高一数学必修一第一章测试题及答案

合集下载

高一数学必修一第一章测试题(含答案)

高一数学必修一第一章测试题(含答案)

高一数学必修一第一章测试题(含答案)高一数学必修一第一章测试题满分150分,考试时间120分钟第I卷一、选择题(本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知全集 $A = \{1,2,4\}$,集合 $A = \{1,2,3\}$,$B =\{2,4\}$,则 $(C \cup A) \cup B$ 为()A。

$\{2,3,4\}$ B。

$\{2,4\}$ C。

$\{0,2,4\}$ D。

$\{0,2,3,4\}$2.集合 $\{a,b\}$ 的子集有()A。

2个 B。

3个 C。

4个 D。

5个3.设集合 $A = \{x|-4<x<3\}$,$B = \{x|x \leq 2\}$,则 $A \cap B =$()A。

$(-4,3)$B。

$(-4,2]$C。

$(-\infty,2]$D。

$(-\infty,3)$4.已知函数 $f(x) = \frac{1}{2-x}$ 的定义域为 $M$,$g(x) = x+2$ 的定义域为 $N$,则 $M \cap N =$()A。

$\{x|x \geq -2\}$B。

$\{x|x < 2\}$C。

$\{-2<x<2\}$D。

$\{-2 \leq x < 2\}$5.下列函数中,既是奇函数又是增函数的为A。

$y=x+1$B。

$y=-x^2$C。

$y=|x|$D。

$y=x|x|$6.若函数$y=x^2+(2a-1)x+1$ 在$(-\infty,-3]$ 上是减函数,则实数 $a$ 的取值范围是()A。

$(-\infty,-2]$B。

$(-\infty,-\frac{1}{2}]$C。

$[-\frac{1}{2},\frac{1}{2}]$D。

$[\frac{1}{2},+\infty)$7.设函数 $f(x) = \begin{cases}x^2+1 & x \leq 1\\ 2x & x>1\end{cases}$,则 $f(f(3)) =$()A。

高中数学必修一单元测试及答案

高中数学必修一单元测试及答案

高中数学必修一单元测试及答案(总27页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章 集合与函数概念一、选择题1.已知全集U ={0,1,2}且U A ={2},则集合A 的真子集共有( ). A .3个B .4个C .5个D .6个2.设集合A ={x |1<x ≤2},B ={ x |x <a },若A ⊆B ,则a 的取值范围是( ). A .{a |a ≥1} B .{a |a ≤1}C .{a |a ≥2}D .{a |a >2}3.A ={x |x 2+x -6=0},B ={x |mx +1=0},且A B A =,则m 的取值集合是( ). A .⎭⎬⎫⎩⎨⎧21- ,31B .⎭⎬⎫⎩⎨⎧21- ,31- ,0C .⎭⎬⎫⎩⎨⎧21- ,31 ,0 D .⎭⎬⎫⎩⎨⎧21 ,31 4.设I 为全集,集合M ,N ,P 都是其子集,则图中的阴影部分表示的集合为( ). A .M ∩(N ∪P )B .M ∩(P ∩I N )C .P ∩(I N ∩I M )D .(M ∩N )∪(M ∩P )5.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-,x y y x |)(, P ={(x ,y )|y ≠x +1},那么U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}6.下列四组中的f (x ),g (x ),表示同一个函数的是( ). A .f (x )=1,g (x )=x 0 B .f (x )=x -1,g (x )=xx 2-1C .f (x )=x 2,g (x )=(x )4D .f (x )=x 3,g (x )=39x7.函数f (x )=x1-x 的图象关于( ). A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称8.函数f (x )=11+x 2(x ∈R )的值域是( ). A .(0,1) B .(0,1]C .[0,1)D .[0,1](第4题)9.已知f(x)在R上是奇函数,f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( ).A.-2 B.2 C.-98 D.9810.定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是().A.①与④B.②与③C.①与③D.②与④二、填空题11.函数x=1的定义域是.-xy+12.若f(x)=ax+b(a>0),且f(f(x))=4x+1,则f(3)=.13.已知函数f(x)=ax+2a-1在区间[0,1]上的值恒正,则实数a的取值范围是.14.已知I={不大于15的正奇数},集合M∩N={5,15},(I M)∩(I N)={3,13},M ∩(I N)={1,7},则M=,N=.15.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠∅,若A∪B=A,则m的取值范围是_________.16.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x3),那么当x∈(-∞,0]时,f(x)=.三、解答题17.已知A={x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={x|x2+2x-8=0},且∅(A∩B),A∩C=∅,求a的值.18.设A 是实数集,满足若a ∈A ,则a-11∈A ,a ≠1且1 A . (1)若2∈A ,则A 中至少还有几个元素?求出这几个元素. (2)A 能否为单元素集合?请说明理由. (3)若a ∈A ,证明:1-a1∈A .19.求函数f (x )=2x 2-2ax +3在区间[-1,1]上的最小值.∈20.已知定义域为R 的函数f (x )=ab-x x +2+21+是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.第二章 基本初等函数(Ⅰ)一、选择题1.对数式log 32-(2+3)的值是( ). A .-1B .0C .1D .不存在2.当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象是( ).A B C D3.如果0<a <1,那么下列不等式中正确的是( ). A .(1-a )31>(1-a )21 B .log 1-a (1+a )>0 C .(1-a )3>(1+a )2D .(1-a )1+a >14.函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象如图所示,则a ,b ,c ,d 的大小顺序是( ).A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34B .8C .18D .216.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ).A . a ≤2B .a >3C .2≤a ≤3D .a ≥37.函数f (x )=2-x -1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R8.已知-1<a <0,则( ).A .(0.2)a<a⎪⎭⎫⎝⎛21<2aB .2a<a⎪⎭⎫⎝⎛21<(0.2)aC .2a <(0.2)a <a⎪⎭⎫⎝⎛21D .a⎪⎭⎫⎝⎛21<(0.2)a <2a(第4题)9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171,10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1)B .(1,2)C .(0,2)D .[2,+∞) 二、填空题11.满足2-x >2x 的x 的取值范围是 .12.已知函数f (x )=log 0.5(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____. 15.函数y =)-(34log 5.0x 的定义域为 . 16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 三、解答题17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.18.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.19.求下列函数的定义域、值域、单调区间:(1)y=4x+2x+1+1;(2)y=2+3231x-x⎪⎭⎫⎝⎛.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.第三章 函数的应用一、选择题1.下列方程在(0,1)内存在实数解的是( ). A .x 2+x -3=0 B .x1+1=0C .21x +ln x =0D .x 2-lg x =02.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是( ).A .(-∞,-2]B .(-∞,-2)∪(2,+∞)C .(2,+∞)D .(-2,2)3. 若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是( ).A .{a |a >1}B .{a |a ≥2}C .{a |0<a <1}D .{a |1<a <2}4.若函数f (x )的图象是连续不断的,且f (0)>0,f (1)f (2)f (4)<0,则下列命题正确的是( ).A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点5. 函数f (x )=⎩⎨⎧0>,ln +2-0,3-2+2x x x x x ≤的零点个数为( ).A .0B .1C .2D .36. 图中的图象所表示的函数的解析式为( ).A .y =23|x -1|(0≤x ≤2)B .y =23-23|x -1|(0≤x ≤2)C .y =23-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)7.当x ∈(2,4)时,下列关系正确的是( ). A .x 2<2xB .log 2 x <x 2C .log 2 x <x1D .2x<log 2 x8.某种动物繁殖数量y (只)与时间x (年)的关系为y =a log 2(x +1),设这种动物第1年有100只,则第7年它们繁殖到( ).A .300只B .400只C .500只D .600只9.某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益每件单价应降低( )元.A .2元B .2.5元C .1元D .1.5元10.某市的一家报刊摊点,从报社买进一种晚报的价格是每份是0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主每天从报社买进( )份晚报.A .250B .400C .300D .350二、填空题11.已知函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,则实数a 的取值范围是 .12.用100米扎篱笆墙的材料扎一个矩形羊圈,欲使羊的活动范围最大,则应取矩形长米,宽 米.13.在国内投寄平信,将每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重x (0<x ≤40)(克)的函数,其表达式为 .14.为了预防流感,某学校对教室用药熏消毒法进行消药量y (毫毒.已知药物释放过程中,室内每立方米空气中的含克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为at y -⎪⎭⎫⎝⎛=161(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.15.已知f (x )=(x +1)·|x -1|,若关于x 的方程f (x )=x +m 有三个不同的实数解,则实数m 的取值范围 .16.设正△ABC 边长为2a ,点M 是边AB 上自左至右的一个动点,过点M 的直线l 垂直与AB ,设AM =x ,△ABC 内位于直线l 左侧的阴影面积为y ,y 表示成x 的函数表达式为 .(第14题)三、解答题17.某农家旅游公司有客房300间,日房租每间为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日房租每增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?18.A市和B市分别有某种库存机器12台和6台,现决定支援C市10台机器,D市8台机器.已知从A市调运一台机器到C市的运费为400元,到D市的运费为800元;从B市调运一台机器到C市的运费为300元,到D市的运费为500元.(1)若要求总运费不超过9 000元,共有几种调运方案?(2)求出总运费最低的调运方案,最低运费是多少?19.某地西红柿从2月1号起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(距2月1日的天数,单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t 的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a·log b t;(2)利用你选取的函数,求西红柿种植成本Q最低时的上市天数及最低种植成本.20.设计一幅宣传画,要求画面面积为4 840 cm2,画面的宽与高的比为λ(λ<1 ),画面的上、下各留8 cm空白,左、右各留5 cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?期末测试题考试时间:90分钟试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的.1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1}B .{x |0<x ≤1}C .{x |x <0}D .{x |x >1}2.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4 B .4log 8log 22=48log 2 C .log 2 23=3log 2 2D .log 2(8+4)=log 2 8+log 2 45.下列四组函数中,表示同一函数的是( ).A .f (x )=|x |,g (x )=2xB .f (x )=lg x 2,g (x )=2lg xC .f (x )=1-1-2x x ,g (x )=x +1D .f (x )=1+x ·1-x ,g (x )=1-2x 6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1,1) C .一定经过点(-1,1)D .一定经过点(1,-1)7.国内快递重量在1 000克以内的包裹邮资标准如下表:如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元 B .6.00元 C .7.00元D .8.00元8.方程2x =2-x 的根所在区间是( ). A .(-1,0) B .(2,3) C .(1,2)D .(0,1)9.若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <010.函数y =x 416-的值域是( ). A .[0,+∞) B .[0,4]C .[0,4)D .(0,4)11.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ).A .f (x )=x1 B .f (x )=(x -1)2 C .f (x )=e xD .f (x )=ln (x +1)12.奇函数f (x )在(-∞,0)上单调递增,若f (-1)=0,则不等式f (x )<0的解集是( ).A .(-∞,-1)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-1,0)∪(1,+∞)13.已知函数f (x )=⎩⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ).A .-2B .-1C .0D .114.已知x 0是函数f (x )=2x +x-11的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则有( ).A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上. 15.A ={x |-2≤x ≤5},B ={x |x >a },若A ⊆B ,则a 取值范围是 . 16.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 . 17.函数y =2-log 2x 的定义域是 . 18.求满足8241-x ⎪⎭⎫⎝⎛>x -24的x 的取值集合是 .三、解答题:本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤.19.(8分)已知函数f(x)=lg(3+x)+lg(3-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由.20.(10分)已知函数f(x)=2|x+1|+ax(x∈R).(1)证明:当a>2时,f(x)在R上是增函数.(2)若函数f(x)存在两个零点,求a的取值范围.21.(10分)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大最大月收益是多少参考答案第一章集合与函数的概念一、选择题1.A解析:条件U A={2}决定了集合A={0,1},所以A的真子集有∅,{0},{1},故正确选项为A.∈2.D解析:在数轴上画出集合A,B的示意图,极易否定A,B .当a=2时,2B,故不满足条件A⊆B,所以,正确选项为D.3.C解析:据条件A∪B=A,得B⊆A,而A={-3,2},所以B只可能是集合∅,{-3},{2},所以,m的取值集合是C.4.B解析:阴影部分在集合N外,可否A,D,阴影部分在集合M内,可否C,所以,正确选项为B.5.B解析:集合M是由直线y=x+1上除去点(2,3)之后,其余点组成的集合.集合P是坐标平面上不在直线y=x+1上的点组成的集合,那么M P就是坐标平面上除去点(2,3)外的所有点组成的集合.由此U(M P)就是点(2,3)的集合,即U(M P)={(2,3)}.故正确选项为B.6.D解析:判断同一函数的标准是两函数的定义域与对应关系相同,选项A,B,C中,两函数的定义域不同,正确选项为D.7.C解析:函数f(x)显然是奇函数,所以不难确定正确选项为C.取特殊值不难否定其它选项.如取x=1,-1,函数值不等,故否A;点(1,0)在函数图象上,而点(0,1)不在图象上,否选项D,点(0,-1)也不在图象上,否选项B.8.B解析:当x=0时,分母最小,函数值最大为1,所以否定选项A,C;当x的绝对值取值越大时,函数值越小,但永远大于0,所以否定选项D.故正确选项为B.9.A 解析:利用条件f (x +4)=f (x )可得,f (7)=f (3+4)=f (3)=f (-1+4)=f (-1),再根据f (x )在R 上是奇函数得,f (7)=-f (1)=-2×12=-2,故正确选项为A .10.C 解析:由为奇函数图像关于原点对称,偶函数图象关于y 轴对称,函数f (x ),g (x )在区间[0,+∞)上图象重合且均为增函数,据此我们可以勾画两函数的草图,进而显见①与③正确.故正确选项为C .二、填空题11.参考答案:{x | x ≥1}.解析:由x -1≥0且x ≥0,得函数定义域是{x |x ≥1}. 12.参考答案:319.解析:由f (f (x ))=af (x )+b =a 2x +ab +b =4x +1,所以a 2=4,ab +b =1(a >0),解得a =2,b =31,所以f (x )=2x +31,于是f (3)=319.13.参考答案:⎪⎭⎫⎝⎛ 21,.解析:a =0时不满足条件,所以a ≠0. (1)当a >0时,只需f (0)=2a -1>0; (2)当a <0时,只需f (1)=3a -1>0. 综上得实数a 的取值范围是⎪⎭⎫⎝⎛ 21,. 14.参考答案:{1,5,7,15},{5,9,11,15}.解析:根据条件I ={1,3,5,7,9,11,13,15},M ∩N ={5,15},M ∩(I N )={1,7},得集合M ={1,5,7,15},再根据条件(I M )∩(I N )={3,13},得N ={5,9,11,15}.15.参考答案:(2,4].解析:据题意得-2≤m +1<2m -1≤7,转化为不等式组⎪⎩⎪⎨⎧7 ≤1-21-2<1+2- ≥1+m m m m ,解得m 的取值范围是(2,4].16.参考答案:x (1-x 3). 解析:∵任取x ∈(-∞,0],有-x ∈[0,+∞), ∴ f (-x )=-x [1+(-x )3]=-x (1-x 3), ∵ f (x )是奇函数,∴ f (-x )=-f (x ). ∴ f (x )=-f (-x )=x (1-x 3),即当x ∈(-∞,0]时,f (x )的表达式为f (x )=x (1-x 3).+∞ +∞三、解答题17.参考答案:∵B ={x |x 2-5x +6=0}={2,3}, C ={x |x 2+2x -8=0}={-4,2}, ∴由A ∩C =∅知,-4 ,2 A ; 由∅(A ∩B )知,3∈A .∴32-3a +a 2-19=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}=B ,与A ∩C =∅矛盾. 当a =-2时,经检验,符合题意. 18.参考答案:(1)∵ 2∈A ,∴a -11=2-11=-1∈A ; ∴a -11=1+11=21∈A ;∴a -11=21-11=2∈A .因此,A 中至少还有两个元素:-1和21. (2)如果A 为单元素集合,则a =a-11,整理得a 2-a +1=0,该方程无实数解,故在实数范围内,A 不可能是单元素集.(3)证明: a ∈A ⇒a -11∈A ⇒ a1-1-11∈A ⇒1+-1-1a a ∈A ,即1-a 1∈A .19.参考答案: f (x )=222⎪⎭⎫ ⎝⎛a x -+3-22a .(1)当2a<-1,即a <-2时,f (x )的最小值为f (-1)=5+2a ;(2)当-1≤2a ≤1,即-2≤a ≤2时,f (x )的最小值为⎪⎭⎫⎝⎛2a f =3-22a ;(3)当2a >1,即a >2时,f (x )的最小值为f (1)=5-2a .∈A ∈综上可知,f (x )的最小值为⎪⎪⎪⎩⎪⎪⎪⎨⎧.> ,-,≤≤ ,-,<- ,+22522232252a a a a a a - 20.参考答案:(1)∵函数f (x )为R 上的奇函数,∴ f (0)=0,即a b2+-1+=0,解得b =1,a ≠-2, 从而有f (x )=ax x +21+2-+1.又由f (1)=-f (-1)知a4++12-=-a 1++121-,解得a =2.(2)先讨论函数f (x )=2+21+2-+1x x =-21+1+21x的增减性.任取x 1,x 2∈R ,且x 1<x 2,f (x 2)-f (x 1)=1+212x -1+211x =))((1+21+22-21221x x x x ,∵指数函数2x 为增函数,∴212-2x x <0,∴ f (x 2)<f (x 1), ∴函数f (x )=2+21+2-+1x x 是定义域R 上的减函数.由f (t 2-2t )+f (2t 2-k )<0得f (t 2-2t )<-f (2t 2-k ), ∴ f (t 2-2t )<f (-2t 2+k ),∴ t 2-2t >-2t 2+k (*). 由(*)式得k <3t 2-2t .又3t 2-2t =3(t -31)2-31≥-31,∴只需k <-31,即得k 的取值范围是⎪⎭⎫ ⎝⎛31- -∞,.第二章 初等函数一、选择题1.A 解析:log 32-(2+3)=log 32-(2-3)-1,故选A .2.A 解析:当a >1时,y =log a x 单调递增,y =a -x 单调递减,故选A .3.A 解析:取特殊值a =21,可立否选项B ,C ,D ,所以正确选项是A .4.B 解析:画出直线y =1与四个函数图象的交点,它们的横坐标的值,分别为a ,b ,c ,d 的值,由图形可得正确结果为B .5.D 解析:解法一:8=(2)6,∴ f (26)=log 22=21.解法二:f (x 6)=log 2 x ,∴ f (x )=log 26x =61log 2 x ,f (8)=61log 28=21.6.D 解析:由函数f (x )在⎪⎭⎫ ⎝⎛121 ,上是减函数,于是有21-a ≥1,解得a ≥3. 7.C 解析:函数f (x )=2-x-1=x ⎪⎭⎫ ⎝⎛21-1的图象是函数g (x )=x⎪⎭⎫ ⎝⎛21图象向下平移一个单位所得,据函数g (x )=x⎪⎭⎫⎝⎛21定义域和值域,不难得到函数f (x )定义域是R ,值域是(-1,+∞).8.B 解析:由-1<a <0,得0<2a <1,0.2a >1,a⎪⎭⎫⎝⎛21>1,知A ,D 不正确.当a =-21时,2121-⎪⎭⎫⎝⎛=501.<201.=2120-.,知C 不正确. ∴ 2a<a⎪⎭⎫⎝⎛21<0.2a .9.C 解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0<a <1 ①,又由f (x )在(-∞,1]上单减,∴ 3a -1<0,∴ a <31 ②,又由于由f (x )在R 上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.∴ 7a -1≥0,即a ≥71③.由①②③可得71≤a <31,故选C .10.B 解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且a ≠1,于是得函数的定义域x <a2.又函数的递减区间[0,1]必须在函数的定义域内,故有1<a2,从而0<a <2且a ≠1.若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0.12.参考答案:f (3)<f (4). 解析:∵ f (3)=log 0.5 8,f (4)=log 0.5 5,∴ f (3)<f (4).13.参考答案:21. 解析:64log 2log 273=3lg 2lg ·64lg 27lg =63=21.14.参考答案:41. 解析:⎪⎭⎫ ⎝⎛91f =log 391=-2,⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f =f (-2)=2-2=41. 15.参考答案:⎥⎦⎤ ⎝⎛143 ,. 解析:由题意,得 ⎪⎩⎪⎨⎧0 34log 0345.0≥)-(>-x x ⇔ ⎪⎩⎪⎨⎧13443 ≤->x x ∴ 所求函数的定义域为⎥⎦⎤⎝⎛143 ,. 16.参考答案:a =21. 解析:∵ f (x )为奇函数,∴ f (x )+f (-x )=2a -121+x -121+x -=2a -1212++x x =2a -1=0,∴ a =21.三、解答题17.参考答案:a =100,b =10. 解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0 (x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100. 18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞);(2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值. ①当a =0时,a x 2+2x +1=2x +1,当x ∈(-21,+∞)时满足要求;②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ⇒ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.参考答案:(1)定义域为R .令t =2x (t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x +2x +1+1在(-∞,+∞)上单调递增.(2)定义域为R .令t =x 2-3x +2=223⎪⎭⎫ ⎝⎛x --41⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡,+∞41-t ∈. ∴ 值域为(0,43].∵ y =t⎪⎭⎫⎝⎛31在t ∈R 时为减函数,∴ y =2+3-231x x ⎪⎭⎫⎝⎛在 ⎝⎛-∞,⎪⎭⎫23上单调增函数,在 ⎝⎛23,+∞⎪⎪⎭⎫为单调减函数.20.参考答案:(1){x |-1<x <1}; (2)奇函数;(3)当0<a <1时,-1<x <0;当a >1时,0<x <1.解析:(1)f (x )-g (x )=log a (x +1)-log a (1-x ),若要式子有意义,则 即-1<x <1,所以定义域为{x |-1<x <1}.(2)设F (x )=f (x )-g (x ),其定义域为(-1,1),且F (-x )=f (-x )-g (-x )=log a (-x +1)-log a (1+x )=-[log a (1+x )-log a (1-x )]=-F (x ),所以f (x )-g (x )是奇函数.(3)f (x )-g (x )>0即log a (x +1)-log a (1-x )>0有log a (x +1)>log a (1-x ).当0<a <1时,上述不等式 解得-1<x <0;当a >1时,上述不等式 解得0<x <1.第三章 函数的应用 参考答案一、选择题1.C 解析:易知A ,B ,D 选项对应的函数在区间(0,1)内的函数值恒为负或恒为正,当x 是接近0的正数时,21x +ln x <0;当x 接近1时,21x +ln x >0. 所以选C .2.D 解析:因为函数f (x )是定义在R 上的偶函数且一个零点是2,则另一个零点为-2,又在(-∞,0]上是减函数,则f (x )<0的x 的取值范围是(-2,2).3.A 解析:设函数y =a x (a >0,且a ≠1)和函数y =x +a ,则函数f (x )=a x -x -a (a >0且a 1)有两个零点, 就是函数y =a x (a >0,且a ≠1)与函数y =x +a 的图象有两个交点,由图象可知当0<a <1时两函数只有一个交点,不符合,当a >1时,因为函数x +1>0x +1>01-x >0x +1>01-x >0y =a x (a >1)的图象过点(0,1),而直线y =x +a 所过的点(0,a )一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是{a |a >1}.4.D 解析:因为f (0)>0,f (1)f (2)f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图象与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点,正确选项为D . 5. C 解析:当x ≤0时,令x 2+2x -3=0解得x =-3;当x >0时,令-2+ln x =0,得x =100,所以已知函数有两个零点,选C . 还可以作出f (x )的图象,依图判断.6. B 解析:取特殊值x =1,由图象知y =f (1)=32,据此否定A ,D ,在取x =0, 由图象知y =f (0)=0,据此否C ,故正确选项是B.或者勾画选项B 的函数图象亦可判断.7.B 解析:当x ∈(2,4)时,x 2∈(4,16),2x ∈(4,16),log 2 x ∈(1,2),x1∈⎪⎭⎫⎝⎛2141 ,,显然C 、D 不正确,但对于选项A ,若x =3时,x 2=9>23=8,故A 也不正确,只有选项B 正确.(第4题)8.A 解析:由题意知100=a log2(1+1),得a=100,则当x=7时,y=100 log2(7+1)=100×3=300.9.D 解析:设每件降价0.1x元,则每件获利(4-0.1x)元,每天卖出商品件数为(1 000+100x).经济效益:y=(4-0.1x)(1 000+100x)=-10x2+300x+4 000=-10(x2-30x+225-225)+4 000=-10(x-15)2+6 250.x=15时,y max=6 250.每件单价降低1.5元,可获得最好的经济效益.10.B 解析:若设每天从报社买进x(250≤x≤400,x∈N)份,则每月共可销售(20x+10×250)份,每份可获利润0.10元,退回报社10(x-250)份,每份亏损0.15元,建立月纯利润函数f(x),再求f(x)的最大值,可得一个月的最大利润.设每天从报社买进x份报纸,每月获得的总利润为y元,则依题意,得y=0.10(20x+10×250)-0.15×10(x-250)=0.5x+625,x∈[250,400].∵函数y在[250,400]上单调递增,∴x=400时,y max=825(元).即摊主每天从报社买进400份时,每月所获得的利润最大,最大利润为825元.二、填空题11.参考答案:(-∞,-1).解析:函数f(x)=x2+ax+a-1的两个零点一个大于2,一个小于2,即f(2)<0,可求实数a的取值范围是(-∞,-1).12.参考答案:长宽分别为25米.解析:设矩形长x 米,则宽为21(100-2x )=(50-x )米,所以矩形面积y =x (50-x )=-x 2+50 x =-(x -25)2+625,矩形长宽都为25米时,矩形羊圈面积最大.13.参考答案:f (x )=⎩⎨⎧)<( )<(40≤ 20 16020≤ 008x x解析:在信件不超过20克重时,付邮资80分,应视为自变量在0<x ≤20范围内,函数值是80分;在信件超过20克重而不超过40克重时,付邮资160分,应视为自变量在20<x ≤40范围内,函数值是160分,遂得分段函数.14.参考答案:(1) y =⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛- )>( )( 1.01611.0≤ ≤ 0101.0t t t t ; (2)0.6.解析:(1)据图象0≤t ≤0.1时,正比例函数y =k t 图象过点(0.1,1),所以,k =10,即y =10t ;当t >0.1时,y 与t 的函数y =at -⎪⎭⎫⎝⎛161(a 为常数)的图像过点(0.1,1),即得1=a-⎪⎭⎫ ⎝⎛1.0161,所以a =0.1,即y =1.0161-⎪⎭⎫⎝⎛t .(2)依题意得1.0161-⎪⎭⎫⎝⎛t ≤0.25,再由y =lg x 是增函数,得(t -0.1)lg161≤lg 41,∵ lg 41<0,即得t -0.1≥0.5,所以,t ≥0.6. 15.参考答案:-1<m <45.解析:由f (x )=(x +1)|x -1|=得函数y =f (x )的图象(如图).按题意,直线y =x +m 与曲线y =(x +1)|x -1|有三个不同的公共点,求直线y =x +m 在y 轴上的截距m 的取值范围.x 2-1,x ≥11-x 2,x <1(第15题)由 得x 2+x +m -1=0.Δ=1-4(m -1)=5-4m ,由Δ=0,得m =45,易得实数m 的取值范围是-1<m <45.16.参考答案:y =⎪⎪⎩⎪⎪⎨⎧)<( -+- )<( a x a a ax x a x x 2≤ 33223≤ 023222解析:当直线l 平移过程中,分过AB 中点前、后两段建立y 与x 的函数表达式. (1)当0<x ≤a 时,y =21x ·3x =23 x 2; (2)当a <x ≤2a 时,y =21·2a ·3a -21(2a -x )·3(2a -x )=-23x 2+23ax -3a 2.所以,y =⎪⎪⎩⎪⎪⎨⎧)<( -+- )<( a x a a ax x a x x 2≤ 33223≤ 023222三、解答题17.参考答案:每间客房日租金提高到40元.解析:设客房日租金每间提高2x 元,则每天客房出租数为300-10x , 由x >0,且300-10x >0,得0<x <30.设客房租金总收入y 元,y =(20+2x )(300-10x )=-20(x -10)2 +8 000(0<x <30),当x =10时,y max =8 000.即当每间客房日租金提高到20+10×2=40元时,客房租金总收入最高,为每天8 000元.18.参考答案:设从B 市调运x (0≤x ≤6)台到C 市,则总运费y =300x +500(6-x )+400(10-x )+800[8-(6-x )]=200x +8 600(0≤x ≤6). (1)若200x +8 600≤9 000,则x ≤2.y =1-x 2, y =x +m所以x =0,1,2,故共有三种调运方案.(2)由y =200x +8 600(0≤x ≤6)可知,当x =0时,总运费最低,最低费用是8 600元.19.参考答案:(1)根据表中数据,表述西红柿种植成本Q 与上市时间t 的变化关系的函数决不是单调函数,这与函数Q =at +b ,Q =a ·b t ,Q =a ·log b t 均具有单调性不符,所以,在a ≠0的前提下,可选取二次函数Q =at 2+bt +c 进行描述.把表格提供的三对数据代入该解析式得到:150250500 62108110100 1215050500 2=++=++=++c b a c b a c b a 解得a =2001,b =-23,c =2425. 所以,西红柿种植成本Q 与上市时间t 的函数关系是Q =2001t 2-23t +2425.(2)当t =-2001223-⨯=150天时,西红柿种植成本Q 最低为 Q =2001×1502-23×150+2425=100(元/100 kg ).20.参考答案:高为88 cm ,宽为55 cm .解析:设画面高为x cm ,宽为λx cm ,λx 2=4 840,设纸张面积为S ,有S =(x +16)( λx +10)=λx 2+(16 λ+10)x +160,将λ=2840 4x 代入上式可得,S =10(x +x 48416⨯)+5 000=10(x -x88)2+6 760, 所以,x =x 88,即x =88 cm 时,宽为λx =55 cm ,所用纸张面积最小.期末测试 参考答案一、选择题1.B 解析:U B ={x |x ≤1},因此A ∩U B ={x |0<x ≤1}.2.C 3.C 4.C 5. A 6.B 7.C 8.D9.D 解析:由log 2 a <0,得0<a <1,由b⎪⎭⎫ ⎝⎛21>1,得b <0,所以选D 项.10.C 解析:∵ 4x >0,∴0≤16- 4x <16,∴x 416-∈[0,4).11.A 解析:依题意可得函数应在(0,+∞)上单调递减,故由选项可得A 正确.12.A13.D 14.B解析:当x =x 1从1的右侧足够接近1时,x -11是一个绝对值很大的负数,从而保证 f (x 1)<0;当x =x 2足够大时,x-11可以是一个接近0的负数,从而保证f (x 2)>0.故正确选项是B .二、填空题15.参考答案:(-∞,-2). 16.参考答案:(-∞,0).17.参考答案:[4,+∞).18.参考答案:(-8,+∞).三、解答题19.参考答案:(1)由⎩⎨⎧0303>->+x x ,得-3<x <3, ∴ 函数f (x )的定义域为(-3,3).(2)函数f (x )是偶函数,理由如下:由(1)知,函数f (x )的定义域关于原点对称,且f (-x )=lg (3-x )+lg (3+x )=f (x ),∴ 函数f (x )为偶函数.20.参考答案:(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a 因为a >2,所以,y 1=(a +2)x +2(x ≥-1)是增函数,且y 1≥f (-1)=-a ;另外,y 2=(a -2)x -2(x <-1)也是增函数,且y 2<f (-1)=-a .所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2). 21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为50000 3600 3-=12,所以这时租出了100-12=88辆车. (2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=⎪⎭⎫ ⎝⎛50000 3100--x (x -150)-50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050.当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.。

高一数学必修一第一章测试题及答案

高一数学必修一第一章测试题及答案

1.1集合的概念专项练习解析版一、单选题1.若1∈{x ,x 2},则x =( )A .1B .1-C .0或1D .0或1或1- 【答案】B【分析】根据元素与集合关系分类讨论,再验证互异性得结果【详解】根据题意,若1∈{x ,x 2},则必有x =1或x 2=1,进而分类讨论:∈、当x =1时,x 2=1,不符合集合中元素的互异性,舍去,∈、当x 2=1,解可得x =-1或x =1(舍),当x =-1时,x 2=1,符合题意,综合可得,x =-1,故选B .【点睛】本题考查元素与集合关系以及集合中元素互异性,考查基本分析求解能力,属基础题.2.已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 的值为( )A .-2B .2C .4D .2或4 【答案】A【分析】根据元素和集合的关系以及集合元素的互异性确定正确选项.【详解】依题意2A ∈,若2a =,则2=a ,不满足集合元素的互异性,所以2a ≠; 若2=a ,则2a =-或2a =(舍去),此时{}2,2,4A =--,符合题意;若22a -=,则4a =,而4a =,不满足集合元素的互异性,所以4a ≠.综上所述,a 的值为2-.故选:A【点睛】本小题主要考查元素与集合的关系,考查集合元素的互异性,属于基础题.3.下列关系中,正确的有( ) ∈1R 2;5Q ;∈3N ;∈2Q ∈.A .1个B .2个C .3个D .4个【分析】根据元素与集合之间的关系判断可得答案.【详解】12|3|3-=是非负整数,2是有理数.因此,∈∈∈∈正确,故选:D .4.考查下列每组对象,能组成一个集合的是( )∈一中高一年级聪明的学生;∈直角坐标系中横、纵坐标相等的点;∈不小于3的正整数;值.A .∈∈B .∈∈C .∈∈D .∈∈ 【答案】C【分析】利用集合中的元素满足确定性判断可得出结论.【详解】∈“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;∈“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;∈“不小于3的正整数”的标准确定,能构成集合;”的标准不确定,不能构成集合.故选:C.5.下列各组对象不能构成集合的是( )A .参加运动会的学生B 的正整数C .2022年高考数学试卷上的难题D .所有有理数【答案】C【分析】根据集合的基本概念辨析即可.【详解】解:对于A 选项,参加运动会的学生,是确定的,没有重复的,所以能构成集合;对于B 对于C 选项,2022年高考数学试卷上的难题,多难的题才算是难题,有一定的不确定性,不符合集合中元素的确定性,故不能构成集合;对于D 选项,所有有理数,所研究的有理数,是确定的,没有重复的,所以能构成集合;故选:C.6.已知集合{}21,2,22A a a a =---,若1A -∈,则实数a 的值为( ) A .1B .1或12-C .12-D .1-或12-【分析】由题可知21a -=-或2221a a --=-,即求.【详解】∈1A -∈,∈21a -=-或2221a a --=-,∈1a =或12a =-, 经检验得12a =-.故选:C.7.已知集合A ={x |ax 2﹣3x +2=0}只有一个元素,则实数a 的值为( )A .98B .0C .98或0D .1【答案】C 【分析】根据a 是否为0分类讨论.【详解】0a =时,2{|320}{}3A x x =-+==,满足题意; 0a ≠时,980a ∆=-=,98a =,此时294|320}83A x x x ⎧⎧⎫=-+==⎨⎨⎬⎩⎭⎩,满足题意. 所以0a =或98.故选:C二、多选题8.已知{}21|A y y x ==+,(){}21|,B x y y x ==+ ,下列关系正确的是( )A .=A BB .()1,2A ∈C .1B ∉D .2A ∈【答案】CD 【分析】根据集合A 、B 的特征,结合元素与集合的关系进行判断.【详解】∈{}2|1{|1}A y y x y y ==+=是数集;{}2(,)|1B x y y x ==+为点集,∈2A ∈,2B ∉,1B ∉,故A 错误,C 、D 正确;由21y x =+知,=1x 时=2y ,∈(1,2)B ∈,(1,2)A ∉,故B 错误.故选:CD .9.下列选项正确的有( )A .()R Q π∈B .13Q ∈C .0*N ∈D 4Z【答案】ABD【分析】根据常见集合的意义和元素的性质可判断各选项中的属于关系是否成立,从而可得正确的选项.【详解】因为π为无理数,故()R Q π∈,故A 正确. 因为13为有理数,故13Q ∈,故B 正确. 因为*N 为正整数集,但*0N ∉,故C 不正确.2=Z ,故D 成立.故选:ABD.【点睛】考查常见集合的表示,注意正确区分各字母表示的常见集合,不要混淆,本题属于基础题.10.下列各组中M 、P 表示不同..集合的是( ) A .{3,1}M =-,{13}P =-,B .{}{(31)},(1,3)M P ==, C .{}21,R M y y x x ==+∈,{}t t 1P =≥D .{}21,R M y y x x ==-∈,2{(,)|1,R}P x y y x x ==-∈【答案】BD【分析】根据集合相等的概念依次分析各选项即可得答案.【详解】选项A 中,根据集合的无序性可知M P =;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,{}t t 1P =≥=[)1,+∞,故M =P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有y 组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合,故M P ≠.故选:BD .11.下列四个命题:其中不正确的命题为( )A .{}0是空集B .若N a ∈,则N a -∉;C .集合{}2R 210x x x ∈-+=有一个元素 D .集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是有限集. 【答案】ABD【分析】根据空集的定义可判断A ;根据元素与集合的关系可判断B ;解方程求出集合中的元素可判断C ;x 为正整数的倒数时,都有6N x∈可判断D ,进而可得正确选项. 【详解】对于A :{}0含有一个元素0,所以{}0不是空集,故选项A 不正确;对于B :当0a =时,N a ∈,则N a -∈,故选项B 不正确;对于C :{}(){}{}22R 210R 101x x x x x ∈-+==∈-==只有一个元素,故选项C 正确; 对于D :Q 表示有理数,包括整数和分数,比如x 为正整数的倒数时,都有6N x∈,所以集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是无限集,故选项D 不正确;故选:ABD.三、填空题12.已知集合{}1,2,A m =,{}13,B n =,,若A B =,则m n +=_______. 【答案】5【分析】由集合的性质,即元素的无序性和互异性可得3,2m n ==,得5m n +=.【详解】根据集合的元素具有无序性和互异性可得,3,2m n ==,所以5m n +=.故答案为:5.【点睛】(1)集合A B =的充要条件是A B ⊆,且A B ⊇;(2)集合由三个性质:确定性,互异性和无序性.13.若{}221,,2a a ∈-,则=a ______.【答案】2-【分析】结合集合的互异性来求得a .【详解】若2a =,则222a -=,不满足互异性,所以2a ≠.若222,2a a -==-或2a =(舍去),所以2a =-.故答案为:2-四、解答题14.已知集合{}222,1,A a a a =+-,{}20,7,5B a a =--,且5A ∈,求集合B .【答案】{}0,7,1B =【分析】根据题意,结合集合中元素的确定性与互异性,分类讨论即可求解.意;若2a =-,则26a a -=,此时{}2,5,6A =,{}0,7,1B =.而当25a a -=时,集合B 中250a a --=,根据互异性可知,不满足题意.综上,{}0,7,1B =.15.已知集合{}2210,A x ax x a R =++=∈, (1)若A 只有一个元素,试求a 的值,并求出这个元素;(2)若A 是空集,求a 的取值范围;(3)用列举法表示集合A .【答案】(1)见解析(2)1a >(3)见解析【分析】(1)分为0a =和0a ≠两种情形即可;(2)根据方程无解时,440a ∆=-<即可得结果;(3)根据(1)(2)的结果结合求根公式即可得结果.【详解】(1)∈0a =时,12A ⎧⎫=-⎨⎬⎩⎭满足题意; ∈0a ≠时,要使A 只有一个元素,则需:440a ∆=-=,即1a =,此时{}1A =-.综上:0a =时,12A ⎧⎫=-⎨⎬⎩⎭;1a =时,{}1A =-. (2)∈A =∅,0a =显然不合题意,∈440a ∆=-<,即1a >∈1a >时,A =∅.(3)由(2)得,当1a >时,方程2210ax x ++=无解,即A =∅,由(1)得0a =时,方程210x +=的解为12x =-,即12A ⎧⎫=-⎨⎬⎩⎭; 当1a =时,方程2210x x ++=的解为=1x -,即{}1A =-.当1a <时,由求根公式得2210ax x ++=的解为1x =2x =,即A =⎪⎪⎩⎭综上可得:当1a >时,A =∅;当0a =时,12A ⎧⎫=-⎨⎬⎩⎭,当1a =时,{}1A =-;当1a <时,A =⎪⎪⎩⎭. 【点睛】考查了用描述法表示集合,含有参数一元二次方程的解,分类讨论思想的应用,属于中档题。

人教版高一数学必修一第一章测试题含答案

人教版高一数学必修一第一章测试题含答案

人教版高一数学必修一第一章测试题含答案一、选择题1.下列数中,是正数且有理数的是____。

A.根号2B.根号3C.-0.8D.- 3/4答案:D2.在数轴上,数-3,-2,0,2所在的点的次序是____。

A.-2 < -3 < 0 < 2B.-3 < -2 < 2 < 0C.-3 < -2 < 0 < 2D.-2 < -3 < 2 < 0答案:C3.下列各数中,最小的是____。

A.-0.8B.-1/2C.-1D.-0.9999答案:C4.已知-3<x<5,则-2x的取值范围是____。

A.6<x<30B.15<x<30C.-30<x<-6D.-30<x<15答案:D二、填空题1.将-0.25用分数表示为________。

答案:-1/42.-13的绝对值是________。

答案:133.已知-5<x<4,那么|x+7|的取值范围是________。

答案:2<|x+7|<124.如果a>b>0,那么a²和b²的大小关系是________。

答案:a²>b²三、解答题1.已知x<2y,2y≤4z,z≤5,求满足以上条件的x的取值范围。

解:由条件可得:x<2y≤4z≤20故x<20。

2.已知-2<x<3,求满足0<2x-1<5的x的取值范围。

解:0<2x-1<51<2x<6由x的取值范围-2<x<3得1/2<x<3,故满足条件的x的取值范围为1/2<x<3。

3.小明的体重是58kg,如果减轻了1/8,减轻后的体重是多少?解:减轻了1/8,体重减轻的量为1/8×58=7.25kg。

减轻后的体重为58-7.25=50.75kg。

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。

$\varnothing \in A$ B。

$2\in A$ C。

$2\in A$ D。

$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。

$2$ B。

$5$ C。

$6$ D。

$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。

若 $A\subseteq B$,则 $a$ 的范围是()A。

$a\geq 2$ B。

$a\leq 1$ C。

$a\geq 1$ D。

$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。

$(,\infty)$ B。

$[。

\infty)$ C。

$(-\infty,)$ D。

$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。

$\{0,2,3,6\}$ B。

$\{0,3,6\}$ C。

$\{2,1,5,8\}$ D。

$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。

$(2,3)$ B。

$[-1,5]$ C。

$(-1,5)$ D。

$(-1,5]$7.下列函数是奇函数的是()A。

$y=x$ B。

$y=2x-3$ C。

$y=x^2$ D。

$y=|x|$8.化简:$(\pi-4)+\pi=$()A。

$4$ B。

$2\pi-4$ C。

$2\pi-4$ 或 $4$ D。

$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。

高一数学必修一全章节练习题(附答案解析)

高一数学必修一全章节练习题(附答案解析)

第一章 集合与函数的概念1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与产量x 的关系,则可选用( )A .一次函数B .二次函数C .指数型函数D .对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降;而指数函数是爆炸式增长,不符合“增长越来越慢”;因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2.某种植物生长发育的数量y 与时间x 的关系如下表:x 1 2 3 … y 1 3 8 …则下面的函数关系式中,能表达这种关系的是( ) A .y =2x -1 B .y =x 2-1 C .y =2x -1 D .y =1.5x 2-2.5x +2解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D.3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km 的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了1.5小时后,追上了骑自行车者. 其中正确信息的序号是( ) A .①②③ B .①③ C .②③ D .①②解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.4.长为4,宽为3的矩形,当长增加x ,且宽减少x2时面积最大,此时x =________,面积S =________.解析:依题意得:S =(4+x )(3-x 2)=-12x 2+x +12=-12(x -1)2+1212,∴当x =1时,S max =1212.答案:1 12121x 1 2 3 4 5 y 3 5 6.99 9.01 11( )A .指数函数B .反比例函数C .一次函数D .二次函数解析:选C.画出散点图,结合图象(图略)可知各个点接近于一条直线,所以可用一次函数表示.2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩 解析:选C.y =10000×(1+20%)3=17280.3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格相比,变化情况是( )A .增加7.84%B .减少7.84%C .减少9.5%D .不增不减 解析:选B.设该商品原价为a ,四年后价格为a (1+0.2)2·(1-0.2)2=0.9216a . 所以(1-0.9216)a =0.0784a =7.84%a , 即比原来减少了7.84%.4.据调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )A .y =0.3x +800(0≤x ≤2000)B .y =0.3x +1600(0≤x ≤2000)C .y =-0.3x +800(0≤x ≤2000)D .y =-0.3x +1600(0≤x ≤2000)解析:选D.由题意知,变速车存车数为(2000-x )辆次, 则总收入y =0.5x +(2000-x )×0.8=0.5x +1600-0.8x =-0.3x +1600(0≤x ≤2000).5.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图象大致为四个选项中的( )解析:选C.设AB =a ,则y =12a 2-12x 2=-12x 2+12a 2,其图象为抛物线的一段,开口向下,顶点在y 轴上方.故选C.6.小蜥蜴体长15 cm ,体重15 g ,问:当小蜥蜴长到体长为20 cm 时,它的体重大约是( )A .20 gB .25 gC .35 gD .40 g解析:选C.假设小蜥蜴从15 cm 长到20 cm ,体形是相似的.这时蜥蜴的体重正比于它的体积,而体积与体长的立方成正比.记体长为20 cm 的蜥蜴的体重为W 20,因此有W 20=W 15·203153≈35.6(g),合理的答案为35 g .故选C.7.现测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1;乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则应选用________作为拟合模型较好.解析:图象法,即描出已知的三个点的坐标并画出两个函数的图象(图略),比较发现选甲更好.答案:甲8.一根弹簧,挂重100 N 的重物时,伸长20 cm ,当挂重150 N 的重物时,弹簧伸长________.解析:由10020=150x,得x =30.答案:30 cm9.某工厂8年来某产品年产量y 与时间t 年的函数关系如图,则: ①前3年总产量增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变. 以上说法中正确的是________.解析:观察图中单位时间内产品产量y 变化量快慢可知①④. 答案:①④10.某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y (件)与销售单价x (元)之间的关系可近似看作一次函数y =kx +b (k ≠0),函数图象如图所示.(1)根据图象,求一次函数y =kx +b (k ≠0)的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?解:(1)由图象知,当x =600时,y =400;当x =700时,y =300,代入y =kx +b (k ≠0)中,得⎩⎪⎨⎪⎧ 400=600k +b ,300=700k +b ,解得⎩⎪⎨⎪⎧k =-1,b =1000. 所以,y =-x +1000(500≤x ≤800). (2)销售总价=销售单价×销售量=xy , 成本总价=成本单价×销售量=500y , 代入求毛利润的公式,得S =xy -500y =x (-x +1000)-500(-x +1000) =-x 2+1500x -500000=-(x -750)2+62500(500≤x ≤800).所以,当销售单价定为750元时,可获得最大毛利润62500元,此时销售量为250件. 11.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·(12)th ,其中T a 表示环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min ,那么降温到35 ℃时,需要多长时间?解:由题意知40-24=(88-24)·(12)20h ,即14=(12)20h . 解之,得h =10.故T -24=(88-24)·(12)t10.当T =35时,代入上式,得35-24=(88-24)·(12)t10,即(12)t 10=1164. 两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35 ℃.12.某地区为响应上级号召,在2011年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.(1)经过x 年后,该地区的廉价住房为y 万平方米,求y =f (x )的表达式,并求此函数的定义域.(2)作出函数y =f (x )的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米?解:(1)经过1年后,廉价住房面积为 200+200×5%=200(1+5%); 经过2年后为200(1+5%)2; …经过x 年后,廉价住房面积为200(1+5%)x , ∴y =200(1+5%)x (x ∈N *).(2)作函数y =f (x )=200(1+5%)x (x ≥0)的图象,如图所示.作直线y =300,与函数y =200(1+5%)x的图象交于A 点,则A (x 0,300),A 点的横坐标x 0的值就是函数值y =300时所经过的时间x 的值.因为8<x 0<9,则取x 0=9,即经过9年后,该地区的廉价住房能达到300万平方米.1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N *,且s ≤5}解析:选D.A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中k 取负数,多了若干元素;C 中t =0时多了-3这个元素,只有D 是正确的.2.集合P ={x |x =2k ,k ∈Z },M ={x |x =2k +1,k ∈Z },S ={x |x =4k +1,k ∈Z },a ∈P ,b ∈M ,设c =a +b ,则有( )A .c ∈PB .c ∈MC .c ∈SD .以上都不对解析:选B.∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1,k 1∈Z ,b =2k 2+1,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1, 又k 1+k 2∈Z ,∴c ∈M .3.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( )A .0B .2C .3D .6解析:选D.∵z =xy ,x ∈A ,y ∈B ,∴z 的取值有:1×0=0,1×2=2,2×0=0,2×2=4, 故A *B ={0,2,4},∴集合A *B 的所有元素之和为:0+2+4=6.4.已知集合A ={1,2,3},B ={1,2},C ={(x ,y )|x ∈A ,y ∈B },则用列举法表示集合C =____________.解析:∵C ={(x ,y )|x ∈A ,y ∈B }, ∴满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∉M B .a ∈MC .{a }∈MD .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合;(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________.解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根, ∴a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围.解:①a =0时,原方程为-3x +2=0,x =23,符合题意.②a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合①②,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊C .2010年考入清华大学的全体学生D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *. A .1 B .2 C .3 D .4 解析:选B.①②正确,③④错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3. 由x 2-x -2=0,解得x =2或x =-1. 答案:31.若以正实数x ,y ,z ,w 四个元素构成集合A ,以A 中四个元素为边长构成的四边形可能是( )A .梯形B .平行四边形C .菱形D .矩形 答案:A2.设集合A 只含一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉A C .a ∈A D .a =A 答案:C3.给出以下四个对象,其中能构成集合的有( ) ①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学; ③2010年广州亚运会的比赛项目; ④1,3,5.A .1个B .2个C .3个D .4个 解析:选C.因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.4.若集合M ={a ,b ,c },M 中元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选D.根据元素的互异性可知,a ≠b ,a ≠c ,b ≠c . 5.下列各组集合,表示相等集合的是( ) ①M ={(3,2)},N ={(2,3)}; ②M ={3,2},N ={2,3}; ③M ={(1,2)},N ={1,2}. A .① B .②C .③D .以上都不对解析:选B.①中M 中表示点(3,2),N 中表示点(2,3),②中由元素的无序性知是相等集合,③中M 表示一个元素:点(1,2),N 中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M解析:选B.∅x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∉M .7.已知①5∈R ;②13∈Q ;③0={0};④0∉N ;⑤π∈Q ;⑥-3∈Z .其中正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②⑥正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∉A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b=2;当a ·b <0时,|a |a +|b |b=0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∵-3∈A ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∵12-3=2+3=2+3×1,而2,1∈Z ,∴2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有 ⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}. A .6个 B .5个C .4个D .3个及3个以下 解析:选C.①②⑤⑥正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∉B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∉B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A ={x |1<x <2},B ={x |x <a },若A B ,则a 的取值范围是( )A .a ≥2B .a ≤1C .a ≥1D .a ≤2解析:选A.A ={x |1<x <2},B ={x |x <a },要使A B ,则应有a ≥2. 4.集合M ={x |x 2-3x -a 2+2=0,a ∈R }的子集的个数为________.解析:∵Δ=9-4(2-a 2)=1+4a 2>0,∴M 恒有2个元素,所以子集有4个. 答案:41.如果A ={x |x >-1},那么( ) A .0⊆A B .{0}∈AC .∅∈AD .{0}⊆A解析:选D.A 、B 、C 的关系符号是错误的.2.已知集合A ={x |-1<x <2},B ={x |0<x <1},则( ) A .A >B B .ABC .B AD .A ⊆B解析:选C.利用数轴(图略)可看出x ∈B ⇒x ∈A ,但x ∈A ⇒x ∈B 不成立.3.定义A -B ={x |x ∈A 且x ∉B },若A ={1,3,5,7,9},B ={2,3,5},则A -B 等于( ) A .A B .BC .{2}D .{1,7,9}解析:选D.从定义可看出,元素在A 中但是不能在B 中,所以只能是D. 4.以下共有6组集合.(1)A ={(-5,3)},B ={-5,3}; (2)M ={1,-3},N ={3,-1}; (3)M =∅,N ={0};(4)M ={π},N ={3.1415};(5)M ={x |x 是小数},N ={x |x 是实数};(6)M ={x |x 2-3x +2=0},N ={y |y 2-3y +2=0}. 其中表示相等的集合有( ) A .2组 B .3组 C .4组 D .5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A *B ={ω|ω=xy (x +y ),x ∈A ,y ∈B }.若集合A ={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( ) A .A ⊆B B .B ⊆A C .A ∈B D .B ∈A解析:选D.∵B 的子集为{1},{2},{1,2},∅, ∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx=1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∉B ,故BA .答案:B A8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________.解析:A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:①若⎩⎪⎨⎪⎧a +b =aca +2b =ac 2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性,故a ≠0,c 2-2c +1=0,即c =1;当c =1时,集合B 中的三个元素也相同, ∴c =1舍去,即此时无解.②若⎩⎪⎨⎪⎧a +b =ac2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}.∵B A ,∴mx +1=0的解为-3或2或无解. 当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时,由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ⊆N B .N ⊆MC .M ∩N ={2,3}D .M ∪N ={1,4} 解析:选C.∵M ={1,2,3},N ={2,3,4}. ∴选项A 、B 显然不对.M ∪N ={1,2,3,4}, ∴选项D 错误.又M ∩N ={2,3},故选C.3.已知集合M ={y |y =x 2},N ={y |x =y 2},则M ∩N =( ) A .{(0,0),(1,1)} B .{0,1} C .{y |y ≥0} D .{y |0≤y ≤1}解析:选C.M ={y |y ≥0},N =R ,∴M ∩N =M ={y |y ≥0}. 4.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.解析:A ∪B =A ,即B ⊆A ,∴m ≥2. 答案:m ≥21.下列关系Q ∩R =R ∩Q ;Z ∪N =N ;Q ∪R =R ∪Q ;Q ∩N =N 中,正确的个数是( )A .1B .2C .3D .4解析:选C.只有Z ∪N =N 是错误的,应是Z ∪N =Z .2.(2010年高考四川卷)设集合A ={3,5,6,8},集合B ={4,5,7,8},则A ∩B 等于( ) A .{3,4,5,6,7,8} B .{3,6} C .{4,7} D .{5,8}解析:选D.∵A ={3,5,6,8},B ={4,5,7,8},∴A ∩B ={5,8}.3.(2009年高考山东卷)集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4解析:选D.根据元素特性,a ≠0,a ≠2,a ≠1. ∴a =4.4.已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0},则P ∩Q 等于( ) A .{2} B .{1,2} C .{2,3} D .{1,2,3}解析:选A.Q ={x ∈R |x 2+x -6=0}={-3,2}. ∴P ∩Q ={2}.5.(2010年高考福建卷)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A .{x |2<x ≤3} B .{x |x ≥1} C .{x |2≤x <3} D .{x |x >2}解析:选A.∵A ={x |1≤x ≤3},B ={x |x >2}, ∴A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∪T =R , ∴⎩⎪⎨⎪⎧a +8>5,a <-1.∴-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∵A ∩B ={2,3},∴3∈B ,∴m =3. 答案:38.满足条件{1,3}∪M ={1,3,5}的集合M 的个数是________. 解析:∵{1,3}∪M ={1,3,5},∴M 中必须含有5, ∴M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∅; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∪B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∵A ∩B ={3},∴由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∪B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:①当a -3≤5,即a ≤8时, A ∪B ={x |x <a -3或x >5}. ②当a -3>5,即a >8时,A ∪B ={x |x >5}∪{x |x <a -3}={x |x ∈R }=R .综上可知当a ≤8时,A ∪B ={x |x <a -3或x >5}; 当a >8时,A ∪B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∅,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∅,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∁U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∁U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∵B ={x |x <1},∴∁R B ={x |x ≥1}, ∴A ∩∁R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A ={0,1},(∁U A )∩B 表示全集U 中不在集合A 中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.解析:∵A∪∁U A=U,∴A={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∁U B={3,4,5},∴A∩(∁U B)={3,4}.2.已知全集U={0,1,2},且∁U A={2},则A=()A.{0} B.{1}C.∅D.{0,1}解析:选D.∵∁U A={2},∴2∉A,又U={0,1,2},∴A={0,1}.3.(2009年高考全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5}.6.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:选D.U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素,故选D.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________.解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∴∁U A ={x |x <-m },∵B ={x |-2<x <4},(∁U A )∩B =∅, ∴-m ≤-2,即m ≥2, ∴m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).解:将集合A 、B 、P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52},(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∁U A )={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.解:∵B ∩(∁U A )={2}, ∴2∈B ,但2∉A .∵A ∩(∁U B )={4},∴4∈A ,但4∉B .∴⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∴a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求实数a 的取值范围. 解:∁R B ={x |x ≤1或x ≥2}≠∅, ∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论. ①若A =∅,此时有2a -2≥a , ∴a ≥2.②若A ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2. ∴a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( )A .y =f (x )与y =f (t )表示同一个函数B .y =f (x )与y =f (x +1)不可能是同一函数C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数 解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( )A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∅ B .∅或{1} C .{1} D .∅或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∅或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________.解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =(x +1)03-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∪(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2,故函数值域为{-1,-2,2}. 答案:{-1,-2,2}10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值.解:(1)∵f (x )=11+x ,∴f (2)=11+2=13,又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)由(1)知g (2)=6,∴f (g (2))=f (6)=11+6=17.12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数).∵ax +1≥0,a <0,∴x ≤-1a ,即函数的定义域为(-∞,-1a].∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-1a],∴-1a≥1,而a <0,∴-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x 1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x =1x 1+1x(x ≠0),∴f (t )=t1+t (t ≠0且t ≠-1),∴f (x )=x1+x(x ≠0且x ≠-1).3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∵2f (2)-3f (1)=5,2f (0)-f (-1)=1, ∴⎩⎪⎨⎪⎧ k -b =5k +b =1,∴⎩⎪⎨⎪⎧k =3b =-2,∴f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________.解析:令2x =t ,则x =t2,∴f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x 2-1.答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x 非负数 非正数 y 1 -1B.x 奇数 0 偶数y 1 0-1 C.x 有理数 无理数 y 1 -1D.x 自然数 整数 有理数y 1 0 -1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∴f (t )=4(t -1)2-1,∴f (12)=16-1=15. 法二:令1-2x =12,得x =14,∴f (12)=16-1=15.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∵g (x +2)=2x +3=2(x +2)-1, ∴g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1 解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∴f (0)=(0-1)2+c =0,∴c =-1,∴f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( )A .y =12x (x >0)B .y =24x (x >0)C .y =28x (x >0)D .y =216x (x >0)解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x .7.已知f (x )=2x +3,且f (m )=6,则m 等于________.解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f (3)]的值等于________.解析:由题意,f (3)=1,∴f [1f (3)]=f (1)=2.答案:2 9.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1.再令-b =x ,即得f (x )=x 2+x +1.11.已知f (x +1x )=x 2+1x 2+1x,求f (x ).解:∵x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∴f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x)+1.∴f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∵f (2+x )=f (2-x ),∴f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a ,∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3.∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a, ∴a =1.∴f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是( ) A .24 B .21 C .18 D .16 解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 (x >0)x -1 (x <0),再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x, x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x<1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2 D .0,0或2 答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10; 当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 2(0≤x ≤3)x 2+6x (-2≤x ≤0)的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集.4.已知f (x )=⎩⎪⎨⎪⎧x +2(x ≤-1),x 2(-1<x <2)2x (x ≥2),若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3 D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧(x +1)2 (x ≤-1),2(x +1) (-1<x <1),1x -1 (x ≥1),已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∪⎝⎛⎭⎫-12,1 D.⎝⎛⎭⎫-12,12∪(1,+∞) 解析:选C.f (a )>1⇔⎩⎪⎨⎪⎧ a ≤-1(a +1)2>1或⎩⎪⎨⎪⎧-1<a <12(a +1)>1或⎩⎪⎨⎪⎧a ≥11a-1>1⇔⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12⇔a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∪⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f (x -2), x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0.答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组 ⎩⎪⎨⎪⎧ x +2≥0x +(x +2)·1≤5或⎩⎪⎨⎪⎧x +2<0x +(x +2)·(-1)≤5, 解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 (-1≤x ≤1)1 (x >1或x <-1),(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∵260÷52=5(小时),260÷65=4(小时),∴s =⎩⎪⎨⎪⎧52t (0≤t ≤5),260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ①当点F 在BG 上时,。

数学必修一第一章试卷(含答案)

数学必修一第一章试卷(含答案)

必修一第一章 学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}|1P x y x ==+,集合{}|1Q y y x =-=,则P 与Q 的关系是( ) A .P Q =B .P Q ⊆C .P Q ⊇D .P Q =∅2.若集合A ={y|y =2x ,x∈R},B ={y|y =x 2,x∈R},则 ( )A .A ⊆B B .A ⊇BC .A =BD .A ∩B =∅3.设全集{}1,2,3,4,5,6,7,8U =,集合{}1,2,3,5A =,{}2,4,6B =,则右图中的阴影部分表示的集合为A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,84.已知集合A ={x|x <2},B ={x|log 3x <1},则A ∩B =( )A .{x|x <3}B .{x|x >1}C .{x|0<x <2}D .{x|0<x ≤1} 5.若(1)f x -的定义域为[1,2],则(2)f x +的定义域为( )A .[0,1]B .[-2,-1]C .[2,3]D .无法确定6.下面各组函数中是同一函数的是( )A .32y x =-与2y x x =-B .()2y x =与y x = C .11y x x =+⋅-与()()11y x x =+- D .()221f x x x =--与()221g t t t =--7.下列各图中,不可能表示函数y =f(x)的图像的是( )A .B .C .D . 8.函数()123f x x x =-+-的定义域为( ). A .(2,3)∪(3,+∞) B .[2,3)∪(3,+∞) C .[2,+∞)D .(3,+∞)9.已知函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( ) A .27 B .9 C .127 D .1910.已知函数()2143f x x -=+,且()6f t =,则t =( )A .12B .13C .14D .1511.已知偶函数()f x 在区间[)0,+∞上单调递增,则满足(21)(1)f x f -<的x 取值范围是( )A .1x <B .1x >C .01x <<D .0x < 12.已知偶函数()f x 在[)0,+∞上单调递减,且()10f =,则满足()23f x ->0的x 的取值范围是()A .()1,2B .()2+∞,C .()(),12,-∞⋃+∞D .[)02, 二、填空题13.已知函数()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,32()2f x x x =-,则(3)f =_____________.14.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()31x f x =-,则当0x <时,()f x =_____________.15.设a ,b R ∈,集合{}1,,A a b a =+,0,,b B b a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -=______ 16.已知集合{},A a b =,写出集合A 的所有子集为______.三、解答题17(10分).设全集为R ,集合{}36A x x =≤<,{}25B x x =<<.(1)分别求A B ,()A B C R⋃;(2)已知集合{}|1C x a x a =<<+,若C B ⊆,求实数a 的取值构成的集合.18(12分).已知函数8()32f x x x =++-. (1)求函数()f x 的定义域;(2)求(2)f -及(6)f 的值.19(12分).已知函数()[](]25,1,223,2,4x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩. (1)在图中给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间.20(12分).用函数的单调性的定义证明函数()4f x x x=+在()2,+∞上是增函数.21(12分).已知函数()(]()[)x 6x 1.5f x 3x x 1.51x 2x 1,,,,,,∞∞⎧--∈--⎪=∈-⎨⎪+∈+⎩.(1)画出函数f (x )的图象;(2)由图象写出满足f (x )≥3的所有x 的集合(直接写出结果);(3)由图象写出满足函数f (x )的值域(直接写出结果).22(12分).已知函数()f x 是定义域为R 的奇函数,当0x >时,()22f x x x =-. (1)求出函数()f x 在R 上的解析式;(2)画出函数()f x 的图像,并写出单调区间;(3)若()y f x =与y m =有3个交点,求实数m 的取值范围.参考答案1.C【解析】【分析】求函数定义域求得集合P ,求函数值域求得集合Q ,由此得出两个集合的关系.【详解】对于集合A ,由10x +≥解得1x ≥-.对于集合Q ,0y ≥.故集合P 包含集合Q ,所以本小题选C.【点睛】本小题主要考查集合与集合的关系,考查函数定义域和值域的求法,考查集合的研究对象,属于基础题.2.A【解析】【分析】由指数函数的值域化简集合A ,由二次函数的值域化简集合B ,对选项中的集合关系逐一判断即可.【详解】集合A ={y|y =2x ,x ∈R }={y|y >0},B ={y|y =x 2,x ∈R }={y|y ≥0},∴A ⊆B ,故选A.【点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提;(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决;(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 3.B【解析】阴影部分表示的集合为{}{}{}()4,6,7,82,4,64,6U A B ⋂=⋂=4.C【解析】【分析】先求解集合B ,然后由集合的交集运算求解.【详解】因为B ={x|log 3x <1}={x|0<x <3},所以A ∩B ={x|0<x <2},故选C.【点睛】本题考查了对数不等式的解法、集合交集运算,属于基础题,题目意在考查对集合运算掌握的熟练程度.5.B【解析】【分析】f (x ﹣1)的定义域为[1,2],即x ∈[1,2],再求x ﹣1的范围,再由f (x )的定义域求f (x +2)的定义域,只要x +2在f (x )的定义域之内即可.【详解】f (x ﹣1)的定义域为[1,2],即x ∈[1,2],所以x ﹣1∈[0,1],即f (x )的定义域为[0,1],令x +2∈[0,1],解得x ∈[﹣2,﹣1],故选:B .【点睛】本题考查抽象复合函数求定义域问题,复合函数的定义域关键是搞清自变量,易出错. 6.D【解析】因为选项A 中,对应关系不同,选项B 中定义域不同,对应关系不同,选项C 中,定义域不同,选项D 中定义域和对应法则相同,故选D.7.B【解析】B 中一个x 对应两个函数值,不符合函数定义.故选B.8.B【解析】【分析】解不等式组2030x x -≥⎧⎨-≠⎩可求得函数定义域. 【详解】 由题意可得:2030x x -≥⎧⎨-≠⎩23x x ≥⎧⇒⎨≠⎩ [)()2,33,x ⇒∈+∞本题正确选项:B【点睛】 本题考查函数定义域的基本要求,关键在于能够明确偶次根式被开方数大于等于零,分式分母不等于零,属于基础题.9.D【解析】【分析】结合函数解析式,将变量代入运算即可得解.【详解】解:由函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩则211log 244f ⎛⎫==- ⎪⎝⎭, 又()21239f --==, 即1149f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 故选:D.本题考查了分段函数求值问题,重点考查了指数与对数求值,属基础题.10.A【解析】分析:用换元法求出()f t ,再解方程()6f t =即可.详解:21t x =-,则12t x +=, 故()143252t f t t +=⨯+=+, 令256t +=,则12t =,故选A . 点睛:函数解析式的求法有:(1)换元法;(2)配凑法;(3)待定系数法;(4)函数方程法.注意针对问题的特征选择合适的方法.11.C【解析】【分析】由()f x 为偶函数且在[)0,+∞上单调递增,便可由(21)(1)f x f -<得211x -<,解该绝对值不等式便可得出x 的取值范围.【详解】解:因为()f x 为偶函数,所以由(21)(1)f x f -<得(21)(1)f x f -<;又()f x 在[)0,+∞上单调递增; 211x ∴-<解得01x <<; x 的取值范围是01x <<.故选:C【点睛】本题考查函数的单调性解不等式,是基础题.【解析】【分析】根据偶函数的性质,结合题意画出函数的大致图像,由此列不等式,解不等式求得()23f x ->0的x 的取值范围.【详解】由于偶函数()f x 在[)0,+∞上单调递减,且()10f =,所以函数()f x 在(],0-∞上递增,且()10f -=,画出函数大致图像如下图所示,由图可知()23f x ->0等价于1231x -<-<,解得12x <<.故本小题选A.【点睛】本小题主要考查偶函数的图像与性质,考查利用奇偶性解抽象函数不等式,考查数形结合的数学思想方法,属于基础题.13.C【解析】函数()f x 为奇函数,有(3)(3)f f =--,再把3x =-代入已知条件得到(3)f 的值.【详解】因为函数()f x 是定义在R 上的奇函数,所以32(3)(3)[(3)2(3)](2718)45f f =--=----=---=.【点睛】本题考查利用奇函数的定义求函数值,即(3)(3)f f =--,考查基本运算能力.14.C【解析】【分析】根据函数奇偶性的性质,将0x <转化为0x ->即可求出函数的解析式.【详解】若0x <,则0x ->,当0x >时,()31x f x =-, ()31x f x -∴-=-,函数()f x 是奇函数,()()31x f x f x -∴=--=-+,所以C 选项是正确的.【点睛】本题主要考查函数解析式的求法,利用函数奇偶性的性质将条件进行转化是解决本题的关键,属基础题.15.A【解析】试题分析:由已知,,故,则,所以,. 考点:集合性质.16.{}{}{},,,,a b a b ∅【解析】【分析】根据子集的概念即可求出结果.【详解】因为{},A a b =,所以A 的所有子集为{}{}{},,,,a b a b ∅;故答案为:{}{}{},,,,a b a b ∅.【点睛】本题主要考查集合子集的基本概念,属于基础题.17.(1){|35}A B x x ⋂=≤<,(){|2R A B x x =≤或3}x ≥;(2)[2,4]【解析】【分析】(1)进行交集、并集和补集的运算即可; (2)根据C B ⊆即可得出215a a ≥⎧⎨+≤⎩,解出a 的范围即可.【详解】解:(1){|36},{|25}A x x B x x =≤<=<<,(){|35},{|2R A B x x B x x ∴=≤<=≤或5}x ,(){|2R A x x B ∴=≤或3}x ≥;(2){}|1C x a x a =<<+,且C B ⊆,则215a a ≥⎧⎨+≤⎩,解得24a ≤≤, ∴实数a 的取值构成的集合为[2,4].【点睛】考查描述法、区间表示集合的定义,以及交集、并集和补集的运算,子集的定义.18.(1)()f x 的定义域为[3,2)(2,)-⋃+∞;(2)(2)1f -=-;(6)5f =【解析】试题分析:(1)由20x -≠,且30x +≥即可得定义域;(2)将2x =-和6代入解析式即可得值.试题解析:(1)解:依题意,20x -≠,且30x +≥,故3x ≥-,且2x ≠,即函数()f x 的定义域为[)()3,22,-⋃+∞.(2)()82122f -=+=---, ()86562f ==-. 19.(1)见解析;(2)单调递增区间是[)1,0-,(]2,4【解析】【分析】(1)根据二次函数与一次函数图象再对应区域内画图,(2)根据图象直接写出单调增区间.【详解】(1)(2)()f x 的单调递增区间是[)1,0-,(]2,4【点睛】本题考查二次函数与一次函数图象与性质,考查基本分析求解能力,属基础题.20.见解析【解析】试题分析:本题考查函数单调性的证明.首先在定义域上任取两个12x x <,然后计算()()120f x f x -<,由此判断出函数为区间()2,+∞上为增函数.试题解析:令12x x <,且()12,2,x x ∈+∞,()()()121212121212444x x f x f x x x x x x x x x ⎛⎫--=+-+=- ⎪⎝⎭,由于12x x <,()12,2,x x ∈+∞,所以120x x -<,1240x x ->;故()()120f x f x -<,所以函数在区间()2,+∞上为增函数.21.(1)见图像;(2)(-∞,-9]∪[1,+∞);(3)9.2∞⎡⎫-+⎪⎢⎣⎭,【解析】【分析】分段作出函数的图像,结合图像求解解集和值域问题.【详解】 (1)f (x )的图象如图所示:(2)(-∞,-9]∪[1,+∞);(3)92∞⎡⎫-+⎪⎢⎣⎭,. 【点睛】本题主要考查分段函数的图像问题,利用图像求解不等式和值域,侧重考查数形结合的思想.22.(1)()222,02,0x x x f x x x x ⎧->=⎨--≤⎩(2)图见解析,()f x 在()(),11,-∞-+∞上单调递增,在()1,1-上单调递减.(3)()1,1m ∈-【解析】【分析】(1)通过①由于函数()f x 是定义域为R 的奇函数,则()00f =;②当0x <时,0x ->,利用()f x 是奇函数,()()f x f x -=-.求出解析式即可.(2)利用函数的奇偶性以及二次函数的性质画出函数的图象,写出单调增区间,单调减区间.(3)利用函数的图象,直接观察得到m 的范围即可.【详解】(1)①由于函数()f x 是定义域为R 的奇函数,则()00f =;②当0x <时,0x ->,因为()f x 是奇函数,所以()()f x f x -=-.所以()()()()22[2]2f x f x x x x x =--=----=--. 综上:()222,00,02,0x x x f x x x x x ⎧->⎪=⎨⎪--<⎩=.(2)图象如下图所示:.单调增区间:(][),1,1,-∞-+∞ 单调减区间:()1,1-.(3)因为方程()f x m =有三个不同的解,由图像可知, 11m -<<,即()1,1m ∈-.【点睛】本题考查函数与方程的应用,二次函数的简单性质的应用,函数图象的画法,考查计算能力.。

高一数学必修1第一章集合与函数的概念单元测试题(含答案)

高一数学必修1第一章集合与函数的概念单元测试题(含答案)

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}解析M={x|x(x+2)=0.,x∈R}={0,-2},N={x|x(x-2)=0,x∈R}={0,2},所以M ∪N={-2,0,2}.答案 D2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=()A.{0} B.{2}C.{0,2} D.{-2,0}解析依题意,得B={0,2},∴A∩B={0,2}.答案 C3.f(x)是定义在R上的奇函数,f(-3)=2,则下列各点在函数f(x)图象上的是() A.(3,-2) B.(3,2)C.(-3,-2) D.(2,-3)解析∵f(x)是奇函数,∴f(-3)=-f(3).又f(-3)=2,∴f(3)=-2,∴点(3,-2)在函数f(x)的图象上.答案 A4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3C.5 D.9解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案 C6.设f(x)=x+3(x>10),f(x+5)(x≤10),则f(5)的值为()A.16 B.18C.21 D.24解析f(5)=f(5+5)=f(10)=f(15)=15+3=18.答案 B7.设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0},若S∩T={(2,1)},则a,b的值为()A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-1解析依题意可得方程组2a+1-3=0,2-1-b=0,⇒a=1,b=1.答案 C8.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1) B.-1,-12C.(-1,0) D.12,1解析由-1<2x+1<0,解得-1<x<-12,故函数f(2x+1)的定义域为-1,-12.答案 B9.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.6个解析当f(0)=1时,f(1)的值为0或-1都能满足f(0)>f(1);当f(0)=0时,只有f(1)=-1满足f(0)>f(1);当f(0)=-1时,没有f(1)的值满足f(0)>f(1),故有3个.答案 A10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)解析由题设知,f(x)在(-∞,0]上是增函数,又f(x)为偶函数,∴f(x)在[0,+∞)上为减函数.∴f(n+1)<f(n)<f(n-1).又f(-n)=f(n),∴f(n+1)<f(-n)<f(n-1).答案 C11.函数f(x)是定义在R上的奇函数,下列说法:①f(0)=0;②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确说法的个数是()A.1个B.2个C.3个D.4个解析①f(0)=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.12.f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,则f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=()A.1006 B.2014C.2012 D.1007解析因为对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,由f(2)=f(1)•f(1),得f(2)f(1)=f(1)=2,由f(4)=f(3)•f(1),得f(4)f(3)=f(1)=2,……由f(2014)=f(2013)•f(1),得f(2014)f(2013)=f(1)=2,∴f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=1007×2=2014.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数y=x+1x的定义域为________.解析由x+1≥1,x≠0得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14.f(x)=x2+1(x≤0),-2x(x>0),若f(x)=10,则x=________.解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5(不合题意,舍去).∴x=-3.答案-315.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又f(x)的值域为(-∞,4],∴a≠0,b=-2,∴2a2=4.∴f(x)=-2x2+4.答案-2x2+416.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.解析设一次函数y=ax+b(a≠0),把x=800,y=1000,和x=700,y=2000,代入求得a=-10,b=9000.∴y=-10x+9000,于是当y=400时,x=860.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁UA)∩B;(2)若A∩C≠∅,求a的取值范围.解(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁UA={x|x<2,或x>8}.∴(∁UA)∩B={x|1<x<2}.(2)∵A∩C≠∅,∴a<8.18.(本小题满分12分)设函数f(x)=1+x21-x2.(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求证:f1x+f(x)=0.解(1)由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数f(x)的定义域为{x∈R|x≠±1}.(2)由(1)知定义域关于原点对称,f(-x)=1+(-x)21-(-x)2=1+x21-x2=f(x).∴f(x)为偶函数.(3)证明:∵f1x=1+1x21-1x2=x2+1x2-1,f(x)=1+x21-x2,∴f1x+f(x)=x2+1x2-1+1+x21-x2=x2+1x2-1-x2+1x2-1=0.19.(本小题满分12分)已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求当x<0时,f(x)的解析式;(2)作出函数f(x)的图象,并指出其单调区间.解(1)当x<0时,-x>0,∴f(-x)=(-x)2-2(-x)=x2+2x.又f(x)是定义在R上的偶函数,∴f(-x)=f(x).∴当x<0时,f(x)=x2+2x.(2)由(1)知,f(x)=x2-2x(x≥0),x2+2x(x<0).作出f(x)的图象如图所示:由图得函数f(x)的递减区间是(-∞,-1],[0,1].f(x)的递增区间是[-1,0],[1,+∞).20.(本小题满分12分)已知函数f(x)=2x+1x+1,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.解(1)函数f(x)在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,f(x1)-f(x2)=2x1+1x1+1-2x2+1x2+1=x1-x2(x1+1)(x2+1),∵x1-x2<0,(x1+1)(x2+1)>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)在[1,+∞)上是增函数.(2)由(1)知函数f(x)在[1,4]上是增函数,最大值f(4)=95,最小值f(1)=32.21.(本小题满分12分)已知函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(x•y)=f(x)+f(y).(1)求证:fxy=f(x)-f(y);(2)若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.解(1)证明:∵f(x)=fxy•y=fxy+f(y),(y≠0)∴fxy=f(x)-f(y).(2)∵f(3)=1,∴f(9)=f(3•3)=f(3)+f(3)=2.∴f(a)>f(a-1)+2=f(a-1)+f(9)=f[9(a-1)].又f(x)在定义域(0,+∞)上为增函数,∴a>0,a-1>0,a>9(a-1),∴1<a<98.22.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0(1)在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?解(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则50k+b=0,45k+b=15,⇒k=-3,b=150.∴y=-3x+150(0≤x≤50,且x∈N*),经检验(30,60),(40,30)也在此直线上.∴所求函数解析式为y=-3x+150(0≤x≤50,且x∈N*).(2)依题意P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。

必修一数学第一章测试题及答案

必修一数学第一章测试题及答案

必修一数学第一章测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的符号表示?A. NB. ZC. QD. R答案:D2. 函数y=f(x)的值域是指:A. 定义域B. 函数的表达式C. 函数的自变量D. 函数的取值范围答案:D3. 以下哪个命题是假命题?A. 存在x∈R,使得x²+1=0B. 对于任意x∈R,x²+1>0C. 对于任意x∈R,x²+1≥0D. 存在x∈R,使得x²+1>1答案:A4. 集合{1,2,3}的子集个数是:A. 2B. 4C. 6D. 8答案:D5. 函数y=2x+1的图象是:A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A6. 以下哪个选项是函数y=x³-3x的导数?A. 3x²-3B. 3x²+3C. x²-3D. x³-3x答案:A7. 函数y=x²+2x+1的最小值是:A. 0B. 1C. -1D. 2答案:B8. 以下哪个选项是函数y=x²-4x+4的对称轴?A. x=2B. x=-2C. x=4D. x=-4答案:A9. 函数y=x³-3x+1的单调递增区间是:A. (-∞, 1)B. (1, +∞)C. (-∞, -1)D. (-1, +∞)答案:B10. 函数y=x²-6x+8的顶点坐标是:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)答案:B二、填空题(每题4分,共20分)1. 函数y=x²-4x+c的顶点坐标为(2, c-4),则c的值为______。

答案:42. 函数y=x³-6x的导数为______。

答案:3x²-63. 函数y=x²+2x+1的对称轴方程为______。

答案:x=-14. 函数y=x³-3x的单调递减区间为______。

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案一、单项选择题(5分,每小题1分)1. 在空间直角坐标系中,共线的两个非零向量()A. 必定相等B. 不一定相等C. 长度不定D. 不可能共线答案:B2. 关于两个集合A和B,下列说法正确的是()A. 如果A⊆B,那么有B⊆AB.如果A⊂B,那么有B⊂AC.A∩B=B∩AD.两个空集合A和B之间有A=B答案:C3. 若a>0,b≤1,则有()A. a+b>1B. a+b≤1C. a+b<1D. a+b≥1答案:B4. 在三棱锥P—ABC中,底面PAB的面积是9,PA的长是6,PB的长为5,AB的长为9,则该三棱锥的体积是()A. 45B. 90C. 108D. 135答案:A5. 设X=[1,3],Y=[2,4],则下列命题中正确的是()A. X∪Y=[1,4]B. X∩Y=[2,3]C. X-Y=[1]D. Y-X=[4]答案:A二、填空题(10分,每小题2分)6. 已知一个空间向量a=(1,3,1),其中张成a的两条线段长分别为p和q,则 p、q 的大小关系是()。

答案:p>q7. 已知平面内角∠A、∠B、∠C三角形的度数分别为20°、70°、90°,若三角形ABC的面积为12,则此三角形的外接圆半径是()。

答案:128. 已知集合A={1,2,3}, B={1,5,9},则A∪B={()}答案:1,2,3,5,99. 已知数列{an}的首项a1=2,公比q=3,则数列{an}的前4项和S4=()答案:6210. 设函数f(x)=sinθx,θ是未知实数,则函数f(x)的最大值为( )答案:1。

高中数学必修一第一章单元测试卷及答案2套

高中数学必修一第一章单元测试卷及答案2套

高中数学必修一第一章单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个2.下列各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1(x ∈Z )与y =2x -1(x ∈Z )3.设M ={1,2,3},N ={e ,g ,h },从M 至N 的四种对应方式如下图所示,其中是从M 到N 的映射的是( )4.已知全集U =R ,集合A ={x |2x 2-3x -2=0},集合B ={x |x >1},则A ∩(∁U B )=( ) A .{2}B .{x |x ≤1} C.⎩⎨⎧⎭⎬⎫-12 D .{x |x ≤1或x =2}5.函数f (x )=x|x |的图象是( )6.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =1xD .y =x 2,x ∈0,1]7.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-72<f (-3)<f (4)B .f (-3)<f ⎝ ⎛⎭⎪⎫-72<f (4)C .f (4)<f (-3)<f ⎝ ⎛⎭⎪⎫-72D .f (4)<f ⎝ ⎛⎭⎪⎫-72<f (-3) 8.已知反比例函数y =k x的图象如图所示,则二次函数y =2kx 2-4x +k 2的图象大致为( )9.函数f (x )是定义在0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 10.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( )A .f (x )>0B .f (x )<0C .f (x )·f (-x )≤0D .f (x )-f (-x )>011.已知函数f (x )是定义在-5,5]上的偶函数,f (x )在0,5]上是单调函数,且f (-3)<f (1),则下列不等式中一定成立的是( )A .f (-1)<f (-3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)12.函数f (x )=ax 2-x +a +1在(-∞,2)上单调递减,则a 的取值范围是( )A .0,4]B .2,+∞) C.⎣⎢⎡⎦⎥⎤0,14 D.⎝ ⎛⎦⎥⎤0,14 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x 2+a +1x +ax为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数; ②定义域为{x ∈R |x ≠0}; ③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.18.(本小题满分12分)已知函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧3x +5x ≤0,x +50<x ≤1,-2x +8x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值; (2)画出这个函数的图象; (3)求f (x )的最大值.19.(本小题满分12分)已知函数f (x )是偶函数,且x ≤0时,f (x )=1+x1-x ,求:(1)f (5)的值; (2)f (x )=0时x 的值; (3)当x >0时f (x )的解析式.20.(本小题满分12分)已知函数f (x )=x +a x,且f (1)=10. (1)求a 的值;(2)判断f (x )的奇偶性,并证明你的结论;(3)函数在(3,+∞)上是增函数,还是减函数?并证明你的结论.21.(本小题满分12分)已知函数y =f (x )是二次函数,且f (0)=8,f (x +1)-f (x )=-2x +1. (1)求f (x )的解析式;(2)求证:f (x )在区间1,+∞)上是减函数.22.(本小题满分12分) 已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)当x ∈(-1,1)时判断函数f (x )的单调性,并证明; (3)解不等式f (2x -1)+f (x )<0.答案1.B 解析:P =M ∩N ={1,3},故P 的子集有22=4个,故选B.2.C 解析:A 中两个函数定义域不同;B 中y =x 2-1=|x |-1,所以两函数解析式不同;D 中两个函数解析式不同,故选C.解题技巧:判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.C 解析:A 选项中,元素3在N 中有两个元素与之对应,故不正确;同样B ,D 选项中集合M 中也有一个元素与集合N 中两个元素对应,故不正确;只有C 选项符合映射的定义.4.C 解析:A =⎩⎨⎧⎭⎬⎫-12,2,∁U B ={x |x ≤1},则A ∩(∁U B )=⎩⎨⎧⎭⎬⎫-12,故选C.5.C 解析:由于f (x )=x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,所以其图象为C.6.B 解析:A 选项是奇函数;B 选项为偶函数;C ,D 选项的定义域不关于原点对称,故为非奇非偶函数.7.D 解析:∵f (x )在(-∞,-2]上是增函数,且-4<-72<-3,∴f (4)=f (-4)<f ⎝ ⎛⎭⎪⎫-72<f (-3),故选D. 8.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k<0,排除C.9.D 解析:根据题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,解得12≤x <23,故选D.10.C 解析:f (x )为奇函数,当x <0时,-x >0, ∴f (x )=-f (-x )=-(-x -1)=x +1, ∴f (x )·f (-x )=-(x +1)2≤0.11.D 解析:易知f (x )在-5,0]上单调递增,在0,5]上单调递减,结合f (x )是偶函数可知,故选D.12.C 解析:由已知得,⎩⎪⎨⎪⎧a >0,12a≥2,∴0<a ≤14,当a =0时,f (x )=-x +1为减函数,符合题意,故选C.13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2. 14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A , ∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即x 2-a +1x +a -x =-x 2+a +1x +a x,∴(a +1)x =0对x ≠0恒成立, ∴a +1=0,a =-1. 16.y =x2或y =⎩⎪⎨⎪⎧1-x ,x >0,1+x ,x <0或y =-2x(答案不唯一)解析:可结合条件来列举,如:y =x2或y =⎩⎪⎨⎪⎧1-x ,x >01+x ,x <0或y =-2x.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:∵B ⊆A ,①当B =∅时,m +1≤2m -1, 解得m ≥2;②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得,m 的取值范围为{m |m ≥-1}. 18.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5, ∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π.∵-1<0,∴f (-1)=-3+5=2. (2)如图:在函数y =3x +5的图象上截取x ≤0的部分,在函数y =x +5的图象上截取0<x ≤1的部分,在函数y =-2x +8的图象上截取x >1的部分.图中实线组成的图形就是函数f (x )的图象.(3)由函数图象可知,当x =1时,f (x )的最大值为6. 19.解:(1)f (5)=f (-5)=1-51--5=-46=-23.(2)当x ≤0时,f (x )=0即为1+x1-x =0,∴x =-1,又f (1)=f (-1),∴f (x )=0时x =±1.(3)当x >0时,f (x )=f (-x )=1-x 1+x ,∴x >0时,f (x )=1-x1+x .20.解:(1)f (1)=1+a =10,∴a =9.(2)∵f (x )=x +9x ,∴f (-x )=-x +9-x =-⎝ ⎛⎭⎪⎫x +9x =-f (x ),∴f (x )是奇函数.(3)设x 2>x 1>3,f (x 2)-f (x 1)=x 2+9x 2-x 1-9x 1=(x 2-x 1)+⎝⎛⎭⎪⎫9x 2-9x1=(x 2-x 1)+9x 1-x 2x 1x 2=x 2-x 1x 1x 2-9x 1x 2,∵x 2>x 1>3,∴x 2-x 1>0,x 1x 2>9,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )=x +9x在(3,+∞)上为增函数.21.(1)解:设f (x )=ax 2+bx +c ,∴f (0)=c ,又f (0)=8,∴c =8. 又f (x +1)=a (x +1)2+b (x +1)+c , ∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c ]-(ax 2+bx +c ) =2ax +(a +b ).结合已知得2ax +(a +b )=-2x +1.∴⎩⎪⎨⎪⎧2a =-2,a +b =1.∴a =-1,b =2.∴f (x )=-x 2+2x +8. (2)证明:设任意的x 1,x 2∈1,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=(-x 21+2x 1+8)-(-x 22+2x 2+8) =(x 22-x 21)+2(x 1-x 2) =(x 2-x 1)(x 2+x 1-2). 又由假设知x 2-x 1>0, 而x 2>x 1≥1, ∴x 2+x 1-2>0,∴(x 2-x 1)(x 2+x 1-2)>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在区间1,+∞)上是减函数. 22.解:(1)由题意可知f (-x )=-f (x ), ∴-ax +b 1+x 2=-ax +b 1+x 2,∴b =0.∴f (x )=ax1+x2.∵f ⎝ ⎛⎭⎪⎫12=25,∴a =1. ∴f (x )=x1+x2.(2)f (x )在(-1,1)上为增函数. 证明如下:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x21-x 21+x 22=x 1-x 21-x 1x 21+x 211+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 1+x 21>0,1+x 22>0, ∴x 1-x 21-x 1x 21+x 211+x 22<0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在(-1,1)上为增函数.(3)∵f (2x -1)+f (x )<0,∴f (2x -1)<-f (x ), 又f (x )是定义在(-1,1)上的奇函数, ∴f (2x -1)<f (-x ), ∴⎩⎪⎨⎪⎧-1<2x -1<1,-1<-x <1,2x -1<-x ,∴0<x <13.∴不等式f (2x -1)+f (x )<0的解集为⎝ ⎛⎭⎪⎫0,13. 解题技巧:在求解抽象函数中参数的范围时,往往是利用函数的奇偶性与单调性将“f ”符号脱掉,转化为解关于参数不等式(组).测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x 2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,12.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1x ≥2,-x 2+3x x <2,则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( ) A .1 B .-1 C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,f x ,若f x <g x .则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( ) A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________. 15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集. (1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10}, (1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间0,1]上有最大值2,求实数a 的值.21.(本小题满分12分)已知函数f (x )的值满足f (x )>0(当x ≠0时),对任意实数x ,y 都有f (xy )=f (x )·f (y ),且f (-1)=1,f (27)=9,当0<x <1时,f (x )∈(0,1).(1)求f (1)的值,判断f (x )的奇偶性并证明; (2)判断f (x )在(0,+∞)上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求a 的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+a x(x ≠0). (1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.答案1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0.∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf x 2fx +3=x ,f (x )=3x c -2x =cx2x +3,得c =-3. 6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34>0,∴f (a2-a +1)≤f ⎝ ⎛⎭⎪⎫34. 解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1). 又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1); 令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.16.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1,即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0,∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下: 任取x 1,x 2∈3,5]且x 1<x 2. ∵ f (x )=2x -1x +1=2x +1-3x +1=2-3x +1,∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3x 1-x 2x 1+1x 2+1,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴ f (x )在3,5]上为增函数. (2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=32, f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a . ①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2, 即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2, 即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾. 综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数. (2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2.∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数. (3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3, ∴9=f (3)]3,∴f (3)=39, ∵f (a +1)≤39,∴f (a +1)≤f (3), ∵a ≥0,∴a +1≤3,即a ≤2, 综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ). ∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x(x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 21+1x 1-⎝⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫x 1+x 2-1x 1x 2,由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。

高中数学必修一 第一章测试题(含答案)

高中数学必修一 第一章测试题(含答案)

必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。

高一数学必修1单元试卷1及答案

高一数学必修1单元试卷1及答案

高一数学(必修1)单元测试1班级________姓名________一.选择题(5’×3)1.集合S ={a,b,c}中的3个元素是△ABC 的三边长,则△ABC 一定不是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.集合M ={(x,y)|xy<0,x ∈R,y ∈R}是 ( )A.第一,三象限内的点集B.第二,四象限内的点集C.负实数集D.实数集3.设S 是全集,集合M,N ⊆S,则图中阴影部分可表 示为( )A.(M ∪N)∩S (M∩N)B. (M ∪N)∩S (M ∪N)C. (M∩N)∪S (M ∪N)D. (M∩N)∪S (M∩N) 二.填空题(5’×8)4.有以下语句:①全体平行四边形;②我校的所有高个子同学;③小于2的所有整数;④高一数学课本中的所有难题;⑤所有无理数;⑥高一年级16岁以下的同学.其中不能构成一个集合的有______________.(填写所有正确的序号)5.在下列五种写法中:①{0}∈{0,1,2};②φ{0};③0∈φ;④{0,1,2}⊆{1,2,0};⑤0 ∩φ=φ.错误的写法有__个.6.已知全集I ={x|-2<x<9,x ∈N *},A ={3,4,5},B ={1,3,6},那么{2,7,8}可用I,A,B 表示为____________.7.已知下列各组集合:①M ={(1,2)},P ={(2,1)};②M ={(2,3)},P ={2,3};③M ={3,4},P ={4,3};④M ={0},P =φ,其中M =P 的是__________.8.满足关系{1}⊆B {1,2,3,4}的集合B 有_____个,9.若集合S ={x|18-x ∈N,且x ∈Z},则S = (用列举法表示). 10.若A ={x|ax 2+3x+1=0}中有且只有一个元素,则a 值为 ___ (写出所有可能值).11.设U 是全集,非空集合P,Q 满足P Q U,若求含P,Q 的一个集合运算表达式,使运算结果为空集,则这个运算表达式可以是 .12.在某班50名学生中,有篮球爱好者30人,排球爱好者32人,则既爱好篮球又爱好排球的同学最少有 人,最多有 人.三.解答题(13’×2+14’)13. 已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且A∩B=φ,求m的取值范围.14.若全集U={x|x是不大于30的质数},A,B U,且A∩U B={5,13,23},(U A)∩B={11,19,29},(U A)∩(U B)={3,7},求集合A,B15.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},若A∩B≠φ且A∩C=φ,求a的值.高一数学(必修1)单元测试1答案一.选择题: DBA二.填空题 4.②④ 5.3 6.(I A)∩(I B)或I(A∪B) 7.③8.7 9.{2,3,5,9}10.0,9411.P∩(U Q) 12.12 30三.解答题13. m<2或m>4 14.A={2,5,13,17,23} B={2,11,17,19,29} 15.a=-2。

高一数学必修一第一章测试题及答案

高一数学必修一第一章测试题及答案

高中数学必修1检测题一、选择题: 每小题5分, 12个小题共60分 1. 已知全集 )等于 ( )A. {2, 4, 6}B. {1, 3, 5}C. {2, 4, 5}D. {2, 5}2.已知集合 , 则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A. 1个B. 2个C. 3个D. 4个3.若 能构成映射, 下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A.1个B.2个C.3个D.4个4、如果函数 在区间 上单调递减, 则实数 的取值范围是( ) A. B. C. D. 5.下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A.①② B.①③ C.③④ D.①④A. (-1, 0)B. (0, 1)C. (1, 2)D. (2, 3)7. 若 ( )A. B. C. D.8、 若定义运算 , 则函数 的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R 9. 函数 上的最大值与最小值的和为3, 则 ( ) A. B. 2 C. 4 D.10.下列函数中,在 上为增函数的是... )A. B、A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型12.下列所给4个图象中, 与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久, 发现自己把作业本忘在家里了, 于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶, 只是在途中遇到一次交通堵塞, 耽搁了一些时间; (3)我出发后, 心情轻松, 缓缓行进, 后来为了赶时间开始加速。

人教版高一数学必修一第一章单元检测试题及答案

人教版高一数学必修一第一章单元检测试题及答案

高一数学第一章会合与函数观点单元检测试题一、选择题:共12题每题 5分共60分1.已知函数的图象以以下图所示,则函数的图象为2.以下各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于随意的当时 ,都有则称函数在上为非减函数 .设函数的上为非减函数 ,且知足以下三个条件 :①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B. C. D.2 -4x+6(x∈ [1,5)) 的值域是5.函数 f(x)=xA.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单一 ,则实数的取值范围为A. B.C. D.7.定义运算:a*b =,如 1* 2=1,则函数 f(x)=2x* 2-x的值域为B.(0,+∞)C.(0,1]D.[1,+∞)8.已知会合 E={x| 2 -x≥ 0},若 FE,则会合 F 能够是A.{x|x <1}B.{x|x >2}C.{x|x >3}D.{x| 1<x<3}9.已知偶函数f(x)在区间 [0,+ ∞)上单一递加 ,则知足 f(2x-1)<f()的 x 的取值范围是 ()A.(,)B.[,)C.(,)D.[,)10.某队伍练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知会合和会合,则两个集合间的关系是A. B. C.,P 互不包括二、填空题:共4题每题 5分共 20分13.已知函数f(x)=a﹣ x2(1 ≤x≤2)与的图象上存在对于轴对称的点,则实数的取值范围是.14.设会合M ={x| 0≤x≤2},N={y| 0≤y≤2}给.出以下四个图,此中能组成从会合M 到会合 N 的函数关系的是.15.给出以下二次函数,将其图象画在同一平面直角坐标系中,则图象的张口按从小到大的次序摆列为.(1) f(x)=- x2;(2)f(x)= (x+5)2;(3) f(x)= x2-6;(4) f(x)=-5(x-8)2+9.16.若函数的图像对于y 轴对称,则的单一减区间为.三、解答题:共6题共 70分17.(此题10分)假如对函数f(x)定义域内随意的x1,x2都有 |f (x1 )-f(x2)| ≤|x 1-x2| 建立 ,就称函数 f(x)是定义域上的“缓和函数”.(1)判断函数 f(x)=x2-x,x∈ [0,1] 能否为“缓和函数”;(2) 若函数 f(x)是闭区间 [0,1] 上的“缓和函数”,且 f(0)=f(1),证明 :对随意的x1,x2∈ [0,1], 都有|f (x1)-f(x2 )| ≤建立 .(注 :可参照绝对值的基天性质①|ab| ≤|a||b| ,② |a+b| ≤|a|+|b| )18.(此题12分)记函数的定义域为会合,会合.(1)求和;(2) 若,务实数的取值范围.19.(此题12分)设全集U={x|0< x<9,且 x∈Z},会合 S={1,3,5},T={3,6},求 :(1) S∩T;(2).20.(此题12分)已知函数f(x)=.(1)用定义证明 f(x)在区间 [1,+ ∞)上是增函数 ;(2)求该函数在区间 [2,4] 上的最大值与最小值 .21.(此题12 分 )定义在非零实数集上的函数对随意非零实数满足 :,且当时.(Ⅰ)求及的值;(Ⅱ )求证 :是偶函数;(Ⅲ )解不等式 :.22.(此题12分)(1)证明:函数f(x)=在(-∞,0)上是减函数;(2) 证明 :函数 f(x)=x3+x 在 R 上是增函数 .参照答案【分析】本试题主要考察函数的图象.依据题意,因为函数图象可知,函数在y 轴右边图象在x 轴上方,在y 轴左边的图象在x 轴的下方,而函数在x>0时图象保持不变,所以清除C,D,对于选项A,因为在时偶函数,故在y 轴左边的图象与y 轴右边的图象对于y 轴对称,应选 B.【备注】无【分析】此题主要考察相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数 ;B.这两个函数的定义域不一样 ,所以这两个函数不是相等函数 ;C. 这两个函数的定义域、值域与对应关系均同样 ,所以这两个函数为相等函数 ;D.这两个函数的定义域不一样 ,所以这两个函数不是相等函数 .【备注】无【分析】此题主要考察新定义问题、函数的性质及其综合应用.由题意 ,令x=0,由=可得由可得令则= 同理=====令则==同理==== . 非减函数的性质:当时 ,都有.因为所以所以= .【备注】无【分析】此题主要考察分段函数的最值问题.由题意,函数的图象以下图:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无【分析】 f(x)=x2-4x+6=(x-2)2+2.∵ f(x)图象的对称轴是直线x=2,∴ f(x)在 [1,2] 上单一递减 ,在 (2,5)上单调递加 ,∴ f(x)的值域是 [2,11).应选 B.【备注】无【分析】此题主要考察二次函数.依题意,函数在区间上单一,则函数的对称轴或,得或,应选 C.【备注】无【分析】此题主要考察在新式定义的前提下函数值域的求解.依据题目定义知f(x)=2x* 2-x=,联合图象知其值域为(0,1]. 应选 C.【备注】无【分析】由题意知E={x| 2-x≥0}={x|x ≤2},FE,察看选项知应选A.【备注】无【分析】偶函数 f(x)在区间 [0,+ ∞)上单一递加 ,所以函数f(x)在区间 (-∞,0]上单一递减 .因为 f(x)是偶函数 ,所以 f(-x)=f(x), 则 f(- )= f( ).由 f(2x-1)<f( )得①或② ,解①得≤x<,解②得<x< .综上可得<x< ,故 x 的取值范围是( , ).【备注】无【分析】此题主要考察二次函数.依题意,依据二次函数得性质,函数的张口向下,对称轴为,故炮弹在发射后最高,应选 C.【备注】无【分析】此题主要考察函数的分析式与求值.因为,设,则,所以,因为,所以,解得,应选 B.【备注】无【分析】无【备注】无【分析】此题主要考察二次函数的图像与性质,考察了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1 ≤x ≤ 2)与的图象上存在对于轴对称的点,所以函数f(x)=a ﹣x2(1 ≤x≤ 2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为 D.【备注】无14.④【分析】图①中函数的定义域是[0,1]; 图②中函数的定义域是[-1,2];图③中对随意的x∈ (0,2],其对M 到会合N 的函数,图④知足题意.应的y 值不独一.故①②③均不可以组成从会合【备注】无15.(4)(3)(2)(1)【分析】因为二次函数y=ax2+bx+c(a≠ 0)的图象在同一平面直角坐标系中|a| 越小 ,图象张口越大 ,又|- |<| |<|| <|- 5| ,所以图象张口按从小到大的次序摆列为(4)(3)(2)(1).【备注】无16.【分析】此题考察函数的图象. 若函数的图像对于y 轴对称,则 a=0,,.所以 f(x)的单一减区间为【备注】无17.(1)对随意的x1,x2∈ [0,1], 有 -1≤x1+x2-1≤ 1,即|x 1+x2 -1| ≤ 1.进而 |f (x1)-f(x2)| =| ( -x1 )-(-x2)| =|x 1 -x2||x 1+x2-1| ≤|x 1 -x2| ,所以函数f(x)=x2-x,x∈ [0,1] 是“缓和函数”.(2)当 |x 1-x2| < 时,由已知 ,得|f (x1)-f(x2)| ≤|x 1-x2| < ;当|x 1-x2| ≥时 ,因为 x1,x2∈[0,1], 不如设 0≤x1<x2≤ 1,所以 x2-x1≥.因为 f(0)=f(1),所以 |f (x1)-f(x2)| =|f (x1)-f(0)+f(1)-f(x2)|≤|f (x1)-f(0)|+|f (1) -f(x2 )|≤|x 1-0|+| 1-x2|=x1 -x2+1≤- +1= .所以对随意的x1,x2∈ [0,1], 都有 |f (x1)-f(x2)| ≤建立 .【分析】无【备注】无18.由条件可得 A{ x | x 2},(1)={ x | 2x3}, A B{ x | x 3} ;(2)C { x | x p} ,由可得p2 .【分析】此题考察函数的定义域与会合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行剖析即可得出结论.【备注】与不等式相关的会合运算或会合之间的关系问题往常能够借助数轴进行求解.={1,2,3,4,5,6,7,8}(1)S∩T={3}(2)S∪ T={1,3,5,6}={2,4,7,8}【分析】此题主要考察会合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解.【备注】无20.(1)任取 x1 ,x2∈ [1,+ ∞且), x1<x2,则f(x1)-f(x2)=-=.∵1≤x1<x2,∴ x1-x2<0,(x1+1)(x2+1)>0,∴f(x 1)-f(x2)<0,即 f(x1)<f(x 2),∴函数 f(x)在区间 [1,+ ∞)上是增函数 .(2)由 (1)知函数 f(x)在区间 [2,4] 上是增函数 ,∴f(x) max=f(4)== ,f(x)min=f(2)== .【分析】无【备注】无21.(1)f(1)=0,f(-1)=0;(2)f(-x)=f(x)+f(-1)=f(x)∴ f(-x)=f(x),所以函数是偶函数 ;(3)据题意可知,222222f(2)+f(x-1/2)= f(2x -1) ≤0∴-1≤2x-1<0 或0< 2x -1≤1∴0≤x< 1/2 或< x ≤ 1,所以不等式的解集为【分析】此题主要考察特别函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令 x=1与 x=—1即可求出结果 ;(2)利用函数奇偶性的定义即可证明;(3)依据题意与f(1)=0,f(-1)=0 ,原不等式可化为-1≤2x-1< 0 或0<2x2-1≤1而后求解即可 .【备注】无22.(1)设 x1,x2是(-∞ ,0)上的随意两个实数,且 x1<x2,则 f(x1)-f(x2)= -.因为 x1,x2∈ (-∞ ,0)所以 x1x2>0,又因为 x1 <x2,所以 x2-x1>0,则>0.于是 f(x1)-f(x2)>0,即 f(x1)>f(x2).所以函数f(x)= 在 (-∞,0)上是减函数 .(2)设 x1,x2是 R 上的随意两个实数,且 x1<x2,则 x2-x1>0,而 f(x2)-f(x1)=( +x2)-( +x1)=(x2-x1)( +x2x1+ )+(x2-x1)=(x2-x1)( +x2x1+ +1) =(x2-x1)[(x2+ )2+ +1].因为 (x2+ )2+ +1>0,x2-x1 >0,所以 f(x2)-f(x1)>0,即 f(x2)>f(x1).所以函数 f(x)=x3+x 在 R 上是增函数 .【分析】用定义证明函数f(x)在给定区间 D 上的单一性的一般步骤 :①取值——任取 x1 ,x2∈D,且x1<x2 ;②作差——f(x1)-f(x2);③变形——经过因式分解、配方、通分、有理化等方法,向有益于判断差值的符号的方向变形;④定号——判断 f(x1)-f(x2)的正负 ;⑤下结论——指出函数 f(x)在给定区间D 上的单一性 .【备注】无。

高一数学必修一第一章练习题及答案

高一数学必修一第一章练习题及答案

高一数学必修一第一章练习题及答案基础训练1.选择题1.下列各项中,不可以组成集合的是()A。

所有的正数 B。

等于2的数 C。

接近于2的数 D。

不等于2的偶数2.下列四个集合中,是空集的是()A。

{x|x+3=3} B。

{(x,y)|y=-x,x,y∈R} C。

{x|x≤0} D。

{x|x-x+1=0,x∈R}3.下列表示图形中的阴影部分的是()A。

(AC)(BC) B。

(AB22BB)(AC) C。

(AB)(BC) D。

(AB)CC4.下面有四个命题:1)集合N中最小的数是1;2)若-a不属于N,则a属于N;3)若a∈N,b∈N,则a+b的最小值为2;4)x+1=2x的解可表示为{x|2x-1,x∈R};其中正确命题的个数为()A。

0个 B。

1个 C。

2个 D。

3个5.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A。

锐角三角形 B。

直角三角形 C。

钝角三角形 D。

等腰三角形6.若全集U={0,1,2,3}且CUA={2},则集合A的真子集共有()A。

3个 B。

5个 C。

7个 D。

8个二、填空题1.用符号“∈”或“∉”填空1)∈N。

2)-5∉N,16∈N3) 2-3+2+3∈x|x=a+6b,a∈Q,b∈Q2.若集合A={x|x≤6,x∈N},B={x|x是非质数},C=A-B,则C的非空子集的个数为。

答案:633.若集合A={x|3≤x<7},B={x|2<x<10},则AB=_____________。

答案:{x|3≤x<7}4.设集合A={x-3≤x≤2},B={x2k-1≤x≤2k+1},且A⊆B,则实数k的取值范围是。

答案:k≥25.已知A={y|-x2+2x-1=y},B={y|2x+1=y},则AB=_________。

答案:{x|0≤x≤1}三、解答题1.已知集合A={x∈N|6-x∈N},试用列举法表示集合A。

答案:A={1,5}2.已知A={x-2≤x≤5},B={xm+1≤x≤2m-1},B⊆A,求m 的取值范围。

高中数学(必修一)第一章 充要条件 练习题及答案

高中数学(必修一)第一章 充要条件 练习题及答案

高中数学(必修一)第一章 充要条件 练习题及答案学校:___________姓名:___________班级:_______________一、单选题1.若命题“若a M ∈,则b M ∉”为真命题,则下列命题中一定为真命题的是( )A .若a M ∉,则b M ∉B .若b M ∉,则a M ∈C .若a M ∉,则b M ∈D .若b M ∈,则a M ∉2.设x ∈R ,则“2x >”是“21x <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3.已知下列四组陈述句:①p :集合(){}**|3A x y x y x y =+=∈∈N N ,,,;q :集合{(1,2)}. ①p :集合A B C A ⊆⊆⊆;q :集合A B C ==.①p :{}21x x x n n ∈=+∈Z ,;q :{}61x x x n n ∈=-∈N ,.①p :某中学高一全体学生中的一员;q :某中学全体学生中的一员.其中p 是q 的必要而不充分条件的有( )A .①①B .①①C .①①D .①①4.已知,R a b ∈,则“1a >或1b >”是“2a b +>”的( )条件.A .充分非必要B .必要非充分C .充分必要D .既非充分又非必要 5. “2x π=”是“函数cos 2y x =取得最大值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则( ).A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件7.命题“2[1,3],20x x x a ∀∈---≤”为真命题的一个充分不必要条件可以是( )A .4a ≥B .3a ≥C .2a ≥D .1a ≥8.若α,β表示两个不同的平面,l 表示一条直线,且l α⊂,则“l β∥”是“αβ∥”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.已知集合{}{}22,1A xx x B x a x a =-≤=≤≤+∣∣,若B A ⊆,则实数a 的取值集合为( ) A .[]0,1 B .[]1,0- C .[]1,2- D .[]1,1-二、填空题10.下列说法错误的是_________________①若0xy ≥,则x y x y +>+①若220x y +≠,则0x ≠或0y ≠①“2a b x +>是x >的充分不必要条件 ①“0x ∀>,1x e x >+”的否定形式是“0x ∃≤,1x e x ≤+”11.直线mx +(2m -1)y +2=0与直线3x +my +3=0垂直的充要条件是__________.12.已知p :210x ≤≤,q :11a x a -<<+,R a ∈,且p 是q 成立的必要非充分条件,则实数a 的取值范围是________.三、多选题13.下列选项中,p 是q 的充要条件的是( )A .p :0xy >,q :0x >,0y >B .p :A B A ⋃=,q :B A ⊆C .p :三角形是等腰三角形,q :三角形存在两角相等D .p :四边形是正方形,q :四边形的对角线互相垂直平分四、解答题14.已知集合{|211}A x a x a =-≤≤+,{|03}B x x =≤≤.(1)若a =1,求A B ;(2)给出以下两个条件:①A ①B =B ;①“x A ∈“是“x B ∈”的充分不必要条件.在以上两个条件中任选一个,补充到横线处,求解下列问题:若_____________,求实数a 的取值范围.(如果选择多个条件分别解答,按第一个解答计分)参考答案与解析:1.D【分析】原命题与其逆否命题同真假,故找出题设命题的逆否命题即可.【详解】命题“若a M ∈,则b M ∉”的逆否命题为:“若b M ∈,则a M ∉”,因为原命题与其逆否命题同真假,故由原命题为真命题可知其逆否命题为真命题,故选:D【点睛】本题考查命题真假的判断,考查命题间的真假关系,属于基础题.2.A 【分析】根据分式不等式的解法求21x <的解集,结合充分必要性定义判断题设条件间的关系即可. 【详解】当21x<时,有0x <或2x >, 所以2x >是21x <的充分条件,但不是必要条件. 故选:A3.D【分析】逐个判断是否有q p ⇒且p q 即可.【详解】①若**3x y x y +=∈∈N N ,,,则12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,①{(1,2),(2,1)}A =,即p :{(1,2),(2,1)}A =;故q p⇒且p q ,即p 是q 的必要而不充分条件,符合题意;①若A B C A ⊆⊆⊆,则根据子集的性质可得A B C ==,即p :A B C ==;故p 是q 的充要条件,不符题意;①对于21x n n =+∈Z ,,当31n k k =-∈Z ,时,61x k k =-∈Z ,, 故{}61x x n n =-∈N , {}21x x n n =+∈Z ,,①p 是q 的必要而不充分条件,符合题意;①易知p q ⇒且q p ,即p 是q 的充分而不必要条件,不符合题意;综上,p 是q 的必要而不充分条件的有①①.4.B【分析】根据充分必要条件的定义判断. 【详解】当1a >或1b >时,如2a =,3b =-,此时1a b +=2<,因此不充分, 若1a ≤且1b ≤,则2a b a b +≤+≤,因此是必要的.即为必要不充分条件.故选:B .5.D【分析】根据余弦函数的性质,结合充分条件、必要条件的判定方法,即可求解. 【详解】当2x π=时,函数cos 2cos 1y x π===-,故充分性不成立;当函数cos 2y x =取得最大值时,22,Z x k k π=∈,即,Z x k k π=∈,故必要性也不成立,综上可得:“2x π=”是“函数cos 2y x =取得最大值”的既不充分也不必要条件. 故选:D .6.B【分析】利用等比数列的性质以及正负进行判断即可.【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足. 故选:B7.A【分析】充分不必要条件是指由结果不能推出条件,故放宽条件即可.【详解】由题知,命题“2[1,3],20x x x a ∀∈---≤”为真命题时,满足[1,3]x ∀∈-,22x x a -≤.则当[1,3]x ∈-时,222(1)13x x x -=--≤,所以命题“2[1,3],20x x x a ∀∈---≤”为真命题时,3a ≥.经验证,A 选项符合题意;8.C【分析】根据充分条件和必要条件的定义结合面面平行的判定分析判断即可.【详解】若l α⊂,l β∥,则平面α和平面β可能平行,也可能相交;若l α⊂,αβ∥,则l β∥,所以“l β∥”是“αβ∥”的必要不充分条件.故选:C .9.D【分析】根据二次不等式的求解,结合集合关系的区间端点大小关系求解即可【详解】{}()(){}[]222101,2A x x x x x x =-≤=-+≤=-∣∣,因为B A ⊆,故112a a ≥-⎧⎨+≤⎩,解得11a -≤≤ 故选:D10.①①①【分析】①当,x y 均为正数时结论是错误的;①220x y +≠出,x y 不同时为0,故正确;①只有0a ,0b 时,2a b x +>才可推出,x > ①命题的否定只否定结论,故错误.【详解】对于选项①:若0x ,0y ,则||||||x y x y +=+,故①错误;对于选项①:若0x =且0y =,则220x y +=,所以:若220x y +≠,则0x ≠或0y ≠,故①正确;对于选项①:当0a ,0b 时,若2a b x +>,则x >题中没有说明,a b 的范围,所以是不充分,当x >时,2a b x +>不一定成立,如:2,8,4a b x ==>=,2a b x +>为2852x +>=,不成立,故“2a b x +>是x >的即不充分也不必要条件,故①错误;对于选项①:“0x ∀>,1x e x >+”的否定形式是“0x ∃>,1x e x +”,故①错误.故答案为:①①①11.0m =或1m =-【分析】根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断【详解】当m=0时,两直线为y=2与x= -1,此时两直线垂直;当2m -1=0,即m=12时,两直线为x= -4与3x+12y+3=0,此时两直线相交不垂直;当m≠0且m ≠12时,两直线的斜截式方程为233,2121m y x y x m m m m -=-=----, 由两直线垂直可知3121m m m -⎛⎫⋅-=- ⎪-⎝⎭,解得m= -1, 故两直线垂直的充要条件是0m =或1m =-.【点睛】本题考查充分条件必要条件的判断及两直线垂直的条件,本题的关键是由两直线垂直得出参数m 的取值,易错点是忘记验证斜率不存在的情况,导致判断失误,12.[]3,9【分析】根据题意可得()1,1a a -+ []2,10,即可建立不等关系求解.【详解】因为p 是q 成立的必要非充分条件,所以()1,1a a -+ []2,10,所以12110a a -≥⎧⎨+≤⎩,解得39a ≤≤, 所以实数a 的取值范围是[]3,9.故答案为:[]3,9.13.BC【分析】根据充分条件、必要条件的定义判断即可;【详解】解:对于A :由0xy >,得0x >,0y >或0x <,0y <,故P 不是q 的充要条件,故A 错误; 对于B :由A B A ⋃=,则B A ⊆,若B A ⊆则A B A ⋃=,故P 是q 的充要条件,故B 正确;对于C :三角形是等腰三角形⇔三角形存在两角相等,故P 是q 的充要条件,故C 正确;对于D :四边形的对角线互相垂直且平分⇔四边形为菱形,故p 不是q 的充要条件,故D 错误; 故选:BC14.(1){|03}A B x x ⋃=≤≤ (2)1[,)2+∞【分析】(1)由并集定义计算;(2)若选择①,则由A ①B =B ,得A B ⊆,然后分类讨论:A =∅与A ≠∅两类求解;若选择①,得A 是B 的真子集,同样分类A =∅与A ≠∅求解.(1)当1a =时,集合{|12}A x x =≤≤,因为{|03}B x x =≤≤, 所以{|03}A B x x ⋃=≤≤;(2)若选择①,则由A ①B =B ,得A B ⊆.当A =∅时,即211a a ->+,解得2a >,此时A B ⊆,符合题意; 当A ≠∅时,即211a a -≤+,解得2a ≤,所以21013a a -≥⎧⎨+≤⎩,解得:122a ≤≤; 所以实数a 的取值范围是1[,)2+∞. 若选择①,则由“x A ∈“是“x B ∈”的充分不必要条件,得A ⫋B . 当A =∅时,211a a ->+,解得2a >,此时A ⫋B ,符合题意;当A ≠∅时,211a a -≤+,解得2a ≤,所以21013a a -≥⎧⎨+≤⎩且等号不同时取,解得122a ≤≤; 所以实数a 的取值范围是1[,)2+∞.。

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案高一年级数学第一单元质量检测试题一、选择题(每小题5分,共50分)1.已知全集$U=\{1,2,3,4,5,6,7\}$,$A=\{2,4,5\}$,则$C\cup A=$()A.$\varnothing$B.$\{2,4,6\}$C.$\{1,3,6,7\}$D.$\{1,3,5,7\} $2.已知集合$A=\{x|-1\leq x<3\}$,$B=\{x|x^2<x\leq 5\}$,则$A\cap B=$()A.$\{x|2<x<3\}$B.$\{x|-1\leq x\leq 5\}$C.$\{x|-1<x<5\}$ D.$\{x|-1<x\leq 5\}$3.图中阴影部分表示的集合是()A.$A\cap C$B.$C\cup A\cap B$C.$C\cup (A\capB)$ D.$(C\cup A)\cap (C\cup B)$4.方程组$\begin{cases}x-2y=3\\2x+y=11\end{cases}$的解集是()A.$\{5,-1\}$B.$\{1,5\}$C.$\{(-1,2)\}$D.$\{(5,-1)\}$5.已知集合$A=\{x|x=3k,k\in Z\}$,$B=\{x|x=6k,k\in Z\}$,则$A$与$B$之间最适合的关系是()XXX6.下列集合中,表示方程组$\begin{cases}x+y=1\\x-y=3\end{cases}$的是()A.$\{(x,y)|x=2,y=-1\}$B.$\{(x,y)|x=2,y=1\}$C.$\{(x,y)|x=-2,y=-1\}$D.$\{(x,y)|x=-2,y=1\}$7.设$\begin{cases}x+y=1\\x-y=2\end{cases}$,$\begin{cases}x-y=1\\2x+y=3\end{cases}$,则实数的取值范围是()A.$\{1\}$B.$\{2\}$C.$\{1,2\}$D.$\varnothing$8.已知全集$U=\{x|x\in R\}$,$A=\{x|x^2-4x+3=0\}$,那么$A=$()A.$\{1,3\}$B.$\{1,-3\}$C.$\{2,3\}$D.$\{2,-1\}$9.已知集合$A=\{x|x^2-2x+1<0\}$,那么$A=$()A.$\{x|02\}$ D.$\{x|1<x<2\}$10.设$\oplus$是$R$上的一个运算,$A$是$R$上的非空子集,若对任意的$a,b\in A$,有$a\oplus b\in A$,则称$A$对运算$\oplus$封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集二、填空题(每小题5分,共25分)11.已知集合$A=\{a,b,c\}$,写出集合$A$的所有真子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修1检测题一、选择题:每小题5分,12个小题共60分1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x 与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A 、①② B 、①③ C 、③④ D 、①④6.根据表格中的数据,可以断定方程02=--x e x 的一个根所在的区间是( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a8、 若定义运算b a ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a ( )A .21 B .2 C .4 D .41 10. 下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

A 、(1)(2)(4) B 、(4)(2)(3) C 、(4)(1)(3) D 、(4)(1)(2) 二、填空题:每小题4分,共16分 13.函数24++=x x y 的定义域为 . (1)(2)(3)(4)14. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = _________________. 15.已知幂函数)(x f y =的图象过点=)9(),2,2(f 则 .16.若一次函数b ax x f +=)(有一个零点2,那么函数ax bx x g -=2)(的零点是 . 三、解答题:17.(本小题12分)已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a 的取值范围。

18.(本小题满分12分)已知定义在R 上的函数()y f x =是偶函数,且0x ≥时,()()2ln 22f x x x =-+,(1)当0x <时,求()f x 解析式;(2)写出()f x 的单调递增区间。

19、(本小题满分12分)设2()32f x ax bx c =++,若0a b c ++=,(0)0f >,(1)0f >. 求证:(1)0a >且12-<<-ab;(2)方程()0f x =在(0,1)内有两个实根.20.(本小题满分13分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。

当每辆车的月租金每增加50元时,未租出的车将会增加一辆。

租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?21、(本小题满分13分)已知函数()24(0)2(0)12(0)x x f x x x x ⎧->⎪==⎨⎪-<⎩,(1)画出函数()f x 图像;(2)求()()()21(),3f a a R f f +∈的值;(3)当43x -≤<时,求()f x 取值的集合.22、(本小题满分14分)对于函数()()21f x ax bx b =++-(0a ≠).(Ⅰ)当1,2a b ==-时,求函数()f x 的零点;(Ⅱ)若对任意实数b ,函数()f x 恒有两个相异的零点,求实数a 的取值范围.23、(本小题满分14分)已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )= f (x )-x 2+x , (1)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(2)设有且仅有一个实数x 0,使得f (x 0)=x 0,求函数f (x )的解析表达式。

较难数学参考答案一、选择题:每小题5分,12个小题共60分.1.A2.C3.B4.A.5.C6.C7.A8.A9.B 10. D 11.A 12.D 二、填空题:每小题4分,共16分.13.),2()2,4[+∞--- 14.2x-13或-2x+1 15.3 16.21,0-三、解答题(共76分)17. 解:A B=∅(1)当A=∅时,有2a+1a-1a -2≤⇒≤ (2)当A ≠∅时,有2a+1a-1a>-2>⇒又A B =∅,则有2a+10a-11≤≥或1a -a 22⇒≤≥或12a -a 22∴-<≤≥或由以上可知1a -a 22≤≥或18.(1)0x <时,()()2ln 22f x x x =++;(2)(1,0)-和()1,+∞19、分析:利用0a b c ++=,(0)0f >,(1)0f >进行消元代换. 证明:(1)(0)0f c =>,(1)320f a b c =++>,由0a b c ++=,得b a c =--,代入(1)f 得:0a c ->,即0a c >>,且01c a <<,即1(2,1)b ca a=--∈--,即证. (2)11()024f a =-<,又(0)0f >,(1)0f >.则两根分别在区间1(0,)2,1(,1)2内,得证.点评:在证明第(2)问时,应充分运用二分法求方程解的方法,选取(0,1)的中点12来考察1()2f的正负是首选目标,如不能实现1()02f <,则应在区间内选取其它的值.本题也可选3b a -,也可利用根的分布来做. 20.(本小题14分)解:(1)租金增加了600元,所以未出租的车有12辆,一共出租了88辆。

(2)设每辆车的月租金为x 元,(x ≥3000),租赁公司的月收益为y 元。

则:y=x[100-(x-3000)÷50]-[(x-3000)÷50×50]-[100-(x-3000)÷50×150] =160x-x 2/50-x+3000-24000+3x =-1/50(x 2-8100)-21000=-1/50[(x-4050)2-16402500]-21000 =-1/50(x-4050)2+328050-21000 =-1/50(x-4050)2+307050max 4050,30705x y ==当时 021.(本小题16分)解:(1) 图像(略) ………………5分 (2)22224(1)4(1)32f a a a a +=-+=--,((3))f f =(5)f -=11,………………………………………………12分(3)由图像知,当43x -≤<时,5()9f x -<≤故()f x 取值的集合为{}|59y y -<≤………………………………16分 22、∵a=1,b=-2 ∴f(x )=x 2-2x-3令f (x )=0,则x 2-2x-3=0 ∴x=3或x=-1此时f (x )的零点为3和-1. (2)由题意可得a≠0则△=b 2-4a (b-1)>0对于b∈R 恒成立 即△′=16a 2-16a <0∴0<a<123、解:(1)因为对任意x∈R,有,所以,又由f(2)=3,得,即f(1)=1;若f(0)=a,即。

(2)因为对任意x∈R,有,又因为有且只有一个实数x0,使得f(x)=x,所以对任意x∈R,有,在上式中令,又因为,若,即,但方程有两个不同实根,与题设条件矛盾,故;若x=1,则有,易验证该函数满足题设条件;综上,所求函数为。

相关文档
最新文档