几何证明中常见辅助线方法详解

合集下载

5种方法证全等

5种方法证全等

五种辅助线助你证全等湖北省黄石市下陆中学宋毓彬在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.证明:在AC上截取AF=AE,连接OF.∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC∴△DOC≌△FOC,CF=CD∴AC=AF+CF=AE+CD.二、中线倍长三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路.例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是().分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.解:如图2所示,设AB=7,AC=5,BC上中线AD=x.延长AD至E,使DE = AD=x.∵AD是BC边上的中线,∴BD=CD∠ADC=∠EDB(对顶角)∴△ADC≌△EDB∴BE=AC=5∵在△ABE中AB-BE<AE<AB+BE即7-5<2x<7+5 ∴1<x<6三、作平行线当三角形问题中有相等的角或等腰等条件时,可通过作平行线将相等的角转换到某一个三角形中得到另外的等腰三角形或相等的角,从而为证明全等提供条件.例3.如图3,在等腰△ABC中,AB=AC,在AB上截取BD,在AC延长线上截取CE,且使CE=BD.连接DE交BC于F.求证:DF=EF.分析:要证DF=EF,必须借助三角形全等.而现有图形中没有全等三角形.由等腰三角形条件,可知∠B=∠ACB,作DH∥AE,可得∠DHB=∠ACB.则△DBH为等腰三角形.证明:作DH∥AE交BC于H.∴∠DHB=∠ACB,∵AB=AC,∴∠B=∠ACB∴∠DHB=∠B,DH=BD∵CE=BD ∴DH= CE又DH∥AE,∠HDF=∠E∠DFH=∠EFC(对顶角)∴△ DFH≌△EFC(AAS)∴DF=EF四、补全图形在一些求证三角形问题中,延长某两条线段(边)相交,构成一个封闭的图形,可找到更多的相等关系,有助于问题的解决.例4.如图4,在△ABC中,AC=BC,∠B=90°,BD为∠ABC的平分线.若A点到直线BD的距离AD为a,求BE的长.分析:题设中只有一条已知线段AD,且为直角边,而要求的BE为斜边.要找到它们之间的关系,需设法构造其他的全等三角形.证明:延长AD、BC相交于F.由BD为∠ABC的平分线,BD⊥AF.易证△ADB≌△FDB ∴FD= AD=a AF=2a ∠F=∠BAD又∠BAD+∠ABD=90°,∠F+∠FAC=90°∴∠ABD=∠FAC∵BD为∠ABC的平分线∴∠ABD=∠CBE∴∠FAC=∠CBE,而∠ECB=∠ACF=90°,AC=BC∴△ACF≌△BCE(ASA)∴BE=AF=2a五、利用角的平分线对称构造全等角的平分线是角的对称轴,在证明全等过程中不仅提供了两个相等的角,还有一条公共边,利用角的平分线在角的两边上截取相等的线段,或向两边作垂线,对称构造出全等三角形是常用的证明方法.例5.如图5,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°.证明:AD=CD.分析:由角的平分线条件,在BC上截取BE=BA,可构造△ABD≌△EBD,从而AD=DE.则只要证明DE=CD.证明:在BC上截取BE=BA,连接DE.由BD平分∠ABC,易证△ABD≌△EBD∴AD=DE ∠A=∠BED又∠A+∠C=180°,∠BED+∠DEC=180°∴∠DEC=∠C,∴DE=CD∴AD=CD。

全等三角形几何证明常用辅助线

全等三角形几何证明常用辅助线

几何证明-常用辅助线(一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。

已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21(AB+AC) 分析:要证明AD ﹤21(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。

待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。

证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。

在△ADB 和△EDC 中,AD =DE ∠ADB =∠EDC BD =DC∴△ADB ≌△EDC(SAS) ∴AB=CE又 在△ACE 中,AC+CE >AE∴AC+AB >2AD ,即AD ﹤21(AB+AC)小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。

它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。

课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC 例2:中线一倍辅助线作法 △ABC 中方式 AD 是BC 边中线方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N , 作BE ⊥AD 使DN=MD , 连接BE 连接CD 例3:△ABC 中,AB=5,AC=3,求中线例4:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 交AC 于F ,求证:AF=EF例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠C 第 1 题图A DBCE图2-1课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

几何证明题辅助线基本方法

几何证明题辅助线基本方法

几何证明题辅助线基本方法几何证明题是数学中的一种重要题型,需要通过逻辑推理和几何知识来证明给定的几何关系。

在解决几何证明题时,辅助线是一种常用的策略,可以帮助我们简化问题、构建更简洁的证明过程。

本文将介绍几何证明题中常用的辅助线基本方法。

1. 平行辅助线法当我们需要证明两条线段平行时,可以在图形中引入一条辅助线来构建平行关系。

具体步骤如下:1. 观察图形,找到可能存在平行关系的线段。

2. 在相应的位置引入一条辅助线。

3. 利用平行线的性质进行推理,证明所需的平行关系。

2. 相等辅助线法当我们需要证明两个线段相等时,可以通过引入一条相等的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能具有相等关系的线段。

2. 在相应的位置引入一条相等的辅助线。

3. 利用等边、等角等性质进行推理,证明所需的相等关系。

3. 垂直辅助线法当我们需要证明两条线段垂直时,可以通过引入一条垂直的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能具有垂直关系的线段。

2. 在相应的位置引入一条垂直的辅助线。

3. 利用垂直线的性质进行推理,证明所需的垂直关系。

4. 同位角辅助线法当我们需要证明两条直线的同位角相等时,可以通过引入同位角的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能存在同位角的直线。

2. 在相应的位置引入同位角的辅助线。

3. 利用同位角的性质进行推理,证明所需的同位角相等关系。

5. 其他辅助线方法除了上述介绍的常用辅助线方法外,还可以根据具体的几何证明题目选择其他辅助线的方法。

例如,可以利用中位线、角平分线、内切圆、外接圆等辅助线,根据题目要求灵活运用。

综上所述,几何证明题辅助线基本方法包括平行辅助线法、相等辅助线法、垂直辅助线法、同位角辅助线法等。

通过合理引入辅助线,可以帮助我们简化问题、构建更简洁的证明过程,提高解题效率。

在实际解题中,我们需要综合运用不同的辅助线方法,根据题目要求灵活选择适合的策略。

中考数学10大类辅助线

中考数学10大类辅助线

中考数学10大类辅助线中考数学常见的辅助线方法有很多种,可以根据题目的特点和计算的需要来选择适当的辅助线方法。

以下是常见的十大类辅助线方法:1.垂直线:通过绘制垂直线可以将几何图形划分为各个部分,方便计算和推导。

垂直线常用于求证和求交点等问题。

2.平行线:通过绘制平行线可以将几何图形划分为等价的部分,方便进行比较和推导。

平行线常用于求证和相似三角形等问题。

3.对角线:通过绘制对角线可以将几何图形划分为更简单的部分,方便计算和推导。

对角线常用于求面积和相似多边形等问题。

4.中垂线:通过绘制中垂线可以将线段划分为等分的两部分,方便计算和推导。

中垂线常用于求证和等腰三角形等问题。

5.角平分线:通过绘制角平分线可以将角划分为等角的两部分,方便计算和推导。

角平分线常用于求证和相似三角形等问题。

6.高线:通过绘制高线可以将三角形划分为底边和顶点的垂直线段,方便计算和推导。

高线常用于求证和面积等问题。

7.过中点的连线:通过绘制过中点的连线可以将线段或图形划分为对称的两部分,方便计算和推导。

过中点的连线常用于求证和相似图形等问题。

8.过交点的连线:通过绘制过交点的连线可以将几何图形划分为更简单的部分,方便计算和推导。

过交点的连线常用于求证和相似三角形等问题。

9.辅助圆:通过绘制辅助圆可以将几何图形划分为更简单的部分,方便计算和推导。

辅助圆常用于求证和相似图形等问题。

10.分割线:通过绘制分割线可以将几何图形划分为等价或相似的部分,方便计算和推导。

分割线常用于求证和比例等问题。

以上是中考数学常见的十大类辅助线方法的简介。

使用辅助线可以在解题过程中简化计算,提高解题的效率和准确性。

在实际应用中,需要根据题目的具体要求和解题步骤选择适当的辅助线方法,灵活运用,有助于提高数学解题能力。

几何证明题辅助线基本方法

几何证明题辅助线基本方法

几何证明题辅助线基本方法几何证明题辅助线方法是解决几何问题的基本策略之一。

通过引入辅助线,可以简化问题,使证明过程更加清晰和易于理解。

本文将介绍几何证明题中常用的辅助线方法。

垂直、平行辅助线方法当给定几何图形中存在垂直或平行线段时,可以通过引入垂直或平行辅助线来简化证明过程。

这些辅助线可以将问题中的角度或长度关系转化为更易于理解和证明的形式。

例如,当一个问题中涉及到两条平行线段之间的关系时,可以通过引入一条垂直辅助线将问题转化为两个相似三角形的比较问题。

中位线辅助线方法中位线辅助线方法是在一个三角形中引入中位线来简化证明过程。

中位线是连接一个三角形的一个顶点和对位边中点的线段。

通过引入中位线,可以将原问题转化为两个相似三角形的比较问题。

中位线辅助线方法在证明三角形的性质和关系时特别有用。

例如,在证明三角形的垂心、重心等性质时,可以使用中位线辅助线方法来简化证明过程。

旁切辅助线方法旁切辅助线方法是在一个圆和一个与之相切的直线或线段之间引入一条辅助线来解决问题。

通过引入旁切辅助线,可以将问题转化为关于切点、切线以及圆的性质和关系的证明问题。

旁切辅助线方法在证明圆的性质和关系时特别有用。

例如,在证明切线与半径垂直、切线之间的夹角等性质时,可以使用旁切辅助线方法来简化证明过程。

相似三角形辅助线方法相似三角形辅助线方法是通过引入辅助线,将原问题转化为相似三角形的比较问题。

通过比较相似三角形的边长或角度,可以得出原问题的结论。

相似三角形辅助线方法在证明三角形的比较性质时特别有用。

例如,在证明一个三角形是等腰三角形、直角三角形或全等三角形时,可以使用相似三角形辅助线方法来简化证明过程。

结论几何证明题中的辅助线方法是解决问题的基本策略之一。

通过引入不同类型的辅助线,可以简化问题,使证明过程更加清晰和易于理解。

在解决几何证明题时,我们可以根据问题的性质选择适当的辅助线方法。

五种辅助线解题方法

五种辅助线解题方法

五种辅助线解题方法
在解题过程中,辅助线是一种非常有用的工具,能够帮助我们更好地理解问题和解决问题。

以下是五种常见的辅助线解题方法:
1. 垂线法
垂线法是一种常见的几何证明方法,也可以用来解决许多几何问题。

在使用垂线法时,我们通常要绘制一条垂线,将原来的形状分成几个小部分,从而更容易解决问题。

2. 中垂线法
中垂线法是一种特殊的垂线法,它可以帮助我们找到一个三角形的中心点,从而更容易解决问题。

在使用中垂线法时,我们需要绘制三角形的中垂线,并找到它们的交点,这个点就是三角形的中心点。

3. 对角线法
对角线法是一种常见的几何证明方法,可以用来证明平行四边形、菱形和正方形等形状的性质。

在使用对角线法时,我们需要绘制一条对角线,并利用对角线的特性来解决问题。

4. 相似三角形法
相似三角形法是一种常见的几何证明方法,可以用来解决许多与三角形相关的问题。

在使用相似三角形法时,我们需要找到两个相似的三角形,并利用它们的比例关系来解决问题。

5. 平移法
平移法是一种常见的代数证明方法,可以用来证明等式和不等式等代数关系。

在使用平移法时,我们需要通过平移变量的值,将等式
或不等式转化成更容易解决的形式。

初中几何常见辅助线作法50种

初中几何常见辅助线作法50种

D E
A
1
4
2
3
B
C
7.条件不足时延长已知边构造三角形.
例:已知 AC = BD,AD⊥AC 于 A,BCBD 于 B
求证:AD = BC
证明:分别延长 DA、CB 交于点 E
∵AD⊥AC BC⊥BD
∴∠CAE = ∠DBE = 90o
在△DBE 和△CAE 中
∠DBE =∠CAE
BD = AC ∠E =∠E ∴△DBE≌△CAE ∴ED = EC,EB = EA ∴ED-EA = EC- EB
∴△ABC≌△CDA
∴AB = CD
E
练习:已知,如图,AB = DC,AD = BC,DE = BF,
D
C
求证:BE = DF
A
B
F
9.有和角平分线垂直的线段时,通常把这条线段延长。可归结为“垂直加平分出等腰三角形”. 例:已知,如图,在 Rt△ABC 中,AB = AC,∠BAC = 90o,∠1 = ∠2 ,CE⊥BD 的延长线
A
△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDF
E
F
23
B
1
4
D5
C
DF = DF
M
∴△EDF≌△MDF
∴EF = MF
∵在△CMF 中,CF+CM >MF
2 / 26
BE+CF>EF
(此题也可加倍 FD,证法同上)
5. 在三角形中有中线时,常加倍延长中线构造全等三角形.
例:已知,如图,AD 为△ABC 的中线,求证:AB+AC>2AD
证明:延长 AD 至 E,使 DE = AD,连结 BE
∵AD 为△ABC 的中线

几何证明题辅助线经典方法

几何证明题辅助线经典方法

几何证明题辅助线经典方法
引言
几何证明题是数学中常见的题型,也是学生们认识几何图形、发现几何规律的重要手段。

辅助线是解决几何证明题时常用的方法之一,本文将介绍几种经典的辅助线方法。

方法一:画垂直平分线
对于某些几何图形中的线段,我们可以通过画垂直平分线来辅助证明。

垂直平分线将线段分成两等分,从而在几何证明过程中起到重要的辅助作用。

方法二:画过顶点的高
在证明三角形相等或等腰三角形时,辅助线中的高是常见的方法之一。

通过画一条从顶点到对边的垂线,我们可以将几何图形转化为更容易处理的形式,从而证明所需结论。

方法三:画过顶点的中位线
在证明平行四边形或矩形时,辅助线中的中位线是一种常见的
方法。

通过画一条从顶点到对边中点的线段,我们可以将问题简化,并且利用矩形或平行四边形的性质得到所需结论。

方法四:画三角形的内切圆
在证明三角形的某些性质时,画三角形的内切圆是一种常见的
辅助线方法。

内切圆与三角形的各边均相切,通过利用内切圆的性质,我们可以得到有关三角形的一些重要结论。

方法五:画过顶点的角平分线
在证明两角相等或证明某些三角形相似时,画过顶点的角平分
线是一种常见的辅助线方法。

通过将角细分为两等分,我们可以得
到有关角度的一些重要关系,从而得到所需结论。

结论
辅助线方法在解决几何证明题时起到了重要的作用。

以上介绍
的几种经典辅助线方法仅是其中的一部分,通过熟练掌握这些方法,并结合具体问题,我们可以更好地解决几何证明题,提高数学水平。

几何证明例题及常见的添加辅助线方法

几何证明例题及常见的添加辅助线方法

几何证明例题及常见的添加辅助线方法几何证明是数学中的一个重要分支,通过使用几何定理和性质,以及一些常见的辅助线方法,来证明几何命题的正确性。

下面将提供几个几何证明的例题,并介绍一些常见的添加辅助线方法:1.证明等边三角形的高线与垂直平分线重合。

添加辅助线方法:连接等边三角形的顶点与底边的中点,将三角形分为两个等腰三角形。

然后,通过利用等腰三角形的性质,可以证明三角形的高线与垂直平分线重合。

2.证明等腰梯形的对角线垂直。

添加辅助线方法:在等腰梯形的两个腰上各取一个点,使得这两个点与梯形的底边相连,形成两个等边三角形。

通过证明这两个等边三角形的高线与底边的中线相垂直,可以得出对角线垂直的结论。

3.证明一个四边形是平行四边形的充要条件是其对角线互相垂直。

添加辅助线方法:对四边形的两个对角线进行延长,连接延长线的交点与四边形的两个相邻顶点,形成两个三角形。

通过证明这两个三角形是直角三角形,可以得出对角线互相垂直的结论。

4.证明正方形的对角线互相垂直。

添加辅助线方法:连接正方形的相邻顶点,形成两个等腰三角形。

通过证明这两个等腰三角形的高线与底边的中线相垂直,可以得出对角线互相垂直的结论。

5.证明一个三角形的内心到三边的距离和边长的乘积是相等的。

添加辅助线方法:通过从三角形的顶点向内切圆引垂线,连接垂足与内心,形成三个小三角形。

通过证明这三个小三角形是相似三角形,可以得出内心到三边的距离和边长的乘积相等的结论。

以上是几个常见的几何证明例题及其对应的添加辅助线方法。

在几何证明中,添加辅助线是一种常用的方法,可以将原始图形分解成更简单的图形,以便于应用几何定理和性质进行证明。

但需要注意的是,添加辅助线时应选择合适的位置和方式,以确保辅助线的添加不会引入其他不必要的情况,更好地辅助证明目标命题的正确性。

初中几何中常用的辅助线方法的资料

初中几何中常用的辅助线方法的资料

初中几何是学生学习几何知识的基础阶段,掌握正确的辅助线技巧对于解决几何问题至关重要。

下面是一份关于初中几何中常用的辅助线方法的资料,希望能帮助到您。

一、基本概念辅助线:在解决几何问题时,为了更好地展现图形的性质或构建所需的条件,临时添加的线段称为辅助线。

辅助线不改变原图形的基本结构,但能帮助我们发现解题的关键线索。

二、常用辅助线方法1. 过顶点作垂线●应用场景:证明直角、等腰三角形的性质,求解高、距离等问题。

●示例:证明一个三角形是直角三角形时,可以尝试从一个顶点向对边作垂线,利用勾股定理。

2. 连接中点●应用场景:证明线段倍长、中位线性质、平行四边形和梯形的构造。

●示例:证明两条线段相等时,连接它们的中点,利用中位线定理。

3. 平行线构造●应用场景:形成相似三角形、构造平行四边形、证明角度关系。

●示例:为证明两个角相等,可以在其中一个角的一边上作一条平行于另一角所在直线的辅助线,从而构成一对内错角或同位角。

4. 过顶点作平行线●应用场景:构造全等三角形、证明角平分线性质。

●示例:证明两角相等时,可以从一个角的顶点出发作一条平行于另一个角一边的线,这样可以构造出一组等角的三角形。

5. 延长线段●应用场景:寻找共线点、证明交比不变、构造平行线。

●示例:当需要证明四点共线时,延长某些线段,利用交叉线段的比值相等来证明。

6. 作角平分线或垂直平分线●应用场景:证明等腰三角形、等边三角形性质,解决与圆相关的几何问题。

●示例:证明一个点在三角形某边的垂直平分线上,可以过该点作这条边的垂线,利用垂直平分线的性质。

三、技巧总结1.观察图形特征:首先分析图形的已知条件和所求目标,根据图形的特殊形状或已知条件选择合适的辅助线方法。

2.尝试多种方案:有时候,一种辅助线方法可能不足以解决问题,需要尝试几种不同的方法。

3.灵活运用定理:熟练掌握各种几何定理,并能灵活应用到辅助线的构造中。

4.练习与总结:多做练习,每次解题后总结辅助线的使用经验,逐步提高解题效率。

几种证明全等三角形添加辅助线的方法

几种证明全等三角形添加辅助线的方法

几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。

以下是几种常见的证明全等三角形添加辅助线的方法。

方法一:辅助线连接两个三角形的顶点和中点。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。

例如,可以连接点A和B的中点M,以及连接点D和E的中点N。

通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。

由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。

方法二:辅助线连接两个三角形的顶点和底边中点。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。

例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。

通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。

由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。

方法三:辅助线连接两个三角形的对应角的角平分线。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过连接每个三角形对应角的角平分线来添加辅助线。

通过连接辅助线,我们可以得到一些相似的三角形。

根据相似三角形的性质,我们可以得到一些相等的边和角。

通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。

方法四:辅助线连接两个三角形的中垂线。

假设有两个三角形ABC和DEF,我们要证明它们全等。

我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。

初学几何证明用好三种辅助线

初学几何证明用好三种辅助线

初学几何证明用好三种辅助线几何证明是数学中一个重要的部分,既有理论性又有实际应用。

在初学阶段,能够熟练运用各种辅助线是非常重要的,因为辅助线可以帮助我们更好地理解和解决几何问题。

以下将介绍三种常见的辅助线方法,并详细说明如何使用它们进行证明。

第一种辅助线是平行线辅助线。

平行线是几何学中非常重要的概念,它可以帮助我们解决很多问题。

在证明中,我们常常使用平行线辅助线来构造平行四边形、平行线段、相似三角形等等。

例如,我们要证明一个四边形是平行四边形时,可以使用平行线辅助线来证明。

首先,我们可以通过初始条件得到两条边是平行的,然后我们尝试通过构造辅助线来证明另外两条边也是平行的。

我们可以在平行两条边上分别选择一点,然后连接这两个点,构成一条线段。

接着,我们可以利用“内角和为180度”的性质来证明这条线段与其他两条边也是平行的,从而完成证明。

第二种辅助线是垂直线辅助线。

垂直线是指与另一条线段或直线成直角的线段或直线,它可以帮助我们解决一些垂直关系的问题。

在证明中,我们常常使用垂直线辅助线来构造垂直线段、垂直平分线、垂直角等等。

例如,我们要证明一个角是直角时,可以使用垂直线辅助线来证明。

首先,我们通过初始条件得到两条边互相垂直,然后我们尝试通过构造辅助线来证明其中一条边与其他两条边都是垂直的。

我们可以在这条直角边上选择一个点,然后连接这个点与其他两个顶点,构成两个线段。

接着,我们可以利用“垂直角相等”的性质来证明这两个线段与其他两条边都是垂直的,从而完成证明。

第三种辅助线是中位线辅助线。

中位线是指连接一个三角形的两个顶点与对边中点的线段,它可以帮助我们解决一些关于三角形中位线的性质和问题。

在证明中,我们常常使用中位线辅助线来构造等腰三角形、梯形等等。

例如,我们要证明一个三角形是等腰三角形时,可以使用中位线辅助线来证明。

首先,我们可以构造这个三角形的两条中位线,然后我们尝试通过构造辅助线来证明这两条中位线相等。

几何证明中常见的辅助线的方法

几何证明中常见的辅助线的方法
专题学习
单击此处添加副标题
语言描述:连结AB
注意点:双添---在图形上添虚线 在证明过程中描述添法
1.连结
适用情况:图中已经存在两个点—A和B
1.连结
CONTENTS
01
02
03
04
05
06
1.连结
典例2:如图,AB=AE,BC=ED, ∠B=∠E,AM⊥CD, 求证:点M是CD的中点.
A
C
D
构造了: 全等的直角三角形且距离相等
B
F
E
P
G
O
目的:构造全等三角形,将相关线段聚成三角形
适用情况:图中已经存在一条线段MN 和中线【或中点】
语言描述:延长AD到E,使DE=AD,连接CE.
注意点:双添---在图形上添虚线 在证明过程中描述添法
3.中线延长一倍
例7.已知,如图AD是△ABC的中线,
B
F
E
2.角平分线上点向两边作垂线段
2.如图,四边形ABCD中, ∠A= ∠D =90o,BE、CE均是角平分线, 求证:BC=AB+CD.
构造了:全等的直角三角形
F
A
C
D
B
E
2.角平分线上点向两边作垂线段
典例4:如图,OC 平分∠AOB, ∠OEP +∠ODP =180o, 求证: PD=PE.
B
A
C
D
E
BE+BD+DE
BE+BD+CD
BE+BC
BE+AC
BE+AE
AB
注意点:双添---在图形上添虚线 在证明过程中描述添法
04

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。

下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。

一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。

具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法适用于证明线段的和、差、倍、分等类的题目。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。

要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。

具体证明过程为:在AC上截取AF=AE,连接OF。

由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。

显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。

另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

要证明CD=AD+BC。

因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。

几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法
在解决几何证明题时,辅助线是一种常用且有效的工具。

它可以帮助我们发现
隐藏的几何关系,简化证明过程,并提供新的角度来解决问题。

以下是几种常见的辅助线技巧和方法,可用于解决几何证明题。

1. 平行线辅助线法:当题目涉及到平行线时,我们可以通过引入一条平行线作
为辅助线,从而构建出平行线之间的相似三角形或平行四边形。

这样,我们可以得出相应的角度和边的关系,进而证明几何问题。

2. 三角形中线辅助线法:三角形的中线是连接一个顶点与对应中点的线段。


过引入三角形中线作为辅助线,我们可以将原问题转化为直角三角形的性质或平行线的性质。

这种方法常常用于证明三角形的等边、等腰等性质。

3. 垂直线辅助线法:当题目涉及到垂直线时,我们可以通过引入一条垂直线作
为辅助线,从而构建出垂直角、直角三角形或平行四边形。

通过利用垂直线的性质,我们可以得到角度、边长等关系,进而解决问题。

4. 内切圆辅助线法:对于一个给定的三角形,可以通过引入其内切圆作为辅助线,来简化证明过程。

内切圆与三角形的的边相切于三个点,这些点可以提供有用的几何关系,如正方形的性质、垂直线的性质等。

5. 类似三角形辅助线法:当计算角度或证明形状相似时,引入类似三角形作为
辅助线可以大大简化证明过程。

通过找到两个或多个类似的三角形,我们可以得到两个三角形的边长比例,并据此解决问题。

总之,辅助线是几何证明中的有效工具,它们可以帮助我们发现关键的几何关系,简化证明过程,并提供新的角度来解决问题。

通过灵活运用各种辅助线技巧和方法,我们可以更加轻松地解决各种几何证明题。

初中几何辅助线大全

初中几何辅助线大全

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 三、有和角平分线垂直的线段时,通常把这条线段延长;ABCDE17-图O分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE四、取线段中点构造全等三有形;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有19-图DCBA E F12△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;巧求三角形中线段的比值例1. 如图1,在△ABC 中,BD :DC =1:3,AE :ED =2:3,求AF :FC;解:过点D 作DG 如图2,BC =CD,AF =FC,求EF :FD解:过点C 作CG如图3,BD :DC =1:3,AE :EB =2:3,求AF :FD;111-图DCBAM N解:过点B 作BG如图4,BD :DC =1:3,AF =FD,求EF :FC;解:过点D 作DG如图5,BD =DC,AE :ED =1:5,求AF :FB;2. 如图6,AD :DB =1:3,AE :EC =3:1,求BF :FC;答案:1、1:10; 2. 9:1二 由角平分线想到的辅助线图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等例1. 如图1-2,AB 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;图1-3ABCDE 图1-4A BC DE图2-1ABCD E F图2-2ABCDE 图2-3P AB CM ND F 图示3-1AB CDH E例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,连结FC 并延长交AE 于M;求证:AM=ME;分析:由AD 、AE 是∠BAC 内外角平分线,可得EA ⊥AF,从而有BF 212121∠∠21图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧, BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE四 由中点想到的辅助线三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;一、由中点应想到利用三角形的中位线例2.如图3,在四边形ABCD 中,AB=CD,E 、F 分别是BC 、AD 的中点,BA 、CD 的延长线分别交EF 的延长线G 、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD 的中点为M,连结ME 、MF, ∵ME 是ΔBCD 的中位线, ∴MECD,∴∠MEF=∠CHE,∵MF 是ΔABD 的中位线, ∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE, 从而∠BGE=∠CHE;二、由中线应想到延长中线例3.图4,已知ΔABC 中,AB=5,AC=3,连BC 上的中线AD=2,求BC 的长; 解:延长AD 到E,使DE=AD,则AE=2AD=2×2=4; 在ΔACD 和ΔEBD 中,D AE C BD C BAMBD C AE D CB A图3-3DBEF N ACM图3-4nEBADCM FDCB AE D FCB A ∵AD=ED,∠ADC=∠EDB,CD=BD, ∴ΔACD≌ΔEBD ,∴AC=BE, 从而BE=AC=3;在ΔABE 中,因AE 2+BE 2=42+32=25=AB 2,故∠E=90°, ∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC 中,AD 是∠BAC 的平分线,AD 又是BC 边上的中线;求证:ΔABC 是等腰三角形;证明:延长AD 到E,使DE=AD; 仿例3可证: ΔBED≌ΔCAD , 故EB=AC,∠E=∠2, 又∠1=∠2, ∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC 是等腰三角形;三、直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB 2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.中考应用例题:以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;DMCEA BB ECD AA BDC E FAD CBA2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变并说明理由.二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC 2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD 3:如图,已知在ABC 内,60BAC ∠=分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD 平分ABC ∠,求证:0180=∠+∠C A5三、借助角平分线造全等1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD 平分∠且平分BC,DE ⊥AB 于E,DF ⊥AC 于F. 1说明BE=CF AB=a ,AC=b ,求AE 、BE 的长.3.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;E DGFCBAAFEDCBA2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由;四、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为C D 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;(1) 当MDN ∠绕点D 转动时,求证(2)若AB=2,求四边形DECF 的面积;3.如图,ABC ∆是边长为3的等边三角形,BDC∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆4.已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系请写出你的猜想,不需证明.5.以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1,求AB 及PD 的长;2且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.第23题图OP AMN EB C D F ACEF BD图① 图② 图③图1 图2 图36.在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3I 如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时=LQ; II 如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想I 问的两个结论还成立吗写出你的猜想并加以证明;III 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q= 用x 、L 表示.梯形中的辅助线1、平移一腰:例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长.解:过点D 作DE ∥BC 交AB 于点E. 又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得 AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围; 解:过点B作B M)(2121CH BG BC GH EF --==512=⨯=BE ED BD DH ABDCEH A BCDABCDE6251252DH BC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+DCEACD ABD S S S ∆∆∆==DBEABCDS S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形.证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA.∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB. 又AD 不平行于BC,∴四边形ABCD 是等腰梯形.三、作对角线即通过作对角线,使梯形转化为三角形; 例9如图6,在直角梯形ABCD中,ADcmBE AE 33==2342)(cmAE BC AD S ABCD=⨯+=梯形21AD OE 21=)(21AD BC EF -=A BCD ABCDEABCDE FBG EF 21=AD BC CG BC BG -=-=)(21AD BC -=如图所示,已知等腰梯形ABCD 中,AD ∥BC,∠B =60°,AD =2,BC =8,则此等腰梯形的周长为A. 19B. 20C. 21D. 228. 如图所示,梯形ABCD 中,AD ∥BC,1若E 是AB 的中点,且AD +BC =CD,则DE 与CE 有何位置关系2E 是∠ADC 与∠BCD 的角平分线的交点,则DE 与CE 有何位置关系 A B DC E FAB CD EF MN.圆中作辅助线的常用方法:例题1:如图2,在圆O 中,B 为的中点,BD 为AB 的延长线,∠OAB=500,求∠CBD 的度数; 解:如图,连结OB 、OC 的圆O 的半径,已知∠OAB=500∵B 是弧AC 的中点∴弧AB=弧BC∴AB==BC又∵OA=OB=OC∴△AOB ≌△BOC 图2∴∠OBC=∠ABO=500∵∠ABO+∠OBC+∠CBD=1800∴∠CBD=1800 - 500- 500∴∠CBD=800答:∠CBD 的度数是800.例题2:如图3,在圆O 中,弦AB 、CD 相交于点P,求证:∠APD的度数=21弧AD+弧BC 的度数; 证明:连接AC,则∠DPA=∠C+∠A∴∠C 的度数=21弧AD 的度数 ∠A 的度数=21弧BC 的度数 ∴∠APD=21弧AD+弧BC 的度数; 图3 一、造直角三角形法1.构成Rt △,常连接半径例1. 过⊙O 内一点M ,最长弦AB = 26cm,最短弦CD = 10cm ,求AM 长;2.遇有直径,常作直径上的圆周角例2. AB 是⊙O 的直径,AC 切⊙O 于A,CB 交⊙O 于D,过D 作⊙O 的切线,交AC 于E.求证:CE = AE;3.遇有切线,常作过切点的半径例3 .割线AB 交⊙O 于C 、D,且AC=BD,AE 切⊙O 于E,BF 切⊙O 于F.求证:∠OAE = ∠OBF;4.遇有公切线,常构造Rt △斜边长为圆心距,一直角边为两半径的差,另一直角边为公切线长例4 .小 ⊙O 1与大⊙O 2外切于点A,外公切线BC 、DE 分别和⊙O 1、⊙O 2切于点B 、C和D 、E,并相交于P,∠P = 60°;求证:⊙O 1与⊙O 2的半径之比为1:3;5.正多边形相关计算常构造Rt △例5.⊙O 的半径为6,求其内接正方形ABCD 与内接正六边形AEFCGH 的公共部分的面积.二、欲用垂径定理常作弦的垂线段例6. AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E,BF ⊥CD 于F.1求证:EC = DF; 2若AE = 2,CD=BF=6,求⊙O 的面积;三、转换割线与弦相交的角,常构成圆的内接四边形例7. AB 是⊙O 直径,弦CD ⊥AB,M 是AC 上一点,AM 延长线交DC 延长线于F. 求证: ∠F = ∠ACM;四、切线的综合运用 1.已知过圆上的点,常_________________例8.如图, 已知:⊙O 1与⊙O 2外切于P,AC 是过P 点的割线交⊙O 1于A,交⊙O 2于C,过点O 1的直线AB ⊥BC 于B.求证: BC 与⊙O 2相切. 六、开放性题目 例17.已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE 平分边BC .1BC 与O 是否相切请说明理由;2当ABC △满足什么条件时,以点O ,B,E ,D 明理由.第23题。

全等三角形几何证明常用辅助线

全等三角形几何证明常用辅助线

全等三角形几何证明常用辅助线
辅助线证明三角形全等
一、辅助线定义
辅助线,又称辅助规则,是专门用来证明几何结论的辅助线,它可以
指向几何结论的前提或结果,以更清晰地证明几何结论。

二、辅助线用法
1.在证明三角形全等的情况下,用辅助线来证明角的相等性:用一条
辅助线平分角A,然后将辅助线平移到角B上,如果辅助线可以在角B上
的两点重合,则说明角A和角B是相等的。

2.在证明三角形全等的情况下,用辅助线来证明边的相等性:用一条
辅助线平分边AB,然后将辅助线平移到边CD上,如果辅助线可以在边CD
上的两点重合,则说明边AB和边CD是相等的。

3.在证明三角形全等的情况下,用辅助线来证明两个三角形的相等性:在三角形ABC中画出一条辅助线,然后将该辅助线平移到三角形CDE中,
如果辅助线可以在三角形CDE中的三个点重合,则说明两个三角形ABC和CDE是相等的。

三、辅助线证明三角形全等的步骤
1.识别出待证明的相关图形,并将其准确地表示在平面上。

2.根据定义,确定三角形全等的前提条件,并假设三角形全等。

3.画出两个三角形之间的辅助线,如果相交点都在两个三角形相交的
边上,证明该辅助线可以同时在两个三角形中存在。

初中几何辅助线做法要点

初中几何辅助线做法要点

初中几何辅助线做法要点几何辅助线是指在解题过程中,通过引入一条或多条辅助线,来帮助我们更好地理解、分析和解决几何问题的方法。

几何辅助线的运用可以大大简化问题,使得问题的解决更加直观和简便。

下面将介绍一些常见的几何辅助线做法要点。

1.画角平分线:在解决与角度有关的问题时,常常可以运用角平分线作为辅助线。

角平分线是将一个角分成两个相等的角,可以帮助我们定位和分析几何图形。

例如,在证明两个三角形相似时,可以通过画角平分线来建立一系列相似的三角形,进而证明两个三角形相似。

2.画垂直平分线:在解决与线段有关的问题时,可以考虑使用垂直平分线。

垂直平分线可以将一条线段分成两个相等的部分,并且垂直于这条线段。

通过垂直平分线,我们可以找到两个点之间的中点,并且可以与其他几何图形相交,在解题过程中起到关键的作用。

3.画平行线或等边线:当我们需要证明两条线段平行,或者需要构造一个等边三角形时,可以考虑画平行线或等边线作为辅助线。

对于线段平行的证明,我们可以通过画一条与这两条线段相交的第三条线段,再利用三角形内角和的性质来证明线段平行。

对于等边三角形的构造,我们可以通过画一条等边线来确定等边三角形的位置和形状。

4.画高线和中线:高线和中线是与三角形有关的重要辅助线。

通过画一条从一个顶点到对立边和中点的线段,可以得到三角形中的高线和中线。

高线可以帮助我们定位和分析三角形的一些性质,比如垂直平分线段、证明三角形的相似或全等等。

中线则可以帮助我们找到三角形的重心,进而分析三角形的形状和性质。

几何辅助线在解决几何问题中起着非常重要的作用,它们可以帮助我们更好地理解和分析几何图形,简化问题,提高解题的效率和准确性。

在运用几何辅助线时,我们应当根据问题的具体要求和条件,选择适当的辅助线,并且合理运用几何知识,灵活运用辅助线的性质和特点,以达到解决问题的目的。

几何证明之常见辅助线做法--

几何证明之常见辅助线做法--

几何证明常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等.1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3、遇到角平分线在三种添辅助线的方法.(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形.(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形.4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”.5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.例题精讲第一部分:常见构造全等三角形方法例1、已知:如图,在四边形ABCD中,BC AB>,AD CD=,BD平分ABC∠.求证:180A C∠+∠=︒.例2、已知:如图所示,△ABC中,90C∠=︒,AC BC=,AD DB=,AE CF=.求证:DE DF=.相关练习:D为等腰Rt△ABC斜边AB的中点,DM⊥DN,DM、DN分别交BC、CA于点E、F.(1)当MDN∠绕点D转动时,求证:DE DF=;(2)若2AC=,求四边形DECF的面积.FEC AMD第二部分:倍长中线作法 【夯实基础】例:△ABC 中,AD 是BAC ∠的平分线,且BD CD =.求证:AB AC =.【方法精讲】常用辅助线添加方法——倍长中线△ABC 中方式1: 延长AD 到E ,AD 是BC 边中线 使DE=AD , 连接BE方式2:间接倍长作CF ⊥AD 于F , 延长MD到N ,作BE ⊥AD 的延长线于E 使DN=MD ,连接BE 连接CD【经典例题】例1、△ABC 中,5AB =,3AC =,求中线AD 的取值范围.例2、已知在△ABC 中,AB AC =,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF EF =.求证:BD CE =.例3、已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F .求证:AF EF =.例4、已知:如图,在△ABC 中,AB AC ≠,D 、E 在BC 上,且DE EC =,过D 作DF ∥BA 交AE 于点F ,DF AC =. 求证:AE 平分BAC ∠.例5、已知CD AB =,BDA BAD ∠=∠,AE 是△ABD 的中线.求证:C BAE ∠=∠.第 1 题图ABFDECEDCBA【融会贯通】1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,BAE EAF ∠=∠,AF 与DC 的延长线相交于点F .试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.2、如图,AD 为△ABC 的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F . 求证:BE CF EF +>.3、已知:如图,△ABC 中,90C ∠=︒,CM ⊥AB 于M ,AT 平分BAC ∠交CM 于D ,交BC 于T ,过D 作DE ∥AB 交BC 于E .求证:CT BE =.备选例题例1、如图,AD ∥BC ,EA 、EB 分别平分DAB ∠、CBA ∠,CD 过点E ,求证:AB AD BC =+.FEABCDDABCMTE例2、以的两边AB 、AC 为腰分别向外作等腰Rt △ABD 、Rt △ACE ,90BAD CAE ∠=∠=︒,连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系. (1)如图① 当△ABC 为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt △ABD 绕点A 沿逆时针方向旋转θ︒(090θ<<)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.自我测试1、在△ABC 中,高AD 和BE 交于H 点,且BH AC =,则ABC ∠= .2、如图,已知AE 平分BAC ∠,BE ⊥AE 于E ,ED ∥AC ,36BAE ∠=︒,那么BED ∠= .第2题 第3题3、如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E ,给出三个论断:①DE EF =;②AE CE =;③FC ∥AB ,以其中一个论断为结论,其余两个论断为条件,可作出三个命题,其中正确命题的个数是 .4、如图,在△ABC 中,AD 为BC 边上的中线,若5AB =,3AC =,则AD 的取值范围是 .第4题 第5题 第6题5、如图,在△ABC 中,AC BC =,90ACB ∠=︒.AD 平分BAC ∠,BE ⊥AD 交AC 的延长线于F ,E 为垂足.则结论:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1;B .2;C .3;D .4.6、如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AD >,下列结论中正确的是( )A .AB AD CB CD ->-; B .AB AD CB CD -=-;C .AB AD CB CD -<-; D .AB AD -与CB CD -的大小关系不确定. 7、考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有( ). A .4个; B .3个; C .2个; D .1个.8、如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE ⊥AB 于E ,并且1()2AE AB AD =+,求ABC ADC ∠+∠的度数.9、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE CF +与EF 的大小关系,并证明你的结论.10、如图,已知2AB CD AE BC DE ===+=,90ABC AED ∠=∠=︒,求五边形ABCDE 的面积.11、如图,在△ABC 中,60ABC ∠=︒,AD 、CE 分别平分BAC ∠、ACB ∠. 求证:AC AE CD =+.12、如图,已知90ABC DBE ∠=∠=︒,DB BE =,AB BC =. (1)求证:AD CE =,AD ⊥CE ;(2)若△DBE 绕点B 旋转到△ABC 外部,其他条件不变,则(1)中结论是否仍成立?请证明.。

全等三角形六种辅助线方法

全等三角形六种辅助线方法

全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。

在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。

下面将介绍全等三角形的六种辅助线方法。

一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。

利用直角三角形的性质,我们可以更方便地求解各种问题。

二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。

利用等角三角形的性质,我们可以更容易地求解各种问题。

三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。

利用这两个三角形的性质,我们可以更快速地解决问题。

四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。

利用相似三角形的性质,我们可以更高效地解决问题。

五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。

利用直角三角形的性质,我们可以更轻松地解决问题。

六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。

利用全等三角形的性质,我们可以更直接地解决问题。

通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。

这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。

同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。

在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。

全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。

这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。

希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档