四种命题的关系

合集下载

四种命题及其关系

四种命题及其关系

对所有x, 存在某x, 对任何x 对所有x, 存在某 , 对任何x, 成立 不成立 不成立 P且 q
┐p或┐q 或
P或 q
┐p且┐q 且

原命题 逆命题 否命题

结论
两直线平行 同位角相等
同位角相等, 同位角相等, 两直线平行, 两直线平行,
同位角不相等, 两直线不平行 同位角不相等,
两直线不平行, 逆否命题 两直线不平行, 同位角不相等 互为逆否命题:一个命题的条件 结论分别是另一个 互为逆否命题:一个命题的条件和结论分别是另一个 条件和 命题的结论的否定 条件的否定, 结论的否定和 命题的结论的否定和条件的否定, 互为逆否命题。 这两个命题叫做互为逆否命题 这两个命题叫做互为逆否命题。 其中一个命题叫做原命题。 原 命 题:其中一个命题叫做原命题。 另一个命题叫做原命题的逆否命题。 逆否 命 题:另一个命题叫做原命题的逆否命题。 逆否命题:若 逆否命题 若┐q ,则┐ p 则 原命题: p,则 原命题:若p,则q

原命题 逆命题 否命题

结论
若f(x)是正弦函数,则f(x)是周期函数; f(x)是正弦函数 是正弦函数, f(x)是周期函数 是周期函数; 若f(x)是周期函数,则f(x)是正弦函数; f(x)是周期函数 是周期函数, f(x)是正弦函数 是正弦函数; 若f(x)不是正弦函数,则f(x)不是周期函数; f(x)不是正弦函数 不是正弦函数, f(x)不是周期函数 不是周期函数;
例: “若x2+y2≠0,则x,y至少有一个不为0” ≠0, 至少有一个不为0” 是命题A的否命题,写出命题A及其逆命题、 是命题A的否命题,写出命题A及其逆命题、 逆否命题并判断它们的真假。 逆否命题并判断它们的真假。

四种命题

四种命题

§1.7四种命题一、四种命题:交换原命题的条件和结论,所得的命题是逆命题。

同时否定原命题的条件和结论,所得的命题是否命题。

交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题。

把下列命题改写成“若a则b”的形式,并写出它的逆命题,否命题,逆否命题:①负数的平方是正数;原命题:若一个数是负数,则它的平方是正数。

真命题逆命题:若一个数的平方是正数,则它是负数。

假命题否命题:若一个数不是负数,则它的平方不是正数。

假命题逆否命题:若一个数的平方不是正数,则它不是负数。

真命题②在实数范围内,如果a b >,那么ac bc 22>。

原 命 题:若a b >,则ac bc 22>。

假命题逆 命 题:若ac bc 22>,则a b >。

真命题否 命 题:若a b ≤,则ac bc 22≤。

真命题逆否命题:若ac bc 22≤,则a b ≤。

假命题规律:原命题与逆否命题的真值相同.............;逆命题与否命题.......的真值相同.....。

二、四种命题间的关系:1、命题“若a b >,则a c b c ++>”的逆否命题是(A )若a b <,则a c b c ++<(B )若a b ≤,则a c b c ++≤(C )若a c b c ++<,则a b <(D )若a c b c ++≤,则a b ≤2、给出下列四个命题:①若x y + 6,则x ¹2或y ¹4;②“若xy =1,则x ,y 互为倒数”的逆命题;③“四边相等的四边形是正方形”的否命题;④“梯形不是平行四边形”的逆否命题.其中的真命题是_____________(填写所有符合要求的序号).3、若p的逆命题是r,r的否命题是s,则s是p的否命题的_____________________.注意:①互为逆否关系的两个命题真假性相同,即原命...题与逆否命题同真假..........,所以,这四.........;否命题与逆命题同真假种命题中真命题的个数只可能是0或2或4.②对于否定形式的命题不方便判定其真假性,可以利用其逆否命题代替.路边苦李王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子,小伙伴们纷纷去摘取果子,只有王戎站在原地不动,有人问王戎为什么?王戎回答说:“树在道边而多子,此必苦李。

四种命题及其关系

四种命题及其关系

四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。

2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。

对于上面的例子,其逆命题为“若x^2=1,则x = 1”。

3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。

对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。

4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。

对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。

二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。

原命题为真时,逆命题不一定为真。

例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。

2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。

例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。

3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。

例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。

4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。

例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。

四种命题间的相互关系

四种命题间的相互关系

真 真
真 原命题:若四边形是正方形,则四边形两对角线垂直。 假 否命题:若四边形不是正方形,则四边形两对角线不垂直。
原命题:若a>b,则ac2>bc2 否命题:若a≤b,则ac2≤bc2
假 真
假 原命题:若四边形对角线相等,则四边形是平行四边形。 假 否命题:若四边形对角线不相等,则四边形不是平行四边形。
方法感悟 一个命题与它的逆否命题同真同假,所以当一 个命题的真假不易判断时,往往可以判断原命 题的逆否命题的真假,从而判断出原命题的真 假.
作业: P
3
1—10
选做11
逆命题: 若四边形两对角线垂直,则四边形是正方形。 否命题: 若四边形不是正方形,则 四边形两对角线不垂直。 逆否命题:若四边形两对角线不垂直,则四边形不是正方形。
知识巩固:
把下列命题改写成“若p则q”的形式,并写出逆命题、否
命题、逆否命题。
1.负数的平方是正数 原命题: 若一个数是负数,则它的平方是正数。 逆命题: 若一个数的平方是正数,则它是负数。 否命题: 若一个数不是负数,则它的平方不是正数。 逆否命题: 若一个数的平方不是正数,则它不是负数。 2.正方形的四条边相等 原命题: 逆命题: 否命题: 逆否命题:
否命题: 若x2+y2≠0,则xy≠0 逆否命题: 若xy ≠0,则x2+y2 ≠0
原命题:若x∈A∪B,则x∈ UA∪ U B 逆命题: x∈ UA∪ UB ,x∈A∪B 。 否命题: xA∪B,x UA∪ UB。
真 假 假 真 假 假 假 假
图示
逆否命题:x UA∪ UB ,xA∪B 。
等价命题的应用 由于原命题和它的逆否命题有相同的真假性,即互为 逆否命题的命题具有等价性,所以我们在直接证明某 一个命题为真命题有困难时,可以通过证明它的逆否 命题为真命题,来间接地证明原命题为真命题. 例2 判断命题“已知 a , x 为实数,若关于 x 的不等 式 x2+ (2a + 1)x + a2+ 2≤0 的解集非空,则 a≥1”的逆 否命题的真假.

(完整)四种命题、四种命题间的相互关系

(完整)四种命题、四种命题间的相互关系

四种命题四种命题间的相互关系1、四种命题的概念,写出某个命题的逆命题、否命题和逆否命题.2、四种命题之间的关系以及真假性之间的联系。

3、会用命题的等价性解决问题.【核心扫描】:1、结合命题真假的判定,考查四种命题的结构。

(重点)2、掌握四种命题之间的相互关系.(重点)3、等价命题的应用。

(难点)1、四种命题的概念(1)互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题。

其中一个命题叫原命题,另一个叫做原命题的逆命题。

若原命题为“若p,则q”,则逆命题为“若q,则P”。

(2)互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题。

也就是说,若原命题为“若p,则q”则否命题为“若非p,则非q".(3)互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题.也就是说,若原命题为“若p,则q",则逆否命题为若非q,则非p.任何一个命题的结构都包含条件和结论,通过条件和结论的不同变换都可以得到这个命题的逆命题、否命题和逆否命题,因而任何一个命题都有逆命题、否命题和逆否命题。

2、四种命题的相互关系3、四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况:(2)四种命题的真假性之间的关系:①两个命题互为逆否命题,它们有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.在四种命题中,真命题的个数可能会有几种情况?因为原命题与逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0,2,4.一般地,用p和q分别表示原命题的条件和结论,用非p和非q分别表示p与q的否定,则四种命题的形式可表示为:原命题:若P,则q;逆命题:若q,则p;否命题:若非P,则非q;逆否命题:若非q,则非 p.(1)关于四种命题也可叙述为:①交换命题的条件和结论,所得的新命题就是原命题的逆命题;②同时否定命题的条件和结论,所得的新命题就是原命题的否命题;③交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题.(2)已知原命题,写出它的其他三种命题:首先,将原命题写成“若p,则q”的形式,然后找出条件和结论,再根据定义写出其他命题.然后,对于含有大前提的命题,在改写时大前提不动。

四种命题间的相互关系 课件

四种命题间的相互关系  课件

它们之间的关系为:
互逆命题
互否命题
互为逆否命题
原命题与逆命题 原命题与否命题 原命题与逆否命题 否命题与逆否命题 逆命题与逆否命题 逆命题与否命题
2.对四种命题真假关系的两点说明 (1)由于一个命题与其逆否命题具有相同的真假性,四种命题中 有两对互为逆否命题,所以四种命题中真命题的个数必须是偶 数,即真命题可能有4个、2个或0个. (2)由于原命题与其逆否命题的真假性相同,所以原命题与其逆 否命题是等价命题,因此,当直接证明原命题困难时,可以转化为 证明与其等价的逆否命题,这种证法是间接证明命题的方法,也 是反证法的一种变通形式.
【拓展提升】原命题与逆否命题等价关系的应用 (1)若一个命题的条件或结论含有否定词时,直接判断命题的真 假较为困难,这时可以转化为判断它的逆否命题的真假. (2)当证明某一个命题有困难时,可以证明它的逆否命题为真 (假)命题,来间接地证明原命题为真(假)命题.
【互动探究】若题2(2)的命题变为: 若a>1,则方程x2+2ax+a2+a-1=0无实数根,如何判断此命题的 真假? 【解析】命题“若a>1,则方程x2+2ax+a2+a-1=0无实数根” 的逆否命题为“若方程x2+2ax+a2+a-1=0有实数根,则 a≤1”,由于Δ=(2a)2-4(a2+a-1)=4(1-a)≥0,得a≤1,故原命 题是真命题.
提示:(1)错误.两个互逆命题的真假性没有关系,可能一个真命 题也没有. (2)正确.原命题的逆命题与原命题的否命题互为逆否命题,真 假性相同,为等价命题. (3)正确.一个命题的四种命题中,可能都是假命题,如若0<x<1, 则x>1,此命题的四种命题均为假命题. 答案:(1)× (2)√ (3)√

命题的四种形式

命题的四种形式

(1)原命题的真假和逆命题的真假没有关系; (2)原命题的真假和否命题的真假没有关系。 说明:对于命题在判断真假时,如果直接判断有难度可 以利用原命题与逆否命题、逆命题与否命题的等价性, 先判断等价命题的真假,再确定原来命题的真假。
变式:若将例2中的命题改为:
2 2
若关于x的不等式x (2a 1) x a 2 0的解集为空集, 则a 2, 其余不变,应如何作答?
1.3.2 命题的四种形式
一、命题的四种形式
如果p ,则 q, 其中p为命题的条件,q为命题的结论,
若p为原命题条件,q为原命题结论,则:
原命题: 如果p ,则 q 逆命题: 如果q, 则 p (条件和结论“换位”所得)
即分别否定
否命题: 如果 p,则 q(条件和结论“换质”所得) 逆否命题:如果q ,则 p (条件和结论“换位”又 “换质”所得)
二、四种命题之间的关系:
原命题 若p则q 逆命题 若q则p
Hale Waihona Puke 互逆互 否互为
逆否
互 否
否命题 若﹁ p则﹁ q
互逆
逆否命题 若﹁ q则﹁p
题型一 命题的四种形式的转换及真假判断 练习:试写出下列命题的逆命题、否命题、逆否命题。并分别判断它们的真 假: 1、 原命题: a 与 b 是两向量,如果 a 垂直于 b ,则 a b 0 (真) 逆命题: a与b 是两向量, (真) 如果a b 0, 则a垂直于b.
否命题: a与b 是两向量,如果a不垂直于b , 则a b 0. 如果 a b 0 ,则 a 不垂直于 b 。 逆否命题: a与b 是两向量,
(真)
(真)

四种命题及其关系-初中数学知识点

四种命题及其关系-初中数学知识点

四种命题及其关系
1.四种命题及其关系
四种命题及其关系.
1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.
2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题.
3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题.
1 / 1。

四种命题间的相互关系课件PPT

四种命题间的相互关系课件PPT

2.与命题“已知点A,直线l0,l,A∈l0,若l0∥l,则l0唯一”为 互否命题的是( ) (A)已知点A,直线l0,l,A∈l0,若l0唯一,则l0∥l (B)已知点A,直线l0,l,A∈l0,若l0不唯一,则l0∥l (C)已知点A,直线l0,l,A∈l0,若l0不平行于l,则l0不唯一 (D)已知点A,直线l0,l,A∈l0,若l0∥l,则l0不唯一
【想一想】解题2用的什么方法?此种方法的思路是什么? 提示:用的方法是排除法,这种方法的思路是:首先将选择支 进行合理分类,再选择比较简单的一类作出判断,依此判断进 行排除.
互为逆否的命题同真同假的应用 【技法点拨】
命题真假判断的一种策略 当判断一个命题的真假比较困难,或者在判断真假时涉及到分 类讨论时,通常转化为判断它的逆否命题的真假,因为互为逆 否命题的真假是等价的,也就是我们讲的“正难则反”的一种 策略.
互 否
逆否命题 若﹁ q,则﹁p
2.四种命题的真假性 (1)两个命题为互逆命题或互否命题,它们的真假性的关系是: _没__有__关__系__. (2)①原命题与它的逆否命题真假性的关系是:有_相__同__的__真假 性; ②逆命题与否命题真假性的关系是:有_相__同__的__真假性. 综上,互为逆否命题具有相同的_真__假__性__.
1.在四种命题中,只有命题“若p,则q”和“若 p,则 q” 是互否命题吗? 提示:不是,如命题“若q,则p”和“若q,则 p”也是互 否命题.
2.互逆命题的真假性一定不等价吗? 提示:不一定,如命题“若一条直线垂直于一个平面内的任意一 条直线,则这条直线就垂直于这个平面”就和它的逆命题同真.
1.1.3 四种命题间的相互关系
1.认识四种命题间的相互关系及真假关系. 2.会利用命题真假的等价性解决简单问题.

高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系

高二数学优质课件精选人教A版选修2-1课件1.1.3四种命题与四种命题间的相互关系
否命题:若一个数不是实数,则它的平方不是非 负数.真命题.
逆否命题:若一个数的平方不是非负数,则这个 数不是实数.真命题.
(2)逆命题:若两个三角形全等,则这两个三角形 等底等高.真命题.
否命题:若两个三角形不等底或不等高,则这两 个三角形不全等.真命题.
逆否命题:若两个三角形不全等,则这两个三角 形不等底或不等高.假命题.
答案:若sinα≠sinβ,则α≠β
5.把命题“当x=2时,x2-3x+2=0”写成“若p, 则q”的形式,并写出它的逆命题、否命题与逆否命题, 并判断它们的真假.
解:原命题:若x=2,则x2-3x+2=0,真命题. 逆命题:若x2-3x+2=0,则x=2,假命题. 否命题:若x≠2,则x2-3x+2≠0,假命题. 逆否命题:若x2-3x+2≠0,则x≠2,真命题.
方法 2:先判断原命题的真假. 因为 a,x 为实数,且关于 x 的不等式 x2+(2a+ 1)x+a2+2≤0 的解集非空. 所以 Δ=(2a+1)2-4(a2+2)≥0,即 4a-7≥0, 解得 a≥74.因为 a≥74,所以 a≥1, 所以原命题为真. 又因为原命题与其逆否命题等价, 所以逆否命题为真.
逆否命题 真 真 假 假
思考感悟 四种命题中真命题的个数可能为多少? 提示:由于互为逆否关系的命题同真同假,真 命题可能有 0 个,2 个或 4 个.
尝试应用
1.若x>y,则x2>y2的否命题是( ) A.若x≤y,则x2>y2 B.若x>y, 则x2<y2 C.若x≤y,则x2≤y2 D.若x<y, 则x2<y2 答案:C
方法 3:利用集合的包含关系求解. 命题 p:关于 x 的不等式 x2+(2a+1)x+a2+2≤0 有非空解集. 命题 q:a≥1. 所以 p:A={a|关于 x 的不等式 x2+(2a+1)x+ a2+2≤0 有实数解}={a|(2a+1)2-4(a2+2)≥0}= {a|a≥74}.

高考数学四种命题及其相互关系知识点汇总

高考数学四种命题及其相互关系知识点汇总

高考数学四种命题及其相互关系学问点汇总数学课本中毁灭的四种命题的内容经常在高考选择题中考察,下面是学习啦我给大家带来的高考数学四种命题及其相互关系学问点汇总,期望对你有关怀。

高考数学四种命题及其相互关系学问点(一)1、四种命题:一般地,用p和q分别表示原命题的条件和结论,用或分别表示p和q的否认,四种命题的形式是:(1)原命题:若p则q;(2)逆命题:若q则p;(3)否命题:若则;(4)逆否命题:若则。

2、四种命题的真假关系:一个命题与它的逆否命题是等价的,其逆命题与它的否命题也是等价的;3、四种命题的相互关系:留意:1、区分"否命题'与"命题的否认',若原命题是"若p则q',则这个命题的否认是"若p则非q',而它的否命题是"若非p则非q'。

2、互为逆否命题同真假,即"等价'高考数学四种命题及其相互关系学问点(二)【若则命题】命题的常见形式为"若p则q',其中p叫做命题的条件,q叫做命题的结论.【逆命题】对于两个命题,假如一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为原命题(originalproposition),另一个称为原命题的逆命题(inverseproposition).也就是说,假如原命题为"若p,则q',那么它的逆命题为"若q,则p'.【否命题】对于两个命题,假如一个命题的条件和结论分别是另一个命题的条件的否认和结论的否认,那么这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negativeproposition).也就是说,假如原命题为"若p,则q',那么它的否命题为"若,则'.【逆否命题】对于两个命题,假如一个命题的条件和结论恰好是另一个命题的结论的否认和条件的否认,那么这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题(inverseandnegativeproposition).也就是说,假如原命题为"若p,则q',那么它的逆否命题为"若,则'.。

命题、四种命题及其关系

命题、四种命题及其关系
否命题:若一个三角形的边不相等,则这个三角形的角也不相等。 这是真命题。
逆否命题:若一个三角形的角不相等,则这个三角形的边也不相等。 这是真命题。
(3)奇函数的图象关于原点对称 (3)逆命题:图象关于原点对称的函数是奇函数。 这是真命题。 否命题:不是奇函数的函数的图象不关于原点对称。 这是真命题。 逆否命题:图象不关于原点对称的函数不是奇函数。 这是真命题。
特称命题 p :
x0 M,p(x0 )
它的否定 p :
x M,p(x)
第一章 常用逻辑用语
1.1 命题及其关系
1.1.1 命题
1.1.2 四种命题
(一)命题的特征: (1)是陈述句
(二)命题的结构: 若p,则q
(2)可判真假
题型一:命题的判断(真/假) 题型二:改写命题的结构形式(若p,则q) 题型三:真假命题的应用
p且 q ﹁p或﹁q p或 q
例题:用否定的形式填空: (1)a > 0; a≤0。 (2)a ≥0或b<0; a<0且b≥0。 (3)a、b都是正数;a、b不都是正数。 (4)A是B的子集; A不是B的子集。 结论:(1)“或”的否定为“且”,
(2)“且”的否定为“或”, (3)“都”的否定为“不都”。
(1)若a,b都是偶数,则a+b是偶数 真命题 (2)若m>0,则方程x2+x-m=0有实数根. 真命题 (1)逆命题:若a+b是偶数,则a,b都是偶数 假命题
否命题: 若a,b不都是偶数,则a+b不是偶数 假命题 逆否命题: 若a+b不是偶数,则a,b不都是偶数 真命题 (2)逆命题:若方程x2+x-m=0有实数根,则m>0 否命题: 若m≤0,则方程x2+x-m=0无实数根 逆否命题: 若方程x2+x-m=0无实数根,则m≤0 假命题

1.1.3四种命题间的相互关系

1.1.3四种命题间的相互关系

反馈练习
用反证法证明:圆的两条不是直径的相交弦 不能互相平分。
用反证法证明:圆的两条不是直径 的相交弦不能互相平分。
已知:如图,在⊙O中,弦AB、 CD交于点P,且AB、CD不是直径. A 求证:弦AB、CD不被P平分.
证明:假设弦AB、CD被P平分,
由于P点一定不是圆心O,连结OP, C 根据垂径定理的推论,有
已知:△ABC. 求证:∠A、∠B、∠C中不能有两个角 是直角.
反证法的一般步骤:
(1)假设命题的结论不成立,即假 反设 设结论的反面成立;
(2)从这个假设出发,经过推理 论证,得出矛盾;
归谬
(3) 由矛盾判定假设不正确, 从而肯定命题的结论正确。
结论
反馈练习
课本P8练习
反馈练习
用反证法证明,若(x-a)(x-b)≠0,则x ≠a且x ≠b. 证明 假设____x_=_a___或___x_=__b___,
⊙O的直径,这与已知条件矛盾。
所以结论“弦AB、CD不被P点平分”成立。
总结提炼
1.反证法的基本思想: 通过证明原命题的否定是假命题,说明原
命题是真命题.
2.用反证法证明命题的一般步骤是什么?
①反设
②归谬
③结论
3.用反证法证题,矛盾的主要类型有哪些?
用反证法在归谬中所导出的矛盾可以是与题 设矛盾,与假设矛盾,与已知定义、公理、定理 矛盾,自相矛盾等.
(2)两个命题为互逆命题或互否命题, 它们的真假性没关系.
练习1 判断下列说法是否正确。
1)一个命题的逆命题为真,它的逆否命题不
一定为真;
(对)
2)一个命题的否命题为真,它的逆命题一
定为真。
(对)
3)一个命题的原命题为假,它的逆命题一

四种命题的真假关系-高中数学知识点讲解

四种命题的真假关系-高中数学知识点讲解

四种命题的真假关系
1.四种命题的真假关系
【知识点的认识】
一.四种命题的间的关系:
二.四种命题间的真假关系
(一)两个命题互为逆否命题,它们有相同的真假性;
(二)两个命题为互逆命题或互否命题,它们的真假性没有关系.
【解题方法点拨】
“正难则反”是数学解题中一种转化的方式,将判断一个命题的真假的问题转化为判断它的逆否命题的真假就是这种技巧的一个方面的运用,对于有些命题,转化为与其真假性相同的逆否命题来证可大大简化判断过程降低判断难度,如:“若x≠2 或y≠3,则x+y≠5”这个命题的判断,正面不易判断,而其逆否命题为“若x+y=5,则x =2 且y=3”,容易判断此命题是一个假命题.
【命题方向】
命题的真假判断是本考点中试题的考察重点,对于原命题情况较复杂,真假不易判断的命题,常常转化为判断它的逆否命题的真假,这是对四种命题真假关系考察的主要方式.
1/ 1。

四种命题之间的相互关系

四种命题之间的相互关系

2.四种命题真假旳个数可能为( 答:0个、2个、4个。
)个。
如:原命题:若A∪B=A, 则A∩B=φ。 逆命题:若A∩B=φ,则A∪B=A。 否命题:若A∪B≠A,则A∩B≠φ。 逆否命题:若A∩B≠φ,则A∪B≠A。
(假) (假) (假) (假)
例题讲解
例1:设原命题是:当c>0时,若a>b, 则ac>bc. 写出它旳逆命题、否命题、逆否命题。 并分别判断它们旳真假。
例:证明:若p2+q2=2,则p+q 2
巩固练习;P 9练习
小结:
1、本节内容: (1)四种命题旳关系 (2)四种命题旳真假关系
(3) 一种思想
作业:P10 A组 3(2)、4
(两个命题为互逆命题或互否命题,它们旳真假性 没有关系).
练一练
1.判断下列说法是否正确。 1)一种命题旳逆命题为真,它旳逆否命题不一定为真;(对) 2)一种命题旳否命题为真,它旳逆命题一定为真。 (对) 3)一种命题旳原命题为假,它旳逆命题一定为假。 (错) 4)一种命题旳逆否命题为假,它旳否命题为假。 (错)
3)若f (x)不是正弦函数,则f (x)不是周期函数。 4)若f (x)不是周期函数,则f (x)不是正弦函数。
你能说出其中任意 两个命题之间旳关
系吗?
1、四种命题之间旳 关系
原命题
若p则q
互逆 逆命题
若q则p




否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
2.四种命题旳真假
看下面旳例子:
3、互为逆否命题:假如第一种命题旳条件和 结论分别是第二个命题旳结论旳否定和条件旳否定, 那么这两个命题叫做互为逆否命题。

1.1.2四种命题及其相互关系

1.1.2四种命题及其相互关系
2 x (2)若 3x 2 0 ,则 x 2 2 x (3)若 2 x 0 ,则
x0
四种命题形式 原命题 逆命题
原命题
否命题
逆否命题
(1)若同位角相等,则两直线平行 (2)若x 2, 则x 2 3x 2 0 (3)若x 0, 则x 2 2 x 0
(3)互为逆否命题:如果一个命题的条件和结论分别是另一 个命题的结论的否定和条件的否定,那么这两个命题叫做互 为逆否命题。
作业
1、P8:习题1.1 A组 2、3、4
2、《导学案》P3—4 3.预习:1.2充分条件与必要条件
例1 写出下列命题的逆命题、否命题和逆否命题,并判 断它们的真假:
(1)原命题:若x=2或x=3, 则x2-5x+6=0。 逆命题:若x2-5x+6=0, 则x=2或x=3。 否命题:若x≠2且x≠3, 则x2-5x+6≠0 。 逆否命题:若x2-5x+6≠0,则x≠2且x≠3。 (2)原命题:若a=0, 则ab=0。 (真 ) (假 ) 逆命题:若ab=0, 则a=0。 否命题:若a≠ 0, 则ab≠0。 (假 ) 逆否命题:若ab≠0,则a≠0。 (真 ) (真 ) (真 ) (真 ) (真 )
例5:写出下列命题的原命题、逆命题、 否命题和逆否命题: 逆命题:如果一个四边形四边
相等,那么它是正方形。
(1)正方形的四条边相 等。

原命题:如果一个 四边形是正方形, 那么它的四条边相 等。 真
否命题:如果一个四边
形不是正方形,那么它的 四条边不相等。 假
逆否命题:如果一个
四边形四边不相等,那 么它不是正方形。 真
1. 写出下列命题的原命题、逆命题、否命题、 逆否命题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四种命题的关系
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理水平;
(6)通过对四种命题的存有性和相对性的理解,实行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维水平.
教学重点和难点
重点:四种命题之间的关系;难点:反证法的使用.
教学过程设计
一、导入新课
【练习】1.把下列命题改写成“若p则q”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等.
2.什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.值得指出的是原命题和逆命题是相对的.我们也能够把逆命题当成原命题,去求它的逆命题.
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.通过复习旧知识,打下学习否命题、逆否命题的基础.
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还能够构成其它形式的命题?
【讲述】能够将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动口答:若一个四边形不是正方形,则它的四条边不相等.
教师活动:【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.
【板书】原命题:若p则q;
否命题:若┐p则q┐.
【提问】原命题真,否命题一定真吗?举例说明?
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.
由此能够得原命题真,它的否命题不一定真.
设计意图:通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.
教师活动:【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还能够不能够构成别的命题?
学生活动:讨论后回答
【总结】能够将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.
教师活动:【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:口答:若一个四边形的四条边不相等,则不是正方形.
教师活动:【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.原命题是“若 p则 q ”,则逆否命题为“若┐q 则┐p .
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:讨论后回答这两个逆否命题都真.原命题真,逆否命题也真.
教师活动:【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】1.原命题为真,它的逆命题不一定为真.
2.原命题为真,它的否命题不一定为真.
3.原命题为真,它的逆否命题一定为真.
设计意图:通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.教师活动:
三、课堂练习
四、小结
四种命题的形式和关系如下图:。

相关文档
最新文档