2009-2014全国大学生数学竞赛试题及答案(最完整版)

合集下载

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2n π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x +'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-,故()01y=-为极大值,()21y-=为极小值。

2009-2014全国大学生数学竞赛试题及答案(最完整版)

2009-2014全国大学生数学竞赛试题及答案(最完整版)


dx 2
二、(本题满分 5 分)求极限 lim( e x + e2x +
+
e nx
)
e x
,其中
n
是给定的正整数。
x→0
n
∫ 三、(本题满分 15 分)设函数 f (x) 连续, g(x) = 1 f (xt)dt ,且 lim f (x) = A , A 为常
0
x→0 x
数,求 g′(x) 并讨论 g′(x) 在 x = 0 处的连续性。
L
2
五、(本题满分 10 分)已知 y1 = xex + e2x , y2 = xex + e−x , y3 = xe x + e2x − e−x 是某二
阶常系数线性非齐次微分方程的三个解,试求此微分方程。
六、(本题满分 10 分)设抛物线 y = ax2 + bx + 2 ln c 过原点。当 0 ≤ x ≤ 1 时, y ≥ 0 ,又已
六、(本题满分 12 分)设 f (x) 是在 (−∞, +∞) 内的可微函数,且 f ′(x) < mf (x) ,其中
+∞
∑ 0 < m < 1 。任取实数 a0 ,定义 an = ln f (an−1), n = 1, 2, ,证明: (an − an−1) 绝对收敛。 n =1
七、(本题满分 15 分)是否存在区间[0, 2]上的连续可微函数 f (x) ,满足 f (0) = f (2) = 1,
第一届(2009)全国大学生数学竞赛预赛试卷
一、填空题(每小题 5 分,共 20 分)
(x + y) ln(1 + y )
1.计算 ∫∫D

第一届大学生数学竞赛(数学类)考题及答案

第一届大学生数学竞赛(数学类)考题及答案

考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.一、(15分)求经过三平行直线1:L x y z ==,2:11L x y z -==+,3:11L x y z =+=-的圆柱面的方程. 二、(20分)设n n C ⨯是n n ⨯复矩阵全体在通常的运算下所构成的复数域C 上的线性空间,121000100010001n n n a a F a a ---⎛⎫⎪- ⎪ ⎪=- ⎪ ⎪⎪-⎝⎭.(1)假设111212122212n n n n nn a a a a a a A aa a ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,若AF FA =,证明:121112111n n n n A a F a F a F a E ---=++++;(2)求n n C ⨯的子空间{}()|n n C F X C FX XF ⨯=∈=的维数.三、(15分)假设V 是复数域C 上n 维线性空间(0n >),,f g 是V 上的线性变换.如果fg gf f -=,证明:f 的特征值都是0,且,f g 有公共特征向量.四、(10分)设{}()n f x 是定义在[],a b 上的无穷次可微的函数序列且逐点收敛,并在[],a b 上满足'()n f x M ≤.(1)证明{}()n f x 在[],a b 上一致收敛;(2)设()lim ()n n f x f x →∞=,问()f x 是否一定在[],a b 上处处可导,为什么? 五、(10分)设320sin sin n nta t dt t π=⎰, 证明11n na ∞=∑发散. 六、(15分) (,)f x y 是{}22(,)|1x y x y +≤上二次连续可微函数,满足222222f fx y x y∂∂+=∂∂,计算积分221x y I dxdy +≤⎛⎫=⎰⎰. 七、(15分))假设函数 ()f x 在 [0,1]上连续,在(0,1)内二阶可导,过点 (0,(0))A f ,与点 (1,(1))B f 的直线与曲线 ()y f x =相交于点 (,())C c f c ,其中 01c <<. 证明:在 (0,1)内至少存在一点 ξ,使()0f ξ''=。

09年全国数学竞赛赛区赛试卷及答案

09年全国数学竞赛赛区赛试卷及答案

首届中国大学生数学竞赛赛区赛试卷解答(非数学类,2009)考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.注意:1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效。

2、密封线左边请勿答题,密封线外不得有姓名及相关标记。

一、 填空题(每小题5分,共20分)(1)计算=--++⎰⎰dxdy yx x y y x D1)1ln()(_____________,其中区域D 由直线x + y = 1与两坐标轴所围三角形区域。

(2) 设f (x ) 是连续函数, 满足⎰--=222)(3)(dx x f x x f ,则=)(x f _ __ __。

(3)曲面2222-+=yxz平行平面 2x + 2y − z = 0 的切平面方程是_ __ _。

(4)设函数y = y (x )由方程29ln )(yy f e xe =确定,其中f 具有二阶导数,且1≠'f ,则22dxy d =_________________。

答案:1516,31032-x,0522=--+z y x,322)](1[)()](1[y f x y f y f '-''-'--。

二、(5 分)求极限xenxxxx ne ee)(lim 20+++→ ,其中n 是给定的正整数。

解:原式=)}ln(exp{lim20ne eexe nxxxx +++→=}ln )ln({lim exp{20xne eee nxxxx -+++→ ………………….….…(2 分)其中大括号内的极限是0型未定式,由 L ′Hospital 法则,有nxxxxxx x nxxxx eeene e e e xne eee ++++++=-+++→→ 2020)2(lim}ln )ln({lime n nn e )21()21(+=+++=于是 原式=en e )21(+ …….…. . …………………………….………………(5 分)三 、(15 分) 设函数 f (x) 连续, ⎰=1)()(dtxt f x g ,且Axx f x =→)(lim, A为常数,求)(x g '并讨论)(x g '在x = 0处的连续性。

首届全国大学生数学竞赛赛区赛试卷参考答案--非数学类

首届全国大学生数学竞赛赛区赛试卷参考答案--非数学类

四、已知平面区域 D = {(x, y) | 0 ≤ x ≤ π , 0 ≤ y ≤ π} ,L 为 D 的正向边界,试证:
∫ ∫ (1) xesin ydy − ye−sin xdx = xe−sin ydy − yesin xdx ;
L
L
∫ (2)
L
xesin y dy −
ye−siLeabharlann xdx≥时,体积最小.
七、已知 un (x) 满足
un′(x) = un (x) + xn−1ex ( n 为正整数),
∑ 且 un (1)
=
e n
,求函数项级数

un (x) 之和.
n=1

∑ 解:先解一阶常系数微分方程,求出 un (x) 的表达式,然后再求 un (x) 的 n=1
和. 由已知条件可知 un′(x) − un (x) = xn−1ex 是关于 un (x) 的一个一阶常系数线
解: 因抛物线过原点,故 c = 1
3
∫ 由题设有
1 (ax 2
0
+
bx)dx
=
a 3
+
b 2
=
1 3
.即
b = 2 (1− a) 3

∫ 而 V = π 1(ax2 + bx)2dx = π[1 a2 + 1 ab + 1 b2 ]
0
523
=
π
[1 5
a2
+
1 3
a(1

a)
+
1 3

4 9
(1 −
n 是给定的正整数.
x→0
n
解:原式 = lim exp{e ln(ex + e2x + + enx )}

大学生数学竞赛试卷及答案(数学类)

大学生数学竞赛试卷及答案(数学类)

Fe1 = e2 , F 2 e1 = Fe2 = e3 ," , F n −1e1 = F ( F n − 2 e1 ) = Fen −1 = en

(*)
Me1 = (an1 F n −1 + an −11 F n − 2 + " + a21 F + a11 E )e1 = an1 F n −1e1 + an −11 F n − 2 e1 + " + a21 Fe1 + a11 Ee1 = an1en + an −11en −1 + " + a21e2 + a11e1 = α1 = Ae1
圆柱面的半径即为平行直线 x = y = z 和 x − 1 = y + 1 = z 之间的距离. P0 (1, −1, 0) 为 L0 上的点.
G JJJG G JJJG | n ×ቤተ መጻሕፍቲ ባይዱP0 S | | n × P0O | G G = 对圆柱面上任意一点 S ( x, y, z ) , 有 , 即 |n| |n| (− y + z − 1) 2 + ( x − z − 1) 2 + (− x + y + 2) 2 = 6 ,
地, Wm 在 g 下是不变的. 下面证明, Wm 在 f 下也是不变的.事实上,由 f (η ) = λ0η ,知
fg (η ) = gf (η ) + f (η ) = λ0 g (η ) + λ0η
fg 2 (η ) = gfg (η ) + fg (η ) = g (λ0 g (η ) + λ0η ) + (λ0 g (η ) + λ0η ) = λ0 g 2 (η ) + 2λ0 g (η ) + λ0η

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)第一届全国大学生数学竞赛预赛试题一、填空题(每小题5分,共20分)1.计算 $\iint_D \frac{y}{x+y-1} \mathrm{d}x\mathrm{d}y$,其中区域$D$ 由直线$x+y=1$ 与两坐标轴所围成三角形区域。

2.设 $f(x)$ 是连续函数,且满足 $f(x)=3x^2-\intf(x)\mathrm{d}x-2$,则 $f(x)=\underline{\hspace{2em}}$。

3.曲面 $z=\frac{x^2+y^2-2}{2}$ 平行于平面 $2x+2y-z=$ 的切平面方程是 $\underline{\hspace{2em}}$。

4.设函数 $y=y(x)$ 由方程 $xe^{f(y)}=\ln 29$ 确定,其中$f$ 具有二阶导数,且 $f'\neq 1$,则$y''=\underline{\hspace{2em}}$。

二、(5分)求极限 $\lim\limits_{x\to n}\frac{e^{ex+e^{2x}+\cdots+e^{nx}}}{x}$。

三、(15分)设函数 $f(x)$ 连续,$g(x)=\intf(xt)\mathrm{d}t$,且 $\lim\limits_{x\to 1} f(x)=A$,$A$ 为常数,求 $g'(x)$ 并讨论 $g'(x)$ 在 $x=1$ 处的连续性。

四、(15分)已知平面区域 $D=\{(x,y)|0\leq x\leq\pi,0\leq y\leq\pi\}$,$L$ 为 $D$ 的正向边界,试证:1)$\int_L xe^{\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x=\int_L xe^{-\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x$;2)$\int_L xe^{\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x\geq \frac{\pi^2}{2}$。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历年全国大学生数学竞赛初赛真题全(数学类)十一届试卷高清无水印(2009-2019)

历年全国大学生数学竞赛初赛真题全(数学类)十一届试卷高清无水印(2009-2019)

(数学类)试卷第一题:(15分)求经过三平行直线1:L x y z ==,2:11L x y z -==+,3:11L x y z =+=-的圆柱面的方程.第二题:(20分)设n nC ⨯是n n ⨯复矩阵全体在通常的运算下所构成的复数域C 上的线性空间,12100010*******n n n a a a F a --⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭. (1)假设111212122212n n n n nn aa a a a a A a a a ⎛⎫ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,若AF FA =,证明: 121112111n n n n A a F a F a F a E ---=++++ ;(2)求n nC⨯的子空间{}()|n n C F X C FX XF ⨯=∈=的维数.第三题:(15分)假设V 是复数域C 上n 维线性空间(0n >),,f g 是V 上的线性变换. 如果fg gf f -=,证明:f 的特征值都是0,且,f g 有公共特征向量.第四题:(10分)设{}()n f x 是定义在,a b ⎡⎤⎢⎥⎣⎦上的无穷次可微的函数序列且逐点收敛,并在,a b ⎡⎤⎢⎥⎣⎦上满足()nf x M '≤.(1)证明{}()n f x 在,a b ⎡⎤⎢⎥⎣⎦上一致收敛;(2)设()lim ()n n f x f x →∞=,问()f x 是否一定在,a b ⎡⎤⎢⎥⎣⎦上处处可导, 为什么?第五题:(10分)设320sin d sin n nt a t t t π=⎰,证明11nn a ∞=∑发散.第六题:(15分)(,)f x y 是{}22(,)|1x y x y +≤上二次连续可微函数,满足222222f f x y x y ∂∂+=∂∂,计算积分221d d x y I x y +≤⎛⎫=⎰⎰第七题:(15分)假设函数()f x 在[0,1]上连续,在()0,1内二阶可导,过点(0,(0))A f ,与点(1,(1))B f 的直线与曲线()y f x =相交于点(,())C c f c ,其中01c <<. 证明:在 ()0,1内至少存在一点ξ,使()0f ξ''=.(数学类)试卷一、(本题共10分)设(0,1)ε∈,0x a =,1sin 0,1,2).n n x a x n ε+=+= (证明lim n n x ξ→+∞=存在,且ξ为方程sin x x a ε-=的唯一根.二、(本题共15分)设01030002010000B ⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭. 证明2X B =无解,这里X 为三阶未知复方阵.三、(本题共10分)设2D ⊂ 是凸区域,函数(,)f x y 是凸函数. 证明或否定:(,)f x y 在D 上连续.注:函数(,)f x y 为凸函数的定义是(0,1)α∀∈以及1122(,),(,)x y x y D ∈,成立12121122((1),(1))(,)(1)(,)f x x y y f x y f x y αααααα+-+-≤+-.四、(本题共10分) 设()f x 在0,1⎡⎤⎢⎥⎣⎦上黎曼(Riemann)可积,在1x =可导,(1)0,f =(1)f a '=. 证明:120lim ()d .n n n x f x x a →+∞=-⎰五、(本题共15分)已知二次曲面∑(非退化)过以下九点:(1,0,0),(1,1,2),(1,1,2),(3,0,0),(3,1,2),(3,2,4),(0,1,4),(3,1,2),(5,8).A B C D E F G H I ------问∑是哪一类曲面?六、(本题共20分) 设A 为n n ⨯实矩阵(未必对称),对任一n 维实向量T 1(,,),0n A ααααα=≥ (这里T α表示α的转置),且存在n 维实向量β使得T 0A ββ=. 同时对任意n 维实向量x 和y ,当T 0xAy ≠时有TT 0xAy yAx +≠. 证明:对任意n 维实向量v ,都有T0.vA β=七、(本题共10分) 设f 在区间0,1⎡⎤⎢⎥⎣⎦上黎曼(Riemann)可积,0 1.f ≤≤ 求证:对任何0ε>,存在只取值为0和1的分段(段数有限)常值函数()g x ,使得,0,1αβ⎡⎤⎡⎤∀⊆⎢⎥⎢⎥⎣⎦⎣⎦,()()().f x g x dxβαε-<⎰八、(10分) 已知:(0,)(0,)ϕ+∞→+∞是一个严格单调下降的连续函数,满足0lim (),t t ϕ+→=+∞且10()d ()d ,t t t t a ϕϕ+∞+∞-==<+∞⎰⎰其中1ϕ-表示ϕ的反函数. 求证:32212001()d ()d .2t t t t a ϕϕ+∞+∞-⎡⎤⎡⎤+≥⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰(数学类)试卷一、(本题15分)已知四点(1,2,7),(4,3,3),(5,1,0).-试求过这四点的球面方程。

第一届和第二届大学生全国数学竞赛试题

第一届和第二届大学生全国数学竞赛试题

证法二: (1)根据 Green 公式,将曲线积分化为区域 D 上的二重积分
∫ xe
L
sin y
dy − ye − sin x dx = ∫∫ (esin y + e − sin x )d δ
D
∫ xe
L
− sin y
dy − ye
sin x
dx = ∫∫ (e − sin y + esin x )d δ
e x + e2 x + 二、求极限 lim( x →0 n
+ e nx
)
e x
,其中 n 是给定的正整数.
e e x + e2 x + 解:原式 = lim exp{ ln( x →0 x n = exp{lim
x →0
+ e nx
)}
e(ln(e x + e 2 x + x
+ e nx ) − ln n)
t 2n ≥ 2 + t2 n = 0 (2n)!
∫ xe
L
sin y
5 dy − ye− sin x dx = ∫∫ (esin y + e− sin x )dδ = ∫∫ (esin x + e− sin x )dδ ≥ π 2 . 2 D D
x 2x
x −x x 2x 五、已知 y1 = xe + e , y2 = xe + e , y3 = xe + e
(4)设函数 y = y ( x) 由方程 xe
f ( y)
= e y ln 29 确定,其中 f 具有二阶导数,
d2y 且 f ′ ≠ 1 ,则 =____________________. dx 2

历届全国大学生数学竞赛真题及答案非数学类

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解: 令,则,,(*)令,则,,,2.设是连续函数,且满足, 则____________.解: 令,则,,解得。

因此。

3.曲面平行平面的切平面方程是__________.解: 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是。

4.设函数由方程确定,其中具有二阶导数,且,则________________.解: 方程的两边对求导,得因,故,即,因此二、(5分)求极限,其中是给定的正整数.解 :因故因此三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.解 : 由和函数连续知,因,故,因此,当时,,故当时,,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证 :因被积函数的偏导数连续在上连续,故由格林公式知(1)而关于和是对称的,即知因此(2)因故由知即五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设,,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.解因抛物线过原点,故,于是即而此图形绕轴旋转一周而成的旋转体的体积即令,得即因此,,.七、(15分)已知满足, 且, 求函数项级数之和.解,即由一阶线性非齐次微分方程公式知即因此由知,,于是下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和八、(10分)求时, 与等价的无穷大量.解令,则因当,时,,故在上严格单调减。

2009年第一届全国大学生数学竞赛初赛(非数学类)试卷及答案

2009年第一届全国大学生数学竞赛初赛(非数学类)试卷及答案

2009年第一届全国大学生数学竞赛初赛(非数学类)试卷一、填空题(本题共4个小题,每题5分,共20分):(1)计算()ln 1d Dy x y x x y æöç++ççòò=____________,其中区域D 由直线1x y +=与两坐标轴所围三角形区域.(2) 设 ()f x 是连续函数,满足22()3()2f x x f x dx =--ò,则()f x =_______.(3) 曲面2222x z y =+- 平行平面 2x +20y z -=的切平面方程是___________.(4) 设 ()y y x =由方程 ()ln 29f y y xee =确定,其中f 具有二阶导数,且 1f ¢¹,则22d d y x=___________.第二题:(5分)求极限 20lim e x x nx xx e e e n æö+++ç÷ç÷ç÷ç÷èø,其中 n 是给定的正整数.第三题:(15分)设函数 ()f x 连续,1()()d g x f xt t =ò,且 0()limx f x A x= ,A 为常数,求()g x ¢并讨论()g x ¢在0x =处的连续性.第四题:(15分)已知平面区域{(,)|0,0}D x y x y =££££ππ,L 为D 的正向边界,试证:(1)sin sin sin sin d d d d ;yx y xL Lxey ye x xe y ye x ---=-òò(2) sin sin 25d d 2yx Lxe y ye x --³òπ.第五题:(10分)已知21xxy xe e =+ ,2x xy xe e-=+ ,23x xx y xe ee -=+-是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.第六题:(10分)设抛物线 22ln y ax bx c =++过原点,当 01x ££时,0y ³,又已知该抛物线与x 轴及直线1x =所围图形的面积为 13. 试确定,,a b c 使此图形绕 x 轴旋转一周而成的旋转体的体积V 最小.第七题:(15分)已知 ()n u x 满足 1()()n xn n u x u x x e -¢=+(n 为正整数),且(1)n eu n=,求函数项级数 1()n n u x ¥=å之和.第八题:(10分)求1x - 时,与2n n x ¥=å等价的无穷大量.2009年第一届初赛(非数学类)试卷及参考答案一、填空题(本题共4个小题,每题5分,共20分):(1)计算()ln 1d Dy x y x x y ⎛⎫ ⎪++ ⎪ ⎪⎰⎰=____________,其中区域D 由直线1x y +=与两坐标轴所围三角形区域.【参考答案】,1yu v x=+=,解得()()22111,u v u x y v v---==221221220()ln 1ln d 2(1)d d ln 8162(1)d d 21=.1515uvDD y x y x v x y u u vvu u v vv +∞ ⎪++ ⎪⎪ =-⋅=-=⋅⋅⎰⎰⎰⎰⎰⎰(2) 设 ()f x 是连续函数,满足220()3()2f x x f x dx =--⎰,则()f x =_______.【参考答案】令2()d A f x x =⎰,2()32f x x A =--()22230032d 284242x A x x x Ax A A ⎡⎤--=--=--=-⎢⎥⎣⎦⎰所以4423A A A =-⇒=,代入所设函数表达式,得222410()32323.33f x x A x x =--=--=-(3) 曲面2222x z y =+- 平行平面 2x +20y z -=的切平面方程是___________. 【参考答案】曲面在任意点(),,x y z 处的法向量可以取为()(),,1,2,1S x y n f f x y ''=-=-。

历年全国大学生数学竞赛初赛题目及答案解析全(2009-2019年非数学专业)

历年全国大学生数学竞赛初赛题目及答案解析全(2009-2019年非数学专业)

程,有 2x 2 2y 1 z 1 0 ,展开化简后有 2x 2y z 5 0.
(4) 设 y y(x) 由方程 xe f (y) ey ln 29 确定,其中 f 具有二阶导数,且 f 1 ,则
d2 y
=___________.
dx2
【参考答案】对等式两端分别关于
1 ab
1 b2]
0
523
1 π[
a2
1
a(1
a)
1
4
(1
a)2 ].
53
39
dv 2 1 2 8
5
3
令 π[ a a (1 a)] 0 ,得 a ,代入 b 的表达式 得 b .
da 5 3 3 27
4
2
所以y 0 。
d 2v
22 8 4
5
3
又因
da 2
|
5 a
π[ 5
3
] 27
证:
3
(1) xesiny d y yesinx d x xesiny d y yesinx d x;
L
L
(2) xesin y d y yesin x d x 5 π2 .
2
L
【参考证法一】由于区域 D 为一正方形,可以直接用对坐标曲线积分的计算法计算.
π
0
π
左边 πesin y d y πesin x d x π (esin x esin x ) d x ,


u,v
v2
1x y
u
所以由二重积分换元法的积分变换公式,原积分也就等于
D
(x
y)ln1 1x y
y x
dx
dy
2

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

第一届全国大学生数学竞赛预赛试卷(非数学类)2009一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=,dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(22-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(19届)一、试题概述全国大学生数学竞赛是由中国数学会主办的一项面向全国高校本科生的数学竞赛。

自2009年首届竞赛举办以来,已成功举办九届。

竞赛旨在激发大学生对数学的兴趣,提高他们的数学素养和综合能力,同时选拔优秀数学人才。

每届竞赛均设有预赛和决赛两个阶段,预赛为全国范围内的统一考试,决赛则在全国范围内选拔出的优秀选手中进行。

二、竞赛内容全国大学生数学竞赛的试题内容主要包括高等数学、线性代数、概率论与数理统计等基础数学知识。

试题难度适中,既考查参赛选手的基础知识掌握程度,又注重考查他们的综合应用能力和创新思维能力。

三、竞赛特点1. 公平公正:竞赛试题由全国数学教育专家命题,确保试题质量,保证竞赛的公平公正。

2. 注重基础:竞赛试题主要考查参赛选手对基础数学知识的掌握程度,有利于引导大学生重视基础数学学习。

3. 综合应用:试题设计注重考查参赛选手的综合应用能力,培养他们的创新思维和实践能力。

4. 激发兴趣:竞赛通过丰富多样的试题形式,激发大学生对数学的兴趣,培养他们的数学素养。

四、竞赛组织全国大学生数学竞赛由各省、市、自治区数学会负责组织本地区的预赛,中国数学会负责全国范围内的决赛。

竞赛组织工作包括试题命制、竞赛宣传、选手选拔、竞赛监督等环节,确保竞赛的顺利进行。

五、竞赛影响全国大学生数学竞赛自举办以来,受到了广大高校和数学爱好者的广泛关注和热情参与。

竞赛不仅为优秀数学人才提供了展示才华的舞台,也为全国高校数学教育提供了有益的借鉴和启示。

通过竞赛,大学生们不仅提高了自己的数学水平,还结识了许多志同道合的朋友,拓宽了视野,激发了学习热情。

六、竞赛历程自2009年首届全国大学生数学竞赛举办以来,竞赛规模逐年扩大,影响力不断提升。

参赛选手涵盖了全国各大高校的本科生,包括综合性大学、理工科院校、师范院校等。

随着竞赛的普及,越来越多的学生开始关注并参与其中,竞赛逐渐成为衡量高校数学教育水平和学生数学素养的重要标志。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档