换流站及其主要设备PPT课件
直流输电换流站..
3
交流滤波器连接
a、交流滤波器大组直接接在换流站交流母线上
优点:滤波器及主母线可靠性 高,便于双极间相互备用 缺点:滤波器分组开关操作频 繁,故障率可能高
12级继电2班
3
交流滤波器连接
b、交流滤波器大组直接接在换流变压器的进线回路上
优点:交流滤波器按极对称布置
缺点:不便于双极间相互备用
换 流 站 主 接 换流站主接线 线
2
换流变压器与换流阀连接
优点:1)可利用阀厅内良好的运行环境来减小换流变压器阀侧套管的爬距;
2)可防止换流变压器阀侧套管的不均匀湿闪;
单边套管插入
3)可省掉从换流变压器到阀厅电气引线的单独穿墙套管。 双边套管插入 与单边雷同 缺点:1)阀厅面积显著增大,增加了阀厅及其附属设施的造价及 年运行费用; 脱开阀厅布置 2)增加了换流变压器的制造难度; 与单边相反
12级继电2班
3
交流滤波器连接
c、交流滤波器分组直接接在换流站交流母线上
优点:投资省,便于交流滤波器 双极间互相备用 缺点:投切频繁,断路器故障率 较高,会直接影响母线的故障率
12级继电2班
3
交流滤ห้องสมุดไป่ตู้器连接
d、交流滤波器分组直接接在换流变压器单独的绕组上
优点:可与无功补偿装置共用, 可降低滤波器造价,投资省 缺点:换流变压器结构复杂
3)换流变压器的运行维护条件较差; 4)换流变压器的备用相更换不方便。
换流站主接线
3
交流滤波器连接 交流滤波器接入系统的四种方式
a、交流滤波器大组直接接在换流站交流母线上 b、交流滤波器大组直接接在换流变压器的进线回路上 c、交流滤波器分组直接接在换流站交流母线上 d、交流滤波器分组直接接在换流变压器单独的绕组上
换流站的主要设备及作用
换流站的主要设备及作用换流站主要设备包括变压器、换流变流器、断路器、电容器、滤波器等。
这些设备的作用是将来自交流电源的电流转换成直流电流或将直流电流转换为交流电流,以实现电力输送和稳定供电。
首先,变压器是换流站中最基本的设备之一。
它将来自输电网的高压交流电转换为适宜输送的低压交流电,或将来自直流电源的低压直流电转换为高压直流电。
变压器通过绕组在交流电磁场中感应电动势来实现电流的变压变流。
其次,换流变流器是换流站中另一个重要的设备。
它主要用于将交流电转换为直流电或将直流电转换为交流电。
换流变流器使用晶闸管、整流管等电子器件来进行电流的变换,可以实现不同电压、频率或相数之间的转换。
换流变流器的稳定性和效率对整个换流站的运行和电力传输起着关键作用。
换流站中的断路器主要用于控制电流的分断,以保护电力系统的安全运行。
断路器能够在电流过大或故障发生时迅速切断电路,避免设备过载或短路引发事故。
断路器分为高压断路器和低压断路器,根据电力系统的不同需要选择合适的断路器来保护电路。
电容器是一种存储电能的设备,用于补偿电力系统中的无功功率,提高功率因数。
电容器可以吸收和释放电能,使电力系统的电压保持稳定,减少电路的电能损耗。
在换流站中,电容器主要用于平衡直流电压的波动和改善电力系统的质量。
滤波器在换流站中的作用是滤除电力系统中的谐波和干扰信号。
谐波是电力系统中不同频率的电压和电流之间的干扰,会引起电力设备的过热和损坏。
滤波器通过选择性地通过和阻断不同频率的信号来净化电力系统的电流,确保电力质量的稳定和正常运行。
除了上述主要设备,换流站还包括监控系统、保护装置以及辅助设备如冷却系统、继电器等。
监控系统能够实时监测和控制换流站的运行状态,保证安全和高效的运行。
保护装置能够检测电力系统中的故障并采取措施保护设备和人员的安全。
辅助设备则用于增强设备的使用寿命和稳定性。
总之,换流站的主要设备包括变压器、换流变流器、断路器、电容器、滤波器以及监控系统和保护装置等。
换流站交直流场一次设备讲解
《换流站交直流场一次设备讲解ppt》目录xx年xx月xx日•换流站交直流场一次设备介绍•换流站交直流场一次设备组成•换流站交直流场一次设备安装与调试•换流站交直流场一次设备维护与保养目•换流站交直流场一次设备安全使用•换流站交直流场一次设备发展趋势和展望录01换流站交直流场一次设备介绍设备类型•换流变压器•常规换流变压器•直流换流变压器•换流阀•晶闸管换流阀•IGBT换流阀•平波电抗器•常规平波电抗器•直流平波电抗器•并联电容器•常规并联电容器•直流并联电容器1 2 3换流站交直流场一次设备具有高效的特点,能够有效地将交流电转换为直流电或将直流电转换为交流电。
高效性这些设备都经过严格的质量控制和测试,以确保其可靠性和稳定性。
可靠性这些设备能够适应不同的环境和条件,以确保电力系统的稳定运行。
适应性03新能源并网这些设备也能够用于新能源并网,将新能源产生的电力并入电网。
01电力系统的核心设备换流站交直流场一次设备是电力系统的核心设备之一,用于实现交流电和直流电的转换和传输。
02高压输电这些设备能够用于高压输电,将电力从发电厂输送到远距离的电力用户。
02换流站交直流场一次设备组成换流站交直流场一次设备的布局应合理紧凑,满足现场操作和维护的需求。
设备布局设备的外观应简洁美观,同时应标明设备的名称、型号和规格等信息。
设备外观设备的内部结构应合理,各部件的连接应牢固可靠,方便现场拆装和维护。
设备内部结构机械性能设备的机械性能应稳定可靠,能够承受运输、安装和使用过程中的各种应力。
环境适应性设备应能够适应各种环境条件,如温度、湿度、气压等,保证正常运行和使用寿命。
电气性能设备的电气性能应符合相关标准和规范的要求,如绝缘电阻、耐压试验等。
设备的尺寸参数应符合设计要求,方便现场安装和布局。
尺寸参数设备的重量参数应符合运输和使用的要求,方便现场搬运和维护。
重量参数根据设备类型的不同,还有其他相关的参数,如电压、电流、频率等。
直流换流站 共71页PPT资料
二 直流输电应用埸合
1 远距离大容量输电 2 电力系统联网 3 直流电缆送电 4 交流线路的增容改造 5 轻型(柔性)直流输电 6 特高压直流输电
特高压直流输电
1. 特高压直流输电的现状
目前世界上已运行的直流输电工程最高 电压为士600kV,尚无特高压直流输电工程 运行。对于特高压直流工程,国外研究的 结论是:士800kV的工程在技术上是可行的, 士1000kV不经过很大努力进行研究是困难 的,士1200kV若技术上没有重大突破是不 可能的。
ic iv5 iv2
88
直流输电换流原理
换流装置的功率因数(直观分析)
2
2005年7月30日
19
柔性化电力技术与电能质量研究所
Chap.2 换流器理论及特性方程
直流电流波 形 0 0
2
p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6
1.5
1
Chap.2 换流器理论及特性方程
计及触发延时、计及换相角时单桥
的工作原理
换流器如何进行换相?
M Ld Id
13 5
ea Lc ia
+
eb
o
Lc ib
Lc
iAk
B
ud
C
ec
ic 4 6 2 _
N 19
单桥整流器的运行方式
工况2-3 工况3 工况3-4
---正常运行方式 ---非正常运行方式 ---故障运行方式
3. 6脉动逆变器工作原理
⑴ 如何将直流电变为交流电 ⑵ 逆变器的工作条件 ⑶ 逆变器的电压、电流波形
请参讲义第二章 整流电路及有源逆变电路
单桥整流器
直流输电ppt第六章换流站及其设备
6.2 换流站主接线
直流输电换流站由基本换流单元组成,基本换流单元有6
脉动换流单元和 12脉动换流单元两种类型,每个基本换 流单元主要包括换流变压器、换流阀、交直流滤波器、
控制保护设备、交直流开关设备等。
本节主要介绍:
1、换流器的接线; 2、换流变压器与换流器的连接方式; 3、交流滤波器的接入系统方式; 4、直流开关场的接线; 5、换流站特殊的接线方式。
至极1
LVHS
GRTS
连接线B 母线A
MRTB
至接地极
LVHS NBGS
至极2
(2)大地回线转换开关(GRTS)
GRTS装设在接地极线与极线之间。它是用于在不停运情况下,将直流电流
从单极金属回线转换至单极大地回线。 在GRTS动作之前,MRTB先合闸,建立大地回路和金属回路2个并联的回路, 直流电流被分流,到达稳态之后,GRTS动作进行电流转换操作,转换成功之后, 和GRTS串联的隔离开关将断开,以确保GRTS不承受持续的电压。
15
2012-11-18
A C B
V1 V3
m1
V5
Id
a
iaY
i1 i4 ibY i3 i6 icY i5 i2
V4 V6 V2
一、换流阀组接线
c
b
n1 m2
V3' V5'
Vd
负 载
V1'
a
i a△
i'1 i'4 ib△ i'3 i'6 ic△ i'5 i'2
V4' V6' V2'
c
b
n2
换流站及其主要设备3
开通(门极触发): 注入触发电流使晶体管的发 射极电流增大以致 1+2趋近于 1 的话,流过晶闸管
的电流IA(阳极电流)将趋近于无穷大,实现饱和导 通。IA实际由外电路决定。
三峡大学电气信息学院电气 工程系
1.3.1
晶闸管的结构与工作原理
其他几种可能导通的情况: 阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率du/dt过高 结温较高 光直接照射硅片,即光触发 光触发可以保证控制电路与主电路之间的良好绝 缘而应用于高压电力设备中之外,其它都因不易 控制而难以应用于实践,称为光控晶闸管(Light Triggered Thyristor——LTT) 只有门极触发(包括光触发)是最精确、迅速而可 靠的控制手段
图1-7 晶闸管的双晶体管模型及其工作原理
a) 双晶体管模型 b) 工作原理
Ic1=1 IA + ICBO1 Ic2=2 IK + ICBO2
(1-1) (1-2)
三峡大学电气信息学院电气 工程系
1.3.1
3)
晶闸管的结构与工作原理
IK=IA+IG
IA=Ic1+Ic2
(1(1-
4)
换流站换流器工作原理培训课件
2
Ud
0
ud
(t)d 2
(t)
U do
cos
(5)
特点: 增加,则 Ud 减少
28
计及触发延时、计及换相角时 单桥工作原理
问题的提出:
▪ ip能否突变? ▪ ip的变化规律?
假设短路电流ik
M
Ld Id
13 5
ea Lc ia
+
A
eb Lc ib ik
o
B
ud
Lc
ec
C
_
ic 4 6 2
29 N
和 线电压: eba 2E sin(t)
可得:
2 Lc
dik dt
2E sin(t)
(7)
考虑初始条件: ik ( ) 0
31
换相电流计算公式
ik I sc2 (cos cost) (8)
交流系统两相短路电流的幅值
I sc 2
E
2Lc
等值换相电感
(9)
ik波形、阀电流、相电流、直流电流波形
(17) (18) (19)
通常
100 ~ 200
150 ~ 250
41
目录
一、基本概念 二、6脉动整流器工作原理 三、6脉动逆变器工作原理 四、12脉动换流器工作原理 五、常用公式
42
6脉动逆变器的工作原理
▪ 逆变器接入HVDC系统的方式
Ld
Id Ld
M
N
++
135
ea Lc ia A
---定α角外特性方程
Ud ( , ) Ud 0 cos dx Id
等值换相电阻/比换相压降:
dx3 LC 定α角外特来自曲线(13) (14)
第四部分(换流站)
一、交流开关场区域
�
交流开关场区域主要包括: 按主接线要求进行连接的换流站交流侧开关 设备、交流滤波器及无功补偿设备、防止设备免 遭过电压侵害的交流避雷器,为了对交流侧的电 流、电压等电气量进行监测,在这个区域里还装 设有交流测量装置。
二、换流变压器区域
�
大容量高压直流换流站的换流变压器容量大、台数 多、占地面积较大。
电或者将直流电变换为交流电的转换,并达到电力系统对 安全稳定及电能质量的要求,换流站中应包括的主要设备 或设施有: 换流阀、换流变压器、平波电抗器、 交流开关设备、交流滤波器及交流无功补偿装置、 直流开关设备、直流滤波器、 控制与保护装置以及远程通信系统等。
1
2
3
4
5
6
7
8
9
10
高压直流换流站典型构成图
�
�
�
四、直流开关场区域
�
直流开关场区域主要布置了高压平波电抗器、 直流滤波器、过电压保护装置、直流测量装置 以及用于运行方式切换和故障清除所需的直流 开关装置,如低压直流高速开关(LVHS)、金属 回线转换断路器 (MRTB) 、大地回线转换开关 (GRTS)。
4.2 换流站主接线
�
直流输电换流站由基本换流单元组成,基本换流单元有6 脉动换流单元和12 脉动换流单元两种类型,每个基本换 流单元主要包括换流变压器、换流阀、交直流滤波器、 控制保护设备、交直流开关设备等。
换流站设备介绍(PPT111页)
换流站设备介绍
换流站设备介绍(PPT111页)
前言
换流站的标准定义
换流站是指在高压直流输电系统中,为了完成 将交流电变换为直流电或者将直流电变换为交流 电的转换,并达到电力系统对于安全稳定及电能 质量的要求而建立的站点。
换流站的优点
(1) 输送相同功率时,线路造价低 (2) 线路有功损耗小 (3) 适宜于海下输电 (4)能限制系统的短路电流 (5) 调节速度快,运行可靠
2.组成
换流阀由晶闸管、阻尼电容、均压电容、阻尼电 阻、均压电阻、饱和电抗器、晶闸管控制单元等零部 件组成。其中,晶闸管是换流阀的核心部件,它决定 了换流阀的通流能力,通过将多个晶闸管元件串联可 得到希望的系统电压。
晶闸管散热所需的水冷散热器,既要给晶闸管散 热,又要充当结构件承压,还需导电和终身质保,其 严格的质量要求使得这种水冷散热器成为了电力电子 行业内水冷散热器的顶级产品。
2.特点
在整流换流器中换流变压器为换流设备提供交流 电能,换流器将交流电能转换为直流电能并通过直流 输电线路传输;在逆变换流器中换流变压器接受逆变 换流器将直流电能转换为交流的电能,并将其输送到 其它交流供电网路中 。
3.作用
1、传送电力; 2、把交流系统电压变换到换流器所需的换相电压; 3、利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差 30°(基波电角度)的三相对称的换相电压以实现脉动换流; 4、将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性 点接地造成直接短接,使得换相无法进行; 5、换流变压器的漏抗可起到限制故障电流的作用; 6、对沿着交流线路侵入到换流站的雷电冲击过电压波起缓冲抑制的作用。
实物图(二)
换流站
(6)调节速度快,运行可靠:直流输电通过晶闸管换流器能够方便、快速地调节有功功率和实现潮流翻转。
主要设备
(3)适宜于海下输电:在有色金属和绝缘材料相同的条件下,直流时的允许工作电压比在交流下约高3倍。 2根心线的直流电缆线路输送的功率Pd比3根心线的交流电缆线路输送的功率Pa大得多。运行中,没有磁感应损耗, 用于直流时,则基本上只有心线的电阻损耗,而且绝缘的老化也慢得多,使用寿命相应也较长。
(4)系统的稳定性问题:在交流输电系统中,所有连接在电力系统的同步发电机必须保持同步运行。如果采 用直流线路连接两个交流系统,由于直流线路没有电抗,所以不存在上述的稳定问题,也就是说直流输电不受输 电距离的限制。
对于电力设备等噪声源来说,控制其噪声有两个方面:一是改进内部结构,提高其结构精度,通过合理的优 化方法改善内部阻尼,以降低声源的噪声发射功率;二是通过对吸声、隔声、干涉、减振等方式的应用,实现从 传播路径中控制声源的噪声辐射的目的。
通常来说,通过结构改进从声源处降低发声是最根本有效的措施,但是对于已有成熟设备通常存在改进技术 难度较大的问题,且对于已经投运的设备来说,更多的是采用第二类噪声控制方式,即在噪声传播过程中降低传 达到受声点的声功率。从控制噪声传播途径的角度考虑,最常用的方法是吸声以及隔声技术。吸声技术主要采用 吸声材料将噪声传播中的声能转换为热能等其他能量消耗掉,以降低传播到受声点的声能。常见的吸声材料有多 孔性吸声材料和微穿孔共振吸声结构等。隔声技术是利用隔声板等结构阻挡声音的传播,使透过的声能大大减小, 常见的隔声措施有隔墙、隔声罩、声屏障等。此外,还有主动消声技术,即通过声波相消干涉原理,在特定位置 产生与噪声源的声波大小相等、相位相反的抗噪声源,使二者相互抵消,从而达到降低噪声的目的,因其控制要 求较高,在大面积复杂声源的控制上还有较大困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
7
二、换流站主接线
5)接地极
.
8
直流线路与接地极线路同塔架设
.
9
二、换流站主接线
6)直流输电线 可以是架空线,也可以是电缆。除了导体数和
间距的要求有差异外,直流线路与交流线路十 分相似。
.
10
.
11
二、换流站主接线
7)交流断路器 为了排除变压器故障和使直流联络线停运,在
换流站及其 主要设备
.
1
一、概述
换流站的主要设备有: ① 阀厅 ② 控制楼 ③ 换流变压器 ④ 交流开关场 ⑤ 滤波器 ⑥ 无功补偿设备 ⑦ 接地极 ⑧ 辅助设备 ⑨ 站用电系统
.
2
二、换流站主接线
.
3
二、换流站主接线
1)换流器 它们完成交-直流和直一交流转换,由阀桥和
有抽头切换器的变压器构成 。
.
4
二、换流站主接线
2)直流平波电抗器 这些大电抗器具有高达1H 的电感,在每个换
流站与每极串联。 作用
.
5
二、换流站主接线
3)谐波滤波器 换流器在交流和直流两侧均产生谐波电压和谐
波电流。 作用:滤波
.
6
二、换流站主接线
4)无功功率支持 换流器内部要吸收无功功率,稳态条件下,所
.
23
我国高压直流输电的发展历史
1、葛洲坝一南桥直流输电工程(简称葛一南 直流工程)
1982 年开始对葛洲坝水电站向华东送电进行 可行性研究,由于直流输电在远距离输电和联 网方面的优点,最终选择了直流输电方案。该 工程既解决了葛洲坝电站向华东上海地区的送 电问题,又实现了华中与华东两大电网的非同 期联网,它具有输电和联网的双重性质。
交流侧装有断路器,它们不是用来排除直流故 障的,因为直流故障可以通过换流器的控制更 快地清除。
.
12
断路器
.
13
二、换流站主接线
8)换流变压器 ➢ 利用原副边的匝数不同取得所需电压,与电力
变压器基本相同,但须注意几个问题。 9)晶闸管装置的过电压、过电流保护P200 10)触发回路P197 11)元件的均压 12)阀的安装形式 13)冷却方式
过大的故障电流。
4)直流端口出口短路 ➢ 不会产生严重的过电流 ➢ 对交流侧有扰动,相当于切去有功电源和无功负荷。
5)晶闸管不触发 ➢ 脉冲偶尔失落,可自行恢复。 ➢ 脉冲永久丢失,逆变电路不能触发,引起换相失败。
.
17
三、换流器的故障状态
6)误导通 ➢ 对整流元件,引起输出电压的不规则(谐波)。 ➢ 对逆变的误导通会引起换相失败。
.
26
我国高压直流输电的发展历史
2、天生桥--广州直流输电工程(简称天一 广直流工程)
1991 年开始进行可行性研究,1997 年与德国 西门了公司签订了供货合同,2000年12 月极 1 投人运行,2001 年工程全部建成。该工程 为西电东送工程的一部分。直流工程为双极 ±500kV 、 1800 A 、1800MW,西起天生 桥水电站附近的马窝换流站,东至广州的北郊 换流站。全长约960 Km。
.
24
我国高压直流输电的发展历史
葛--南直流工程为双极±500kV 、1200 A 、1200MW ,输送距离约1045kM。
1985 年10 月开工,1989 年9 月极1 投入运 行,1990年8 月全部工程建成,并投人商业运 行。原瑞士BBC 公司和德国西门子公司提供。
.
25
我国高压直流输电的发展历史
7)换相失败 ➢ 反压角太小。 ➢ 电源电压下降,换相电压下降引起失败。 ➢ 换相重叠角太大。 ➢ 交流系统电压不对称,引起交流侧过零时间改变,使
反压角改变。 ➢ 直流电流对换相的影响。
.
18
直流输电系统的分类
由于目前各种类型的直流断路器都还处于研制 阶段,致使直流输电系统还不能像交流系统一 样构成各种复杂的网络,所以目前直流输电大 多是两端供电系统。
.
21
直流输电系统的分类
C 双极中性线方式
将双极两端的中性点用导线连接起来,就构成 双极中性线方式 。这种方式由于增加了一根 导线.在经济上将增加一定的投资
.
22
直流输电系统的分类
D “背靠背”( back-to-back )换流方式
没有直流输电线路,而将整流站和逆变站建在 一起的直流系统称为“背靠背”换流站。这种 方式适用于不同额定频率或者相同额定频率非 同步运行的交流系统之间的互联。因为没有直 流输电线路,所以直流系统可选用较低的额定 电压。这样,整个直流系统的绝缘费用可降低。 目前世界各国已修建和准备投建的“背靠背” 直流工程较多,其主要用途是系统的增容时限 制短路容量,从而不致更换大量的电气设备。
.
27
我国高压直流输电的发展历史
.
28
我国高压直流输电的发展历史
3、嵊泗直流输电工程
嵊泗直流输电工程是中国自行设计和建造的双 极海底电缆直流工程。主要解决从上海向嵊泗 岛及宝钢马迹山码头的送电问题,同时也专虑 到嵊泗岛上的风力发电发展到一定规模时也具 有向上海反送的功能,工程的主要特点是受端 为弱交流系统。工程为双极±50kV、600 A 、60MW,共66.2km,其中59.7km为海 底电缆。
.
14
水冷系统
.
15
三、换流器的故障状态
1)交流侧 ➢ 过电压、过电流、甩负荷
2)整流桥臂短路
➢ 元件损坏,导致非特征谐波的产生 ➢ 直流侧电压下降 ➢ 交流侧电流含直流分量,引起交流互感器二次波形失真。 ➢ 与故障元件同一半桥的健全元件也有故障电流通过。
.
16
三、换流器的故障状态
3)逆变桥臂短路 ➢ 逆变阀短路破坏了直流输电的正常运行,但不会造成
该系统常见的接线类型有:
.
19
直流输电系统的分类
1)单极线路方式 是用一根架空导线或电缆线,以大地或海水作
为返回线路组成的直流输电系统
.
20
直流输电系统的分类
2)双极线路方式 双极线路方式有两根不同极性(即正、负极)
的导线,可具有大地回路或中性线回路。 A 双极两线中性点两端接地方式 B 双极两线中性点单端接地方式
.
29
我国高压直流输电的发展历史
1996 年完成各种研究工作,1997 年进行设备 订货,2002 年工程全部建成。除控制保护装 装置由许继电气股份有限公司供货外,其余全 部设备均由西安电力机械股份有限公司承包 。