作用与基本内容是什么?3.简述大地测量学的发展概况?大地测量学各发展阶段的主要特点有哪些?4.简述全球定位系统(GPS )、激光测卫(SLR )、甚长基线干涉测量(VIBL )、惯性测量系统(INS )的基本概念?二坐标系统与时间系统1.简述是开普勒三大行星定律?2.什么是岁差与章动?什么是极移? 3.什么是国际协议原点 CIO?4.时间的计量包含哪两大元素?作为计量时间的方法应该具备什么条件? 5.恒星时、世界时、历书时与协调时是如何定义的?其关系如何? 6.什么是大地测量基准?7.什么是天球?天轴、天极、天球赤道、天球赤道面与天球子午面是如何定义的? 8.什么是时圈、黄道与春分点?什么是天球坐标系的基准点与基准面? 9.如何理解大地测量坐标参考框架?10.什么是椭球的定位与定向?椭球的定向一般应该满足那些条件?11.什么是参考椭球?什么是总地球椭球?12.什么是惯性坐标系?什么协议天球坐标系、瞬时平天球坐标系、瞬时真天球坐标系?13.试写出协议天球坐标系与瞬时平天球坐标系之间,瞬时平天球坐标系与瞬时真天球坐标系的转换数学关系式。
14.什么是地固坐标系、地心地固坐标系与参心地固坐标系?15.什么协议地球坐标系与瞬时地球坐标系?如何表达两者之间的关系?16.如何建立协议地球坐标系与协议天球坐标系之间的转换关系,写出其详细的数学关系式。
17.简述一点定与多点定位的基本原理。
18.什么是大地原点?大地起算数据是如何描述的?19.简述1954年北京坐标系、1980年国家大地坐标系、新北京54坐标系的特点以及它们之间存在相互关系。
20.什么是国际地球自传服务(IERS )、国际地球参考系统(ITRS) 、国际地球参考框架(ITRF)? ITRS 的建立包含了那些大地测量技术,请加以简要说明?21. 站心坐标系如何定义的?试导出站心坐标系与地心坐标系之间的关系?22.试写出不同平面直角坐标换算、不同空间直角坐标换算的关系式?试写出上述两种坐标转换的误差方程式?23.什么是广义大地坐标微分方程(或广义椭球变换微分方程)?该式有何作用?三地球重力场及地球形状的基本理论1.简述地球大气中平流层、对流层与电离层的概念。
武汉大学测绘学院空间大地测量学考试复习要点整理.docx
空间大地测量学::利用自然天体或人造天体精确确定点的位置,确定地球的形状,大小,外部重力场,以及他们随时间的变化状况的一整套理论和方法空间大地测量两个要素;1,必须利用空间的自然天体或人造天体所发出的信号来进行观测或将他们作为观测目标2,所做的工作必须属于大地测量的范畴,如精确测定点的坐标及其变化率,确定地球重力场及其变化,确定地球的运动和相关参数。
空间大地测量的主要任务:大体分为两类:一类是建立和维持各种坐标框架,1,建立和维持地球参考框架(1)建立和维持全球性的地球参考框架,(2)建立和维持区域性的地球参考框架2,建立和维持国际天球参考框架3,测定地球定向参数。
一类是确定地球重力场。
空间大地测量技术:VLBI,激光测月(SLR), GPS (GNSS), DORIS,利用卫星轨道摄动反演地球重力场,卫星测高,.卫星跟踪卫星,卫星重力梯度测量时间间隔:事物运动处于两个状态之间所经历的时间过稈,它描述了事物运动在时间上的连续状态时刻:发生某一现象的时间时间基准:时间测量的一个标准的公共尺度。
时间的起算基准和尺度基准一起决定事件发生的时刻时间的尺度基准决定两事件之间的时间间隔,也就是决定时段时间基准的条件:1。
运动是连续的、周期性的2,运动周期必须稳定3,运动周期必须具有复现性,即要求在任何时间和地点都可以通过观测和试验来复现这种周期运动时间基准有三种:1地球自转(建立世界时)2,行星绕太阳公转(历书时)3,电子,原了的谐波振荡(原了时)4,脉冲星发射周期性脉冲信号(脉冲星时)守时系统:被用来建立和维持时间频率基准,确定任一时刻的时间方法:通过时间频率测量和比对技术来评价和维持该系统的不同时钟的稳定度和准确度,并据此给予不同的权重,以便用多台钟来共同建立和维持时间系统的框架授时:通过授时设施(电话网络无线电,电视,专用长波和短波电台和卫星等)向用八传递准确的时间信息和频率信息时钟的主要技术指标:1频率准确度,振荡器所产生的实际震荡频率与:苴理论值得相对偏差2 ,频率漂移率频率准确度在单位时间内的变化量3,频率稳定度(反映时钟质量的最主要的技术指标)频标在一定的时间间隔内所输出的平均频率的随机变化程度频率准确度和频漂反映了钟的系统误差。
大地测量学基础知识要点考点总结
大地测量学基础知识要点考点总结1.大地测量学基本概念和基本原理:包括大地测量学的定义、目的、分类、基本量的定义和测量等。
2.大地测量学的发展历程:包括古代大地测量学的发展和现代大地测量学的发展。
3.大地测量学的基本坐标系统:包括大地水准面、基准面和基准点的概念以及其相互关系。
4.大地测量学的椭球模型:包括椭球参数、椭球面方程、椭球面上的坐标转换等。
5.大地测量学的重力场:包括重力梯度、重力异常、引力公式等。
6.测地线理论:包括测地线的定义、性质、测量以及测角和测距的原理等。
7.大地测量学的变形监测:包括地壳运动、地壳变形监测的方法和技术等。
8.大地水准面:包括大地水准面的概念、测量方法、精度要求等。
9.基线测量:包括基线测量的原理、仪器设备、观测方法和数据处理等。
10.卫星测高技术:包括全球卫星定位系统(GPS)原理、卫星高程测量方法、误差源和应用等。
1.理解大地测量学的基本概念、基本原理和发展历程,并能够将其应用于实际问题的解决中。
2.熟悉大地测量学的基本坐标系统和椭球模型,并能够进行坐标转换和相关计算。
3.理解重力场的基本概念和计算方法,并能够应用于重力异常和引力公式的计算中。
4.理解测地线的定义、性质和测量方法,并能够进行测角和测距的原理和计算。
5.了解大地测量学的变形监测方法和技术,并能够解决地壳变形监测的实际问题。
6.理解大地水准面的概念、测量方法和精度要求,并能够进行水准线的计算和数据处理。
7.了解基线测量的原理、仪器设备和观测方法,并能够进行基线测量数据的处理和分析。
8.了解卫星测高技术的原理、方法、误差源和应用,并能够应用于卫星高程测量问题的解决中。
总之,掌握大地测量学的基础知识对于理解地球形状、地球重力场、地球表面点的坐标、地球表面形状及其变形等内容至关重要。
通过深入学习和理解这些基础知识,可以为实际工程测量和科学研究提供可靠的测量基础。
武汉大学测绘院大地测量专硕《GPS测量与数据处理》知识点高度精华总结版
GPS测量与数据处理知识点高度精华总结版一、GPS网及其建立1、GPS网:采用GPS技术建立的测量控制网,由GPS点和基线向量所构成。
2、GPS静态测量的特点:(1)测量精度高(2)选点灵活,无需造标,布网成本低(3)可全天候作业(4)观测时间短,作业效率高(5)观测、处理自动化(6)可获得三维坐标3、GPS网的建立过程:(1)设计准备阶段:项目规划;技术设计;资料搜集整理;仪器检定和检验;踏勘、选点和埋石(2)测量实施/施工作业阶段:实地了解测区状况;卫星状况预报;确定作业方案;外业观测;数据传输备份;基线解算及其质量控制(3)数据处理:网平差及其质量控制;技术总结;成果验收。
4、几个基本概念:(1)观测时段:从测站上开始接受卫星信号起止停止观测间的连续工作时间段称为观测时段,简称时段,时段持续的时间称为时段长度。
(2)同步观测:两台或两台以上的GPS接收机同时对同一组卫星信号进行观测。
(3)基线向量:利用进行同步观测的GPS接收机所采集的观测数据计算出的接收机间的三维坐标差,简称为基线。
(4)同步观测基线:利用同一时段的同步观测数据所确定出的基线向量被称为同步观测基线(5)闭合环:由多条基线向量首尾相连所构成的闭合图形(6)复测基线:在某两个测站间,由多个时段的同步观测数据所获得的多个基线向量结果称为复测基线(7)同步闭合环:三台或三台以上的GPS接收机进行同步观测所获得的基线向量所构成的闭合环,简称为同步环(8)独立基线向量:若一组基线向量中的任何一条基线向量都无法用该组中其他基线向量的线性组合来表示,则该组基线向量就是一组独立的基线向量(9)独立观测环:由独立观测基线所构成的闭合环即非同步观测环也称为异步环(独立观测环闭合差的大小可作为评定基线解算结果质量的有力指标)5、GPS网的质量及质量控制:(1)质量=精度+可靠性+(成果适用性)(2)质量控制:质量检验(指标)和质量改善(措施)(3)影响GPS质量的因素:GPS基线向量的质量(依赖于观测数据和处理方法);常规地面观测值的质量(观测方法);起算数据的精度、数量和分布(网的设计及已有成果的质量);GPS网的结构(网的设计和外业观测方案);数据处理方法的完备性(数据处理软件及其解算方案)二、GPS处理的技术设计1、技术设计的依据:GPS处理规范及规程;测量任务书或测量合同书;其他规范与规程2、GPS网的精度和密度设计:用途/目的→GPS等级(AA、A、B、C、D、E)→精度密度设计。
《大地测量学》复习知识点总结
《大地测量学》复习知识点总结
大地测量学是地球测量学的重要研究分支之一,面向工程建设、调查集约、水文测量、数据分析、工程设计和科学研究等,是从事大地测量及其应用的理论,方法和技术总称,也是近代测量学中最重要的一个分支,是地理信息系统的理论依据和技术支持事业。
大地测量学的基本内容包括:
一、大地测量的基础理论性内容:坐标系统、视线理论、高程理论、平面测量、直线测量和空间测量。
二、地形测量:包括平面测量、直线测量、高程测量以及使用定位器测量的内容,如光学定位技术、电子定位技术、GPS定位技术等。
三、测量仪器:包括双距仪、激光测距仪、水准仪、气球观测仪、电子全站仪、多功能测距仪、遥感仪等。
四、测量数据处理:包括数据收集、数据处理、测量数据统计、大地及高程坐标系统换算、模型最优化、空间分析和定位精度评价。
五、不确定性测量:包括单位质量信息、随机误差估计、不确定性测量理论、数据可靠性评价、数据精度评价、数据校核及数据融合等。
六、地球椭球体的参数估计:包括椭球体参数计算、椭球参数估计等。
七、地图测量:包括经纬度网络测量、俯仰角测量等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间大地测量学::利用自然天体或人造天体精确确定点的位置,确定地球的形状,大小,外部重力场,以及他们随时间的变化状况的一整套理论和方法空间大地测量两个要素; 1, 必须利用空间的自然天体或人造天体所发出的信号来进行观测或将他们作为观测目标 2,所做的工作必须属于大地测量的范畴,如精确测定点的坐标及其变化率,确定地球重力场及其变化,确定地球的运动和相关参数。
空间大地测量的主要任务:大体分为两类:一类是建立和维持各种坐标框架,1,建立和维持地球参考框架(1)建立和维持全球性的地球参考框架,(2)建立和维持区域性的地球参考框架 2,建立和维持国际天球参考框架 3,测定地球定向参数。
一类是确定地球重力场。
空间大地测量技术:VLBI,激光测月(SLR),GPS(GNSS),DORIS,利用卫星轨道摄动反演地球重力场,卫星测高,卫星跟踪卫星,卫星重力梯度测量时间间隔:事物运动处于两个状态之间所经历的时间过程,它描述了事物运动在时间上的连续状态时刻:发生某一现象的时间时间基准:时间测量的一个标准的公共尺度。
时间的起算基准和尺度基准一起决定事件发生的时刻时间的尺度基准决定两事件之间的时间间隔,也就是决定时段时间基准的条件:1 。
运动是连续的、周期性的 2,运动周期必须稳定 3,运动周期必须具有复现性,即要求在任何时间和地点都可以通过观测和试验来复现这种周期运动时间基准有三种:1 地球自转(建立世界时) 2,行星绕太阳公转(历书时) 3,电子,原子的谐波振荡(原子时) 4,脉冲星发射周期性脉冲信号(脉冲星时)守时系统:被用来建立和维持时间频率基准,确定任一时刻的时间方法:通过时间频率测量和比对技术来评价和维持该系统的不同时钟的稳定度和准确度,并据此给予不同的权重,以便用多台钟来共同建立和维持时间系统的框架授时:通过授时设施(电话网络无线电,电视,专用长波和短波电台和卫星等)向用户传递准确的时间信息和频率信息时钟的主要技术指标:1 频率准确度,振荡器所产生的实际震荡频率与其理论值得相对偏差 2 ,频率漂移率频率准确度在单位时间内的变化量 3,频率稳定度(反映时钟质量的最主要的技术指标)频标在一定的时间间隔内所输出的平均频率的随机变化程度频率准确度和频漂反映了钟的系统误差。
频率稳定度反映了随机误差世界时系统:以地球自转作为时间基准的时间系统。
分为恒星时和太阳时恒星时:以春分点作为参考点,春分点连续两次经过地方上子午圈的时间间隔为一个恒星日,再均匀分割成小时、分和秒。
恒星时与地方上子午圈的时间有关,为地方时恒星时分为真恒星时和平恒星时,真恒星时也即真春分点的地方时角,LAST。
平恒星时,LMST真太阳时:以太阳中心作为参考点。
太阳中心连续两次经过某地的上子午圈的时间间隔称为一个真太阳日;再均匀分割为小时、分、秒。
大小相当于太阳中心相对于本地子午圈的时角真太阳时不均匀原因:1,地球围绕太阳的轨道为椭圆,近地点角速度大远地点小, 2 ,黄道在赤道上的投影不均匀。
建立平太阳时的原因:由于真太阳时的缺陷,建立以平太阳视运动为基准的平太阳时平太阳:建立假太阳,其周年视运动轨迹位于赤道平面,而不是黄道平面,它在赤道上的运动角速度为恒定的,等于真太阳时的平均角速度,假太阳称为平太阳平太阳:以地球自转为基础,以平太阳中心作为参考点所建立的时间系统民用时:将平太阳时的起始点从平正午移到平子夜的平太阳时世界时(UT):将格林尼治零子午线处的民用时世界时是以地球自转为基础的,而地球自转轴在地球的内部位置在变化,即存在极移现象,地球自转速度不均匀,不严格满足建立时间系统的基本条件.广泛应用于天文学和人们日常生活,但因为不均匀,无法应用于高科技,高精度的领域未经任何改正的世界时 UT0,经过极移改正Δ入,的UT1,经过极移和地球自转速度的季节性改正ΔTs, UT2由于地球自转的同时也存在绕太阳公转,太阳日大于恒星日,太阳时大于恒星时力学时系统:天文学中,天体的星历是根据天体力学中的运动方程编算的,这些方程中,时间T是一个独立的变量,该时间定义为力学时。
以行星绕日公转为基础。
力学时分类:历书时(ET),地球动力学时(TDT),太阳系质心力学时(TDB)历书时:为了避免世界时的不均匀性,1960年引入了一种以地球绕日公转周期为基础的均匀时间系统。
历书时的起点,1900年1月0日12h.历书时实际上是通过对月球的观测得到的,将观测得到的天体位置与用历书时计算得到的天体历表比较,就能内插出观测瞬间的历书时历书时的缺陷:1,太阳,月球,行星历表中的位置与一些天文常数有关,每当这些天文常熟进行了修改,就会导致历书时不连续。
2,由于月球的视面积很大,边缘又很不规则,很难精确找准其中心的位置,所以求得的历书时比理论精度要差很多 3,要经过较长时间的观测和数据处理才能得到准确的时间 4,由于星表本身的误差,同一瞬间观测月球与观测行星得出的历书时可能不相同原子时:以原子谐振信号周期为标准,并对它进行连续记数的时标起点:1958年1月1日0h,其值与UT2相同协调世界时(UTC):世界时的应用比原子时更为广泛,国际天文协会于20世纪60年代建立协调世界时,秒长严格等于原子时的秒长。
协调世界时与世界时UT间的时刻差规定需要保持在0.9秒以内,否则将采取闰秒的方式进行调整GPS时(GPST),时间为原子时,采用原子时的秒长,起点1980年1月6日0国际原子时IAT-GPST=19s相对论框架下的几种时间系统:地球动力学时(TDT):用于解算围绕地球质心旋转的天体的运动方程,编算其星历时所用的一种时间系统。
建立在国际原子时TAI的基础上,秒长与国际原子时的秒长相等。
32.184 太阳系质心动力学时(TDB):用于解算坐标原点位于太阳系质心的运动方程并编制其星表时所用的时间系统地心坐标时(TCG):原点位于地心的天球坐标系中所用的第四维坐标-时间系统,它是把TDT 从大地水准面上通过相对论转换到地心时的类时变量质心坐标时(TCB):以太阳系质心天球坐标系中的第四维坐标,它是用于计算行星绕日运动方程中的时间变量,也是编制行星星表时的独立变量空间大地测量中的常用计时方法:历法:规定年月日的长度以及他们之间的关系,指定时间序列的一套法则。
分为阳历,阴阳历,阴历。
阳历,以回归年为基本单位。
阴阳历:以朔望月记月,以回归年计年,二者兼顾阴历:以朔望月为基本单位阳历分为:儒略历,格里历。
赤道岁差(日月岁差):由于太阳、月球以及行星对地球上赤道隆起部分的作用力矩而导致赤道平面的进动(或者说天极绕黄极在半径为黄赤交角的小圆上顺时针方向旋转)称为赤道岁差。
运动速度为每年西移50.39秒黄道岁差(行星岁差):除太阳和月球对地球的万有引力外,其他行星对地球和月球产生万有引力,影响地月系质心绕日公转的轨道平面,黄道面产生变化,使春分点产生移动。
春分点在天球赤道上面每年东移0.1秒,还会使黄赤交角变化平天极:只考虑岁差运动时的天极平赤道:对平天极对应的天球赤道平春分点:平赤道与黄道的交点IAU1976,IAU2000,IAU2006岁差模型瞬时天球坐标系:以天球中心为原点,X轴指向瞬时的平春分点,Z轴指向瞬时的平北天极,Y轴垂直于X轴和Z轴形成一个右手垂直直角坐标系岁差改正原因:恒星的位置是在天球坐标系中描述的,由于岁差的影响,不同时刻的瞬时天球坐标系不同,不同时刻的恒星位置无法相互比较,为了比较不同时刻的恒星的位置,必须把不同时刻恒星在不同瞬时坐标系下的位置归算到统一的坐标系下(协议天球坐标系),就必须进行岁差改正章动:由于日月以及行星相对于地球的位置在不断变化,导致黄道面产生周期性的变化,从而使得北天极,春分点,黄赤交角等在总岁差的基础上产生额外的周期性的微小摆动,这种周期性的微小摆动称为章动主要因素:月球绕地球公转的白道平面之间的夹角会在18°17″到28°35″之间以18.6年周期变化真天极围绕平天极做周期性运动,真春分点、真赤道分别相对于平春分点、平赤道作相应的周期运动,引起的春分点在黄道上的位移为黄经章动,所引起的黄赤交角的变化为交角章动。
极移:由于地球内部物质(地幔对流)和表面上的物质(海潮,洋流)的运动,使得地球相对于自转轴产生相对运动,引起地级的移动固定平纬:取6年内测站的瞬时纬度的平均值作为测站的平均纬度,其数值在长时间内将保持基本稳定,称为固定平纬历元平纬:将某一历元的纬度值扣除周期项的影响后取值作为该历元的平均纬度。
固定平极:由几个纬度观测台站的固定平纬所确定的平均极,如国际协议原点CIO历元平极:由一个或几个观测台站的历元平纬所确定的平极。
我国的JYD1968.0极移的成分:张德勒摆动(周期427天0.15秒),是弹性地球自转的必然结果受迫摆动(周期1年,0.10秒)主要是由于季节性的天气变化引起的微小摆动:周期1天,0.02秒天球坐标系:描述自然天体和人造天体在空间的位置或方向的一种坐标系依据所选用的坐标原点不同:站心天球坐标系,原点位于测站中心。
地心天球坐标系,原点位于地心,太阳系质心天球,原点位于太阳系质心基圈与基点:选取一个大圆作为基圈,该基圈的极点称为基点,过基圈的两个极点的大圆皆与基圈垂直主圈和副圈:选取一个过基圈的两个极点的大圆作为主圈,其余的大圆称为副圈主点;主圈与基圈的交点经度:过任一天体S的副圈平面与主圈面之间的夹角。
纬度:从球心至天体的联线与基圈平面间的夹角瞬时天球赤道坐标系:坐标原点位于天球中心,Z轴指向瞬时北天极,X轴指向瞬时春分点,Y轴组成右手坐标系的空间直角坐标系。
天体的最终位置和方位不易用这种坐标系表示平天球赤道坐标系:只顾岁差运动不顾章动运动所建立的天球坐标系。
Z轴指向历元平天极,X轴和Y轴则位于与之相应的平天球赤道面上,X轴指向平春分点,组成右手坐标系协议天球坐标系:为了方便地表示天体在空间的位置和方位,编制天体的星历表,就需要在空间建立一个固定的坐标系,该坐标系的三个坐标轴需指向三个固定的方向。
2000年1月1日12h的平天球坐标系。
Z轴指向J2000.0时的平北天极,X轴指向J2000.0时的春分点;Y轴垂直于X,Z轴,构成右手坐标系国际天球参考系统ICRS是根据一组定义和规定从理论上来加以确定的,该坐标系统还需要有具体的机构通过一系列的观测和数据处理并采用一定的形式来予以实现,坐标系统的具体实现称为坐标框架。
国际天球参考系ICRS是由国际地球自转服务IERS所建立的国际天球参考框架ICRF来予以实现的。
根据原点的不同分为BCRS(坐标原点位于太阳系质心),GCRS(原点位于地球质心)协议地球参考系(CTRS):由一定的组织和机构通过一系列的观测和数据处理后用地球参考框架来具体实现。