第13章 物质输送和有限速率化学反应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 物质输送和有限速率化学反应
FLUENT 可以通过求解描述每种组成物质的对流、扩散和反应源的守恒方程来模拟混合和输运,可以模拟多种同时发生的化学反应,反应可以是发生在大量相(容积反应)中,和/或是壁面、微粒的表面。包括反应或不包括反应的物质输运模拟能力,以及当使用这一模型时的输入将在本章中叙述。
注意你可能还希望使用混合物成分的方法(对非预混系统,在14章介绍)、反应进程变量的方法(对预混系统,在15章介绍),或部分预混方法(在16章介绍)来模拟你的反应系统。见12章FLUENT 中反应模拟方法的概述。 本章中的分为以下章节:
● 13.1 容积反应 ● 13.2 壁面表面反应和化学蒸汽沉积 ● 13.3 微粒表面反应 ● 13.4 无反应物质输运
13.1 容积反应
与容积反应有关的物质输运和有限速率化学反应方面的信息在以下小节中给出:
● 13.1.1 理论
● 13.1.2 模拟物质输运和反应的用户输入概述 ● 13.1.3 使能物质输运和反应,并选择混合物材料 ● 13.1.4 混合物和构成物质的属性定义 ● 13.1.5 定义物质的边界条件 ● 13.1.6 定义化学物质的其他源项
● 13.1.7 化学混合和有限速率化学反应的求解过程 ● 13.1.8 物质计算的后处理
● 13.1.9 从CHEMKIN 导入一个化学反应机理
13.1.1 理论 物质输运方程
当你选择解化学物质的守恒方程时,FLUENT 通过第i 种物质的对流扩散方程预估每种物质的质量分数,Y i 。守恒方程采用以下的通用形式:
()()i i i i i S R J Y v Y t
++-∇=⋅∇+∂∂
ρρ (13.1-1) 其中i R 是化学反应的净产生速率(在本节稍后解释),i S 为离散相及用户定义的源项导致的额外产生速率。在系统中出现N 种物质时,需要解N-1个这种形式的方程。由于质量分数的和必须为1,第N 种物质的分数通过1减去N-1个已解得的质量分数得到。为了使数值误差最小,第N 种物质必须选择质量分数最大的物质,比如氧化物是空气时的N 2。 层流中的质量扩散
在方程13.1-1中,i J 是物质i 的扩散通量,由浓度梯度产生。缺省时,FLUENT 使用稀释近似,这样扩散通量可记为:
i m i i Y D J ∇-=,ρ (13.1.2)
这里m i D ,是混合物中第i 种物质的扩散系数。
对于确定的层流流动,稀释近似可能是不能接受的,需要完整的多组分扩散。在这些例子中,可以解Maxwell-Stefan 方程,详细情况见7.7.2节。 湍流中的质量扩散
在湍流中,FLUENT 以如下形式计算质量扩散:
i t t m i i Y Sc D J ∇⎪⎪⎭⎫ ⎝
⎛+-=μρ, (13.1.3)
其中t Sc 是湍流施密特数,
t
t
D ρμ(缺省设置值为0.7)。 注意,湍流扩散一般淹没层流扩散,在湍流中指定详细的层流性质是不允许的。 能量方程中的物质输送处理
在许多多组分混合流动中,物质扩散导致了焓的传递。
⎥⎦
⎤⎢⎣⎡∇∑=n i i i J h 1 这种扩散对于焓场有重要影响,不能被忽略。特别是,当所有物质的Lewis 数
m
i p i D c k
Le ,ρ=
(13.1-4)
远离1时,忽略这一项会导致严重的误差。
FLUENT 缺省地包含这一项。在方程13.1-4中,k 为热导率。 进口处的扩散
在FLUENT 的非耦合求解器中,入口的物质净输送量由对流量和扩散量组成,对耦合解算器,只包括对流部分。对流部分由你指定的物质浓度确定。扩散部分依赖于计算得到的物质浓度场。因此,扩散部分(从而使净输送量)不预先指定。见13.1.5节有关指定入口净输送量的信息。 反应建模的一般有限速率形式
反应速率作为源项在方程13.1-1中出现,在FLUENT 中根据以下三种模型中的一个计算: 层流有限速率模型:忽略湍流脉动的影响,反应速率根据Arrhenius 公式确定。
涡耗散模型:认为反应速率由湍流控制,因此避开了代价高昂的Arrhenius 化学动力学计算。
涡耗散概念(EDC )模型:细致的Arrhenius 化学动力学在湍流火焰中合并。注意详尽的化学动力学计算代价高昂。
通用有限速率对于范围很广的应用,包括层流或湍流反应系统,预混、非预混、部分预混燃烧系统都适用。
层流有限速率模型
层流有限速率模型使用Arrhenius 公式计算化学源项,忽略湍流脉动的影响。这一模型对于层流火焰是准确的,但在湍流火焰中Arrhenius 化学动力学的高度非线性,这一模型一般不精确。对于化学反应相对缓慢、湍流脉动较小的燃烧,如超音速火焰可能是可以接受的。
化学物质i 的化学反应净源项通过有其参加的N R 个化学反应的Arrhenius 反应源的和计算得到。
∑==r
N i r
i i w i R M R 1
,,ˆ
其中i w M ,是第i 种物质的分子量,r
i R ,ˆ为第i 种物质在第r 个反应中的产生/分解速率。反应可能发生在连续相反应的连续相之间,或是在表面沉积的壁面处,或是发生在一种连续相物质的演化中。
考虑以如下形式写出的第r 个反应:
∑∑==−−→←N
i i r i N
i k i r
i M M r
b 1
'',1
',,νν
(13.1-6) 其中N ——系统中化学物质数目;
',r i ν——反应r 中反应物i 的化学计量系数; '',r i ν——反应r 中生成物i 的化学计量系数;
i M ——第i 种物质的符号; r f k ,——反应r 的正向速率常数; r b k ,——反应r 的逆向速率常数;
方程13.1-6对于可逆和不可逆反应(FLUENT 中缺省为不可逆)都适用。对于不可逆反应,逆向速率常数r b k ,简单地被忽略。
方程13.1-6中的和是针对系统中的所有物质,但只有作为反应物或生成物出现的物质才有非零的化学
计量系数。因此,不涉及到的物质将从方程中清除。
反应r 中物质i 的产生/分解摩尔速度以如下公式给出:
(
)
[][]
⎪
⎪⎭
⎫ ⎝⎛--Γ=∏∏=='',1,,'
,1,,','
',,ˆr j N j r j r b r j N j r j r f r
i r
i r
i r
r C k C k R ηην
ν (13.1-7) 其中:r N ——反应r 的化学物质数目;
r j C ,——反应r 中每种反应物或生成物j 的摩尔浓度;
',r j η——反应r 中每种反应物或生成物j 的正向反应速度指数; '',r j η——反应r 中每种反应物或生成物j 的逆向反应速度指数;
见13.1.4节有关输入整体正向反应(不可逆)和单元反应(可逆)的化学计量系数和速率指数方面的内容。
Γ 表示第三体对反应速率的净影响。这一项由下式给出:
其中r
j ,γ
为第r 个反应中第j 种物质的第三体影响。在缺省状态,FLUENT 在反应速率计算中不