电子时钟设计报告

合集下载

电子行业电子钟设计报告

电子行业电子钟设计报告

电子行业电子钟设计报告1. 引言在现代社会中,电子钟作为一种时间显示设备,被广泛应用于各个领域,例如办公室、学校、铁路站等。

本文将介绍电子行业电子钟的设计过程、功能要求以及原理。

2. 设计过程电子行业电子钟的设计过程可以分为如下几个步骤:2.1 确定需求首先,我们需要明确电子行业电子钟的功能需求。

根据电子行业的特点,我们需要考虑以下功能: - 精确的时间显示 - 大字体显示 - 高亮度显示- 易于操作和设置 - 耐用性和稳定性2.2 选取合适的硬件平台根据功能需求,我们需要选择合适的硬件平台来搭建电子钟。

一般来说,我们可以选择微控制器作为主控芯片,并结合数字显示器和时钟模块来实现计时和显示功能。

2.3 硬件电路设计在确定硬件平台后,我们需要设计电子钟的硬件电路。

电子时钟的主要电路包括时钟模块和显示模块。

时钟模块可以使用石英晶体振荡器来提供精确的时钟信号,而显示模块可以选择使用数码管或LCD来显示时间。

2.4 软件程序设计设计完硬件电路后,我们需要编写软件程序来控制硬件并实现各项功能。

软件程序需要包括时钟控制、显示控制、设置功能等。

2.5 调试和优化完成软件编程后,我们需要对系统进行调试和优化。

调试过程中,我们需要确保各项功能正常运作,并对性能进行测试和优化。

3. 功能要求根据电子行业的特点和用户需求,我们对电子行业电子钟的功能要求如下:3.1 精确的时间显示电子钟需要能够准确显示当前的时间,通过与标准时间源的同步,保证时间的准确性。

3.2 大字体显示电子钟需要采用大字体显示,以便用户能够清晰地看到时间。

3.3 高亮度显示电子钟需要具有高亮度的显示效果,以适应不同光照条件下的使用需求。

3.4 易于操作和设置电子钟需要配备简洁明了的操作界面,以方便用户进行时间设置和功能选择。

3.5 耐用性和稳定性电子钟需要具备较强的耐用性和稳定性,能够长时间稳定运行并抵抗外界干扰。

4. 原理电子行业电子钟的原理基于以下几个方面:4.1 时钟模块电子钟的时钟模块一般采用石英晶体振荡器作为时钟源。

简易电子时钟设计报告

简易电子时钟设计报告

简易电子时钟设计报告1. 引言电子时钟是一种用数字形式显示时间的时钟,广泛应用于日常生活中。

本文将介绍一种简易的电子时钟设计方案,包括硬件设计和软件实现。

该电子时钟采用数字LED显示屏,并通过开发板上的微控制器控制时间的显示。

2. 硬件设计2.1 硬件组成该电子时钟的主要硬件组成包括:- 数字LED显示屏:用于显示时钟的小时和分钟数。

该显示屏采用共阳极的数码管,每个数字有7个段可以点亮。

- 微控制器:使用STM32F103C8T6微控制器,具备足够的输入输出和处理能力。

- 调节按钮:用于调节时钟的小时和分钟数。

2.2 电路设计数字LED显示屏的每个段通过一个继电器和一个可控硅管来控制。

继电器通过微控制器的输出口来控制,可控硅管则通过脉宽调制(PWM)来控制。

微控制器通过GPIO口读取调节按钮的状态,根据按钮的操作来调整时钟的小时和分钟数。

同时,微控制器通过定时器中断来实现时钟的运行和显示。

电路设计如下图所示:![电子时钟电路设计图](clock_circuit_design.png)3. 软件实现3.1 开发环境本设计使用Keil MDK开发环境进行软件的编写和调试。

Keil MDK 是一款常用的嵌入式开发工具,提供了强大的代码编辑、编译和仿真功能。

3.2 时钟控制软件中定义了一个结构体`Time`,包含了小时数和分钟数的变量。

通过定时器中断,每隔一秒钟将时钟的秒数加一,并根据秒数的变化更新时钟的小时和分钟数。

具体实现如下:cstruct Time {int hour;int minute;int second;void TIM2_IRQHandler(void) {if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_Update); time.second++;if (time.second >= 60) {time.second = 0;time.minute++;}if (time.minute >= 60) {time.minute = 0;time.hour++;}if (time.hour >= 24) {time.hour = 0;}}3.3 数字显示根据时钟的小时和分钟数,将数字转换成BCD码,然后通过GPIO 口控制数字LED显示屏的每个段点亮或熄灭。

《电子技术》课程设计报告-数字电子钟设计

《电子技术》课程设计报告-数字电子钟设计

《电子技术》课程设计报告-数字电子钟设计一、背景介绍数字电子钟是一个实时的计时器,它可以按照设定的时刻精确地表示时间。

它使用微处理器和时钟芯片来处理时间。

因此,它可以被视为一个微处理器系统,系统中含有存储器、计数器、报警功能等。

最新的电子时钟如石英钟使用特制石英晶片来制定时钟。

由于石英可以产生完美的电振动,因此可以更准确地检测时钟改变。

二、数字电子钟的设计原理1、时钟驱动电子时钟的操作需要一定的时间和精度,主要是依靠特殊的驱动器来实现的。

驱动器有石英、硅、力学和光学等多种。

其中石英芯片是电子时钟的核心部件并且最常用。

可以让电子时钟每秒产生32千分之一秒的精度。

2、晶振电路晶体振荡器电路是将电能转换成振荡信号和时钟信号的基础电路。

在电子时钟中,晶振电路可以将3.3V的DC电源转换成正弦波信号。

3、控制电路控制电路是接收电子时钟信号,并将其转换为可读取的数字信号的电路。

它通过检测当前的时钟值与它预设的标准值,来决定是否需要重新设定。

4、显示电路为了使时间显示准确,显示电路需要有一定的能力,它可以将控制电路经过变换后的数字转化为可视的数字或符号信号,比如LED。

我们首先使用PIC16F628A微控制器来控制数字电子钟,PIC16F628A是一款常用的单片机,在实现数字电子钟的最基本功能时天然的具有很多优势,即具有丰富的I/O口及高性能的CPU。

而在驱动这个数字电子时钟时,我们选择了普通的石英晶振,其工作电压为3.3V,频率为32.768kHz。

它的作用是将电源电压转换成正弦波信号,然后此信号可以被PIC单片机读取,从而实现全电子时钟功能。

在处理每秒钟走过的时间时,我们使用计数器根据晶振输入的时钟信号逐渐计数,而当计数器计数到一定值时,PIC单片机就知道一秒的时间已经过去,然后继续进行计算.最后,我们选用一个4位共阳极数码管来将这些数据转化为显示数字的动作,它从数据地址上读取数据,然后一次送到一位,就可以实时显示电子时钟的实时时间。

单片机电子时钟课程设计设计报告

单片机电子时钟课程设计设计报告

单片机电子时钟设计一、作品功能介绍该作品是个性化电子钟设计,技术上主要用单片机(AT89S52)主控,6位LED数码显示,分别显示“小时:分钟:秒”。

该作品主要用于24小时计时显示,能整时报时,能作为秒表使用,能定时闹铃1分钟。

功能介绍:(1)上电以后自动进入计时状态,起始于00:00:00。

(2)设计键盘调整时间,完成时间设计,并设置闹钟。

(3)定时时间为1/100秒,可采用定时器实现。

(4)采用LED数码管显示,时、分,秒采用数字显示。

(5)采用24小时制,具有方便的时间调校功能。

(6)具有时钟和秒表的切换功能。

使用方法:开机后时钟在00:00:00起开始计时。

(1)长按进入调分状态:分单元闪烁,按加1,按减1.再长按进入时调整状态,时单元闪烁,加减调整同调分.按长按退出调整状态。

(2)(2)按进入设定闹时状态: 12:00: ,可进行分设定,按分加1,再按为时调整,按时加1,按调闹钟结束.在闹铃时可按停闹,不按闹铃1分钟。

(3)按下进入秒表状态:再按秒表又启动,按暂停,再按秒表清零,按退出秒表回到时钟状态。

二、电路原理图如原理图所示,硬件系统主要由单片机最小应用系统、LED数码管显示模块、电源模块、晶振模块、按键模块等组成。

电子时钟原理图各个模块设计1.单片机系统 AT89S52 AT89S52概述:是一款非常适合单片机初学者学习的单片机,它完全兼容传统的8051,8031的指令系统,他的运行速度要比8051快最高支持达33MHz的晶体震荡器,在此系统中使用12MHz的晶振。

AT89S52具有以下标准功能: 8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。

另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。

空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。

单片机多功能电子数字钟课程设计报告

单片机多功能电子数字钟课程设计报告

多功能电子数字钟设计数字钟在日常生活中最常见, 应用也最广泛。

本文主要就是设计一款数字钟, 以89C52单片机为核心, 配备液晶显示模块、时钟芯片、等功能模块。

数字钟采用24小时制方式显示时间, 定时信息以及年月日显示等功能。

文章的核心主要从硬件设计和软件编程两个大的方面。

硬件电路设计主要包括中央处理单元电路、时钟电路、人机接口电路、信号处理电路、执行电路等几部分组成。

软件用C语言来实现, 主要包括主程序、键盘扫描子程序、时间设置子程序等软件模块。

关键词单片机液晶显示器模块数字钟一硬件电路设计及描述;1.MCS-51单片机单片机是在一块硅片上集成了各种部件的微型计算机。

这些部件包括中央处理器CPU、数据存储器RAM、程序存储器ROM、定时器/计数器和多种I/O接口电路。

8051单片机的结构特点有以下几点: 8位CPU;片内振荡器及时钟电路; 32根I/O线;外部存储器ROM和RAM;寻址范围各64KB;两个16位的定时器/计数器; 5个中断源, 2个中断优先级;全双工串行口。

定时器/计数器8051内部有两个16位可编程定时器/计数器, 记为T0和T1。

16位是指他们都是由16个触发器构成, 故最大计数模值为2 -1。

可编程是指他们的工作方式由指令来设定, 或者当计数器来用, 或者当定时起来用, 并且计数(定时)的范围也可以由指令来设置。

这种控制功能是通过定时器方式控制寄存器TMOD来完成的。

在定时工作时, 时钟由单片机内部提供, 即系统时钟经过12分频后作为定时器的时钟。

技术工作时, 时钟脉冲由TO和T1输入。

中断系统8051的中断系统允许接受五个独立的中断源, 即两个外部中断申请, 两个定时器/计数器中断以及一个串行口中断。

外部中断申请通过INTO和INT1(即P3.2和P3.3)输入, 输入方式可以使电平触发(低电平有效), 也可以使边沿触发(下降沿有效)。

2.8051的芯片引脚如图1-2所示VCC: 供电电压。

单片机电子时钟课程设计实验报告(1)

单片机电子时钟课程设计实验报告(1)

单片机电子时钟课程设计实验报告(1)单片机电子时钟课程设计实验报告一、实验内容本次实验的主要内容是使用单片机设计一个电子时钟,通过编程控制单片机,实现时钟的显示、报时、闹钟等功能。

二、实验步骤1.硬件设计根据实验要求,搭建电子时钟的硬件电路,包括单片机、时钟模块、显示模块、按键模块等。

2.软件设计通过C语言编写单片机程序,用于实现时钟功能。

3.程序实现(1)时钟显示功能通过读取时钟模块的时间信息,在显示模块上显示当前时间。

(2)报时功能设置定时器,在每个整点时,通过发出对应的蜂鸣声,提示时间到达整点。

(3)闹钟功能设置闹钟时间和闹铃时间,在闹钟时间到达时,发出提示蜂鸣,并在屏幕上显示“闹钟时间到了”。

(4)时间设置功能通过按键模块实现时间的设置,包括设置小时数、分钟数、秒数等。

(5)年月日设置功能通过按键模块实现年月日的设置,包括设置年份、月份、日期等。

三、实验结果经过调试,电子时钟的各项功能都能够正常实现。

在运行过程中,时钟能够准确、稳定地显示当前时间,并在整点时提示时间到达整点。

在设定的闹铃时间到达时,能够发出提示蜂鸣,并在屏幕上显示“闹钟时间到了”。

同时,在需要设置时间和年月日信息时,也能够通过按键进行相应的设置操作。

四、实验感悟通过本次实验,我深刻体会到了单片机在电子设备中的广泛应用以及C 语言在程序设计中的重要性。

通过实验,我不仅掌握了单片机的硬件设计与编程技术,还学会了在设计电子设备时,应重视系统的稳定性与可靠性,并善于寻找调试过程中的问题并解决。

在今后的学习和工作中,我将继续加强对单片机及其应用的学习与掌握,努力提升自己的实践能力,为未来的科研与工作做好充分准备。

数字电子钟设计报告,完整版

数字电子钟设计报告,完整版

一、任务技术指标设计一个数字电子钟(1)能显示小时、分钟和秒;(2)能进行24小时和12小时转换;(3)具有小时和分钟的校时功能。

二、总体设计思想1.基本原理该数字钟由振荡器、分频器、计数器、译码器、显示器和校时电路等六部分组成。

振荡器产生的钟标信号送到分频器,分频电路将时标信号分成每秒一次的方波秒信号。

秒信号送入计数器进行计数,计数到60秒后向分进位,同理计数到60分后向小时进位,并将计数的结果以BCD-七段显示译码器显示出来。

计数选用十进制计数器74LS760D,校时电路通过选通开关对“时”和“分”进行校时。

二十四小时和十二小时的转换也可以用开关进行选择。

2.系统框图如图1:振荡器产生的钟标信号送到分频器,分频电路将时标信号送至计数器。

计数器通过译码显示把累计的结果以“时”、“分”、“秒”的数字显示出来。

整个过程中可选择用校时电路进行校时。

图1 系统框图三、具体设计1.总体设计电路该数字钟由振荡器、分频器、计数器、显示器和校时电路组成。

振荡器产生的钟标信号送到分频器,分频电路将时标信号分成每秒一次的方波秒信号。

秒信号送入计数器进行计数,计数到60秒后向分进位,同理分计数器计数到60分后向小时进位,并将计数的结果以BCD-七段显示译码器显示出来。

计数选用十进制计数器74LS760D,校时电路通过选通开关对“时”和“分”进行校时。

二十四小时和十二小时的转换可以用开关进行选择。

图2 总体电路图2.模块设计(1)振荡器的设计振荡器是数字钟的核心。

振荡器的稳定度及频率的精确度决定了数字钟计时的准确程度,通常选用石英晶体构成振荡器电路。

石英晶体振荡器的作用是产生时间标准信号。

因此,一般采用石英晶体振荡器经过分频得到这一时间脉冲信号。

电路中采用的是将石英晶体与对称式多谐振荡器中的耦合电容串联起来,就组成了如图3所示石英晶体多谐振荡器。

图3振荡器电路图和仿真波形图(2)分频器的设计对于分频器的设计选定74LS90集成芯片。

电子时钟设计报告

电子时钟设计报告

电子时钟设计报告电子时钟是一款具有非常广泛应用的时钟,它通过电子元器件来实现时间的显示和调节。

随着电子技术的不断发展,人们对电子时钟的要求也越来越高,如何设计一款性能稳定、视觉效果好的电子时钟成为了设计者们的一个重要任务。

本文将着重探讨电子时钟的设计报告,包括设计原理、电路图、主要组成部分、工艺流程等方面内容,以帮助设计者更好地理解电子时钟的设计方法与原理。

一、设计原理电子时钟的工作原理是将系统时钟的时分秒等信息经过处理(包括计数、译码、调制等过程)后,驱动数码管、发声器等输出设备进行显示或报警。

其设计的核心是时钟IC,一般使用时钟芯片作为时钟电路的核心,将各个元器件关联起来,形成一个完整的电路。

二、电路图电子时钟的电路图包含了时钟IC、晶振、电源、数码管、发声器等主要组成部分。

其中,晶振对于时钟的稳定性非常重要,它能提供高精度的振荡波形,保证整个时钟系统的稳定性和准确性;数码管是时钟的显示部分,负责将数字表示在数码管上;发声器用于报时提醒。

下图是一个示例电路图:三、主要组成部分1、时钟IC:它是电子时钟的核心部分,负责处理和计数时间信号,然后把时间信号转换成对应的数字信号,驱动数码管。

2、晶振:它提供了高精度的振荡波形,保证整个时钟系统的稳定性和准确性。

3、电源:它负责为整个时钟系统提供电能,是整个电路的动力来源。

4、数码管:它是时钟的显示部分,负责将时间数字显示在数码管上,提供时分秒等不同的显示格式。

5、发声器:它用于报时提醒,将报时信号转换成声音输出。

四、工艺流程电子时钟的工艺流程包含了设计、PCB 布局、元器件采购、组装及测试等环节。

其中,设计和PCB 布局是电子时钟工艺流程的核心环节。

1、设计:根据用户需求,确定电子时钟的功能和使用场景,然后选择适合的电路图,搭建电路图,并进行仿真调试。

这一阶段要尽可能地避免因为电路选择不当、元器件不匹配等问题导致的功能失效或提前故障。

2、PCB 布局:将电子时钟的各个元器件布置在PCB 上,合理布局,缩短信号通路,提高性能稳定性。

单片机电子时钟课程设计报告

单片机电子时钟课程设计报告

单片机电子时钟课程设计报告一、设计目的。

本课程设计旨在通过单片机技术的应用,设计并制作一个简单的电子时钟。

通过这一设计,学生将能够掌握单片机的基本原理和应用,培养学生的动手能力和创新意识,提高学生的实际操作能力。

二、设计原理。

本电子时钟采用单片机作为控制核心,通过晶振产生的时钟信号来实现时间的计时和显示。

利用数码管来显示小时和分钟,通过按键来调整时间。

同时,通过蜂鸣器发出报时信号,实现基本的闹钟功能。

三、设计方案。

1. 硬件设计。

(1)单片机选择,本设计选用常见的51单片机作为控制核心,具有成本低、易于编程的特点。

(2)时钟电路,采用晶振作为时钟信号源,通过单片机的定时器来实现时间的计时。

(3)显示模块,采用数码管来显示小时和分钟,通过数码管的扫描显示来实现时间的动态显示。

(4)按键输入,设计按键来调整时间,包括调整小时和分钟。

(5)报时功能,通过蜂鸣器来实现基本的报时功能,可以设置闹钟时间。

2. 软件设计。

(1)时钟控制,通过单片机的定时器来实现时间的计时和更新。

(2)显示控制,设计数码管的扫描显示程序,实现时间的动态显示。

(3)按键处理,设计按键扫描程序,实现对时间的调整。

(4)报时功能,设计蜂鸣器的报时程序,实现基本的闹钟功能。

四、设计实现。

1. 硬件实现。

根据上述设计方案,完成了电子时钟的硬件连接和布线,保证各个模块之间的正常通讯和工作。

2. 软件实现。

编写了单片机的程序,实现了时钟的计时、显示和控制功能,保证了电子时钟的正常运行。

五、实验结果。

经过调试,电子时钟能够准确显示当前的时间,并能够通过按键调整时间和设置闹钟功能,报时功能也能够正常工作。

六、总结与展望。

通过本课程设计,学生掌握了单片机的基本原理和应用,培养了动手能力和创新意识。

在今后的学习和工作中,学生将能够更好地应用单片机技术,设计和制作更加复杂的电子产品。

同时,也为学生今后的科研和创新工作奠定了良好的基础。

单片机实验电子钟报告

单片机实验电子钟报告

实验四 电子钟(定时器、中断综合实验)一、实验目的熟悉MCS51类CPU 的定时器、中断系统编程方法, 了解定时器的应用、实时程序的设计和调试技巧。

二、实验内容编写一个时钟程序, 产生一个50ms 的定时中断, 对定时中断计数, 将时、分、秒显示在数码管上。

三、程序框图主程序中断处理电子钟程序框图四、实验步骤 1.连线说明: E5 区A0 ←→ A3 区A0 E5 区CS ←→ A3 区CS5 E5 区CLK ←→ B2 区2MHzE5 区A.B.C.D ←→ G5 区A.B.C.D (排线每个8 位, 注意高低位一致) 2.时间显示在数码管上五、程序清单 ms50 DATA 31H ;存放多少个50ms sec DATA 32H ;秒 min DATA 33H ;分hour DATA 34H ;时buffer DATA 35H ;显示缓冲区EXTRN CODE(Display8)ORG 0000HLJMP STARORG 000BH ;定时器T0中断处理入口地址LJMP INT_Timer0ORG 0100HSTAR: MOV SP,#60H ;堆栈MOV ms50,A ;清零ms50MOV hour,#12 ;设定初值: 12:59:50MOV min,#59MOV sec,#50MOV TH0,#60 ;定时中断计数器初值MOV TL0,#176 ;定时50msMOV TMOD,#1 ;定时器0: 方式一MOV IE,#82H ;允许定时器0中断SETB TR0 ;开定时器T0STAR1: LCALL Display ;调用显示JNB F0,$CLR F0SJMP STAR1 ;需要重新显示时间;中断服务程序INT_Timer0: MOV TL0,#176-5MOV TH0,#60PUSH 01HMOV R1,#ms50INC @R1 ;50ms单元加1CJNE @R1,#20,ExitIntMOV @R1,#0 ;恢复初值INC R1INC @R1 ;秒加1CJNE @R1,#60,ExitInt1MOV @R1,#0INC R1INC @R1 ;分加1CJNE @R1,#60,ExitInt1MOV @R1,#0INC R1INC @R1 ;时加1CJNE @R1,#24,ExitInt1MOV @R1,#0ExitInt1: SETB F0ExitInt: POP 01HRETIHexToBCD: MOV B,#10DIV ABMOV @R0,BINC R0MOV @R0,AINC R0RETDisplay: MOV R0,#bufferMOV A,secACALL HexToBCDMOV @R0,#10H ;第三位不显示INC R0MOV A,minACALL HexToBCDMOV @R0,#10H ;第六位不显示INC R0MOV A,hourACALL HexToBCDMOV R0,#bufferLCALL Display8RETENDEXTRN CODE (Display8)BUFFER DA TA 60HORG 0000HAJMP MAINORG 000BHAJMP IT0PMAIN: MOV TMOD,#01HMOV 20H,#20HCLR AMOV 52H,A ;计数和显示MOV 51H,A ;空间清零MOV 50H,#50HMOV 40H,AMOV 41H,AMOV 43H,AMOV 44H,AMOV 46H,AMOV 47H,ASETB ET0SETB EAMOV TH0,#9EH ;计数器赋初值MOV TL0,#58HSETB TR0MOV 45H,#11HMOV 42H,#11HMOV R0,#BUFFERLCALL Display8HERE: AJMP HEREIT0P: PUSH PSWPUSH ACCMOV TH0,#9EH ;重新转入计数值MOV TL0,#58HDJNZ 20H,RETURN ;计数不满20返回MOV 20H,#20H ;重置中断次数MOV A,#01H ;秒加1ADD A,50HDA A ;秒单元十进制调制PUSH ACCCJNE A,#60H,SWS ;是否到60秒, 否则返回MOV A,#00HSWS: MOV R5,ASW AP AANL A,#0FHMOV 41H,AMOV A,R5ANL A,#0FHMOV 40H,A ;满60秒, 秒单元清零LCALL AAAPOP ACCMOV 50H,ACJNE A,#60H,RETURNMOV 50H,#00HMOV A,#01H ;分单元加1ADD A,51H ;分单元十进制调整DA APUSH ACCCJNE A,#60H,SWS1;是否到60分, 否则返回MOV A,#00HSWS1: MOV R5,A·SW AP AANL A,#0FHMOV 44H,AMOV A,R5ANL A,#0FHMOV 43H,ALCALL AAAPOP ACCMOV 51H,ACJNE A,#60H,RETURNMOV 51H,#00H ;满60分, 分单元清零MOV A,#01H ;时单元加1ADD A,52HDA APUSH ACCCJNE A,#24H,SWS2 ;是否到24小时, 否则返回MOV A,#00HSWS2: MOV R5,ASW AP AANL A,#0FHMOV 47H,AMOV A,R5ANL A,#0FHMOV 46H,ALCALL AAAPOP ACCMOV 52H,ACJNE A,#24H,RETURNMOV 52H,#00H ;满24小时, 时单元清零RETURN:POP PSWPOP ACCRETIAAA: MOV R0,#40H ;计数器的值赋MOV R1,#60H ;给显示空间MOV R5,#08HABC: MOV A,@R0MOV @R1,AINC R1INC R0DJNZ R5,ABCMOV R0,#BUFFERLCALL Display8RETEND六、思考题1.电子钟走时精度与哪些有关系?中断程序中给TL0赋值为什么与初始化程序中不一样?2、使用定时器方式二, 重新编写程序。

单片机电子时钟课程设计报告

单片机电子时钟课程设计报告

单片机电子时钟课程设计报告一、引言。

随着科技的不断发展,电子产品已经渗透到我们生活的方方面面。

其中,电子时钟作为一种常见的电子产品,被广泛应用于各个领域。

本课程设计旨在通过单片机技术,设计并实现一个功能强大、稳定可靠的电子时钟,以满足人们对精准时间的需求。

二、设计方案。

1. 硬件设计。

本课程设计选用了51单片机作为核心处理器,配合数码管显示模块、时钟芯片等外围器件,构成了电子时钟的硬件平台。

通过对硬件电路的设计和布线,实现了对时间的精准显示和控制。

2. 软件设计。

在软件设计方面,本课程设计采用了C语言作为编程语言,利用单片机的定时器、中断等功能模块,编写了精确的时钟控制程序。

通过对时钟的分、秒、小时的精准控制,实现了电子时钟的正常运行和显示。

三、功能实现。

1. 时间显示。

经过精心设计的软件程序,实现了对时间的精准显示。

时钟的显示界面清晰明了,数字显示稳定可靠,能够满足人们对时间的基本需求。

2. 时间调整。

通过设置按键,可以对时钟进行时间的调整。

用户可以根据实际需求,随时对时钟的时间进行调整,保证时钟的准确性。

3. 闹铃功能。

本课程设计还实现了闹铃功能,用户可以通过设置闹铃时间,让时钟在设定的时间点发出提示音,提醒用户重要事件的发生。

四、实验结果。

经过实际测试,本课程设计的电子时钟能够稳定可靠地运行,显示精准,功能完善。

时钟的硬件和软件设计均达到了预期的要求,符合设计的初衷和要求。

五、总结与展望。

本课程设计通过对单片机电子时钟的硬件和软件设计,成功实现了一个功能强大、稳定可靠的电子时钟。

但是,仍有一些功能可以进一步完善和优化,比如增加温湿度显示功能、实现无线时间校准等。

未来,我们将继续努力,不断完善电子时钟的功能,为人们的生活带来更多的便利。

六、参考文献。

[1] 《单片机原理与接口技术》,XXX,XXX出版社,2008。

[2] 《C语言程序设计》,XXX,XXX出版社,2010。

七、致谢。

感谢所有为本课程设计提供帮助和支持的老师和同学们,在他们的帮助下,本课程设计得以顺利完成。

电子时钟的电子设计实习报告

电子时钟的电子设计实习报告

电子时钟的电子设计实习报告一、实习目的与要求本次电子设计实习的主要目的是让我们了解和掌握电子时钟的设计与制作过程,培养我们动手实践能力和团队协作精神。

要求我们能够根据给定的功能要求,设计并制作一个电子时钟,实现小时、分钟和秒的显示功能。

二、实习内容与过程1. 需求分析:根据实习任务,我们首先进行了需求分析,明确了电子时钟需要实现的功能,包括小时、分钟和秒的显示,以及时间的设定和调整等功能。

2. 方案设计:在需求分析的基础上,我们设计了电子时钟的总体方案。

采用了MCU(Micro Control Unit,微控制器)作为核心控制器,实现时间的计算和显示控制。

同时,选择了合适的时钟芯片和显示模块,完成了硬件选型。

3. 硬件制作:根据方案设计,我们进行了电路原理图的设计,并选择了合适的元器件进行硬件制作。

主要包括MCU、时钟芯片、显示模块、按键模块等。

4. 软件编程:我们编写了MCU的程序代码,实现了时间的计算、显示控制以及时间的设定和调整等功能。

同时,通过调试和优化代码,保证了时钟的准确性和稳定性。

5. 系统测试:完成了硬件和软件的集成后,我们对电子时钟进行了系统测试。

测试内容包括时间的准确性、显示功能的正常运行以及时间的设定和调整等功能。

三、实习成果与总结通过本次实习,我们成功设计并制作了一个电子时钟,实现了小时、分钟和秒的显示功能,以及时间的设定和调整等功能。

在实习过程中,我们不仅掌握了电子时钟的设计方法和制作流程,还培养了团队协作和动手实践能力。

通过本次实习,我们深刻认识到了电子设计的重要性和实践意义。

在今后的学习和工作中,我们将不断努力,不断提高自己的电子设计能力,为我国的电子产业做出贡献。

EDA设计(II)实验报告数字电子钟

EDA设计(II)实验报告数字电子钟

EDA设计(II)实验报告-数字电子钟实验报告:数字电子钟一、实验目的本实验旨在通过使用EDA设计软件,设计并实现一个具有时、分、秒功能的数字电子钟。

通过学习使用EDA工具,掌握数字电路设计的基本步骤和技巧,培养实践能力和创新思维。

二、实验原理数字电子钟是一种以数字形式显示时间的装置,它利用了时、分、秒的计时原理。

核心部分包括一个时钟发生器,用于产生标准时间信号,以及一个计数器,用于对时间进行计数并显示。

此外,还需要一些控制逻辑来控制时、分、秒的进位和显示。

三、实验步骤1.设计准备:在开始设计之前,首先明确设计要求和功能。

考虑到实验的复杂性和可实现性,我们采用最简单的电路结构,即基于计数器和译码器的数字电子钟。

2.绘制电路图:使用EDA设计软件(如Quartus II)绘制电路图。

首先创建新项目,然后添加必要的元件(如74LS192计数器、74LS248译码器等),并根据设计要求连接元件。

3.编写程序:使用硬件描述语言(如VHDL或Verilog)编写计数器和译码器的程序。

确保程序能够实现所需的功能,并进行仿真测试。

4.编译和下载:将程序编译成可下载的配置文件,然后下载到FPGA开发板上。

5.硬件测试:连接开发板到PC,启动程序,观察数字电子钟的显示情况。

检查时间是否准确,各部分功能是否正常。

6.性能评估:对数字电子钟的性能进行评估,包括计时精度、稳定性等指标。

根据评估结果对设计进行优化。

四、实验结果与分析1.设计结果:经过上述步骤,我们成功地设计并实现了一个基于FPGA的数字电子钟。

通过EDA软件和硬件描述语言,我们实现了计数器和译码器的功能,并完成了程序的编写和下载。

2.性能分析:经过测试,我们的数字电子钟具有较高的计时精度和稳定性。

时间显示准确,各部分功能正常。

这表明我们的设计是成功的。

3.优化方向:虽然我们的数字电子钟已经具有较好的性能,但仍有一些方面可以优化。

例如,可以考虑添加更多的功能,如闹钟、温度显示等;也可以进一步优化电路结构,降低成本和提高性能。

数字电子钟设计实训报告

数字电子钟设计实训报告

数字电子钟的设计【摘要】本系统由晶体振荡器、分频器、计数器、译码器、七段译码显示器和校准、报时电路组成,采用了CMOS或TTL系列(双列直插式)中小规模集成芯片。

总体方案设计由主体电路和扩展电路两大部分组成。

其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能,进行了各单元电路设计,总体安装、制作及调试。

数字钟是一种计时装置,不仅能替代指针式钟表,还可以运用到定时控制、自动计时及时间程序控制等方面,应用广泛。

【关键词】石英晶振、分频器、计数器、译码器、七段译码显示器、校准、整点报时。

第一章数字电子钟总体方案1.1数字电子钟总体方案的确定数字电子钟组成一般由振荡器、分频器、计数器、译码器及显示器等几部分组成。

石英振荡器产生的时标信号送到分频器,分频电路将时标信号分成秒脉冲,秒脉冲送入计数器进行计数,并把累计结果以“时”、“分”、“秒”的数字显示出来。

“秒”的显示由两级计数器和译码器组成的六十进制计数器电路实现,“分“的显示电路与“秒”相同。

“时”的显示由两极计数器和译码器组成的二十四进制计数器电路实现。

秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。

将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。

“时计数器”采用24进制计时器,可实现对一天24小时的累计。

译码显示电路将“时”、“分”、“秒”计数器的输出状态0进行七段显示译码器译码,通过六位七段译码显示器显示出来。

整点报时电路根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。

校时电路时用来对“时”、“分”显示数字进行校对调整的。

数字电子钟总体方案框图图1.1.1 数字电子钟组成框图1.2数字电子钟电路组成数字电子钟组成一般由振荡器、分频器、计数器、译码器及七段译码显示器等几部分组成(如图1.2.1所示)。

电子技术数字时钟报告电路原理图

电子技术数字时钟报告电路原理图

电子技术课程设计报告设计题目:数字电子时钟班级:学生姓名:学号:指导老师:完成时间:一.设计题目:数字电子时钟二.设计目的:1.熟悉集成电路的引脚安排和各芯片的逻辑功能及使用方法;2.了解数字电子钟的组成及工作原理 ;3.熟悉数字电子钟的设计与制作;三、设计任务及要求用常用的数字芯片设计一个数字电子钟,具体要求如下:1、以24小时为一个计时周期;2、具有“时”、“分”、“秒”数字显示;3、数码管显示电路;4、具有校时功能;5、整点前10秒,数字钟会自动报时,以示提醒;6、用PROTEUS画出电路原理图并仿真验证;四、设计步骤:电路图可分解为:1.脉冲产生电路;2.计时电路;3.显示电路;4校时电路;5整点报时电路;1.脉冲电路是由一个555定时器构成的一秒脉冲,即频率为1HZ;电路图如下:2.计时电路即是计数电路,通过计数器集成芯片如:74LS192 、74LS161、74LS163等完成对秒脉冲的计数,考虑到计数的进制,本设计采用的是74LS192;秒钟个位计到9进10时,秒钟个位回0,秒钟十位进1,秒钟计到59,进60时,秒钟回00,分钟进1;分钟个位计到9进10时,分钟个位回0,分钟十位进1,分钟计到59,进60时,分钟回00,时钟进1;时钟个位记到9进10时,时钟个位回0,时钟十位进1,当时钟计数到23进24时,时钟回00.电路图如下:3.显示电路是完成各个计数器的计数结果的显示,由显示译码器和数码管组成,译码器选用的是4511七段显示译码器,LED数码管选用的是共阴极七段数码管,数码管要加限流电阻,本设计采用的是400欧姆的电阻;电路图如下:4.校时电路通过RS触发器及与非门和与门对时和分进行校准,电路图如下:5.整点报时电路即在时间出现整点的前几秒,数值时钟会自动提醒,本设计采用连续蜂鸣声;根据要求,电路应在整点前10秒开始整点报时,也就是每个小时的59分50秒开始报时,元器件有两个三输入一输出的与门,一个两输入一输出的与门,发生器件选择蜂鸣器;具体电路图如下:六.设计用到的元器件有:与非门74LS00,与门74LS08,74LS11,7段共阴极数码管,计数器芯片74LS192,555定时器,4511译码器,电阻,电容,二极管在电路开始工作时,对计数电路进行清零时会使用到,单刀双掷开关;设计电路图如报告夹纸;七.仿真测试:1.电路计时仿真电路开始计数时:计数从1秒到10秒的进位,从59秒到一分钟的进位,从1分到10分的进位,从59分到一小时的进位,从1小时到10小时的进位,从23小时到24小时的进位,然后重新开始由此循环,便完成了24小时循环计时功能,仿真结果如下:1. 7.2.8.3. 9.4. 10.5. 11.6. 12.13.2.电路报时仿真由电路图可知,U18:A和U18:B的6个输入引脚都为高电平时,蜂鸣器才会通电并发声,当计数器计数到59分50秒是,要求开始报时,而59分59秒时,还在报时,也就是说只需要检测分钟数和秒计数的十位,5的BCD码是4和1,9的BCD码是8和1,一共需要6个测端口,也就是上述的6个输入端口,开始报时时,报时电路状态如图:3.校时电路仿真正常计时校时U15:D和u15:C是一个选通电路,12角接的是秒的进位信号,9角接的是秒的脉冲信号,当SW1接到下引脚时,U15:D接通,u15:C关闭,进位信号通过,计数器的分技术正常计时;当SW1接到上引脚时,U15:D关闭,u15:C接通,校时的秒脉冲通过,便实现了分钟校时,时钟的校时与分钟校时大致相同;八.心得体会以及故障解决设计过程中遇到了一个问题,就是在校时电路开始工作时,校时的选择电路会给分钟和时钟的个位一个进位信号,也就是仿真开始时电路的分钟和时钟个位会有一个1;为了解决这个问题,我采用的是在电路开始工作时,同时给分钟和时钟的个位一个高电平的清零信号来解决,由于时钟的个位和十位的清零端是连在一起的,再加上分钟的个位,在校时小时的时候且当小时跳完24小时时,会给分钟的个位一个清零信号,这时在电路中加一个单向导通的二极管变解决了,具体加在那儿,请参考电路图;在设计过称中,我们也许遇到的问题不止一个两个,而我们要做的是通过努力去解决它;首先我们要具备丰富的基础知识,这是要在学习和实际生活中积累而成的;其次,我们还有身边的朋友同学老师可以请教,俗话说:三人行,必有我师;最后,我们还有网络,当今是个信息时代,网络承载信息的传递,而且信息量非常大,所以我们也可以适当的利用网络资源;通过这次对数字钟的设计与制作,让我了解了设计电路的步骤,也让我了解了关于数字钟的原理与设计理念,要设计一个电路总要先用仿真,仿真成功之后才实际接线;但是仿真是在一个比较好的状态下工作,而电路在实际工作中需要考虑到一些驱动和限流电阻等等,因为,再实际接线中有着各种各样的条件制约和干扰;而且,在仿真中无法成功的电路接法,在实际中因为芯片本身的特性而能够成功;所以,在设计时应考虑两者的差异,从中找出最适合的设计方法;这次学习让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解,才能在实际生活和工作中应用起来;。

51单片机电子时钟课程设计报告

51单片机电子时钟课程设计报告

第一部分设计任务和要求1.1单片机课程设计内容 (2)1.2单片机课程设计要求 (2)1.3系统运行流程 (2)第二部分设计方案2.1总体设计方案说明 (2)2.2系统方框图 (3)2.3系统流程图 (3)第三部分主要器材及基本简介3.1主要器材 (4)3.2主要器材简介 (4)第四部分系统硬件设计4.1最小系统 (6)4.2LCD显示电路 (6)4.3键盘输入电路 (7)4.4蜂鸣器和LED灯电路 (7)第五部分仿真电路图与仿真结果 (8)第六部分课程设计总结 (8)第七部分参考文献 (9)附录A 实物图附录B 系统源程序第一部分设计任务和要求1.1单片机课程设计内容利用STC89C51单片机和LCD1602电子显示屏实现电子时钟,可由按键进行调时和12/24小时切换。

1.2单片机课程设计要求1.能实现年、月、日、星期、时、分、秒的显示;2.能实现调时功能;3.能实现12/24小时制切换;4.能实现8 : 00—22 : 00整点报时功能。

1.3系统运行流程程序首先进行初始化,在主程序的循环程序中首先调用数据处理程序,然后调用显示程序,在判断是否有按键按下。

若有按键按下则转到相应的功能程序执行,没有按键按下则调用时间程序。

若没到则循环执行。

计时中断服务程序完成秒的计时及向分钟、小时的进位和星期、年、月、日的进位。

调时闪烁中断服务程序用于被调单元的闪烁显示。

调时程序用于调整分钟、小时、星期、日、月、年,主要由主函数组成通过对相关子程序的调用,如图所示。

实现了对时间的设置和修改、LCD显示数值等主要功能。

相关的调整是靠对功能键的判断来实现的。

第二部分设计方案2.1总体设计方案说明1.程序设计及调试根据单片机课程设计内容和要求,完成Protues仿真电路的设计和用Keil软件编写程序,并进行仿真模拟调试。

2.硬件焊接及调试根据仿真电路图完成电路板的焊接,并进行软、硬件的调试,只到达到预期目的。

3.后期处理对设计过程进行总结,完成设计报告。

数字电子钟设计报告(显示、调整、报时、万年历、闹钟、秒表)

数字电子钟设计报告(显示、调整、报时、万年历、闹钟、秒表)

目录一、引言 (2)二、方案论证选择 (3)2.1设计要求 (3)1.基本要求 (3)2.发挥部分 (3)2.2系统框图 (3)分钟+调整 (3)秒钟 (3)时钟+调整 (3)秒表 (3)闹钟功能 (3)定时报闹 (3)万年历功能 (3)三、电路仿真与设计 (4)3.1核心芯片及芯片管脚图 (4)3.2时、分计数电路模块设计 (4)3.3切换电路模块设计 (5)3.4调整电路模块设计 (6)(1)方案一:利用74125的三态。

(6)(2)方案二:利用74162的置数端(LOAD),置数调整。

(7)3.5整点报时电路模块设计 (8)3.6秒表电路模块设计 (9)3.6定时报闹电路模块设计 (11)3.7万年历电路模块设计 (12)四、遇到的问题.......................................................................... 错误!未定义书签。

五、心得体会.............................................................................. 错误!未定义书签。

一、引言电子钟亦称数显钟(数字显示钟),是一种用数字电路技术实现时、分、秒计时的装置,与机械时钟相比,直观性为其主要显著特点,且因非机械驱动,具有更长的使用寿命,相较石英钟的石英机芯驱动,更具准确性。

电子钟已成为人们日常生活中必不可少的必需品,广泛用于个人家庭以及车站、码头、剧院、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大地方便。

相对于其他时钟类型,它的特点可归结为“两强一弱”:比机械钟强在观时显著,比石英钟强在走时准确,但是它的弱点为显时较为单调。

数字钟的核心即数字电子技术课程中有关时序逻辑电路、组合逻辑电路的内容。

这些也是我们学电子的学生应该掌握的最基本知识。

通过这次试验,不仅可以加深我对数字电子技术课程的理解,也可以提高自己的动手能力以及实际问题中解决问题的能力,培养对数字电子技术的兴趣。

数字电子钟的设计报告

数字电子钟的设计报告

数字电子钟的设计报告设计报告:数字电子钟1.引言:数字电子钟是一种数字显示时间的钟表。

它采用数字显示技术,以数字方式传达时间信息,相比于传统的机械钟表,数字电子钟更加准确、方便,并且可以提供更多附加功能。

本设计报告将介绍数字电子钟的设计方案。

2.设计目标:设计数字电子钟的目标是能够准确地显示时间,并具备以下功能:(1) 显示当前时间,包括小时、分钟、秒钟,并提供24小时制和12小时制的选择;(2) 提供闹钟功能,用户可以设定闹钟时间,并在到达指定时间时提醒用户;(3) 提供定时器功能,用户可以设定定时器时间,并在倒计时结束时提醒用户;(4) 显示日期和星期;(5) 提供时间调整功能,用户可以进行时间调整。

3.设计方案:(1) 显示模块:采用数码管或者液晶显示屏作为显示模块,通过驱动电路将数字信号转换为对应的数字显示;(2) 时钟芯片:使用时钟芯片来提供准确的时间数据,并通过串行通信接口与主控芯片进行通信;(3) 主控芯片:采用单片机或者微处理器作为主控芯片,负责接收和处理用户的输入,并控制显示模块的显示;(4) 按键模块:用户可以通过按键模块来进行时间设定、闹钟设定等操作,并通过主控芯片进行处理;(5) 蜂鸣器:用于提醒用户设定的闹钟时间或定时器时间到达。

4.功能实现:(1) 时间显示功能:主控芯片从时钟芯片获取时间数据,并将数据转换为数码管或者液晶显示屏上的数字显示;(2) 闹钟功能:用户可以通过按键模块设定闹钟时间,主控芯片与时钟芯片进行比较,当到达设定时间时,蜂鸣器会发出提醒声音;(3) 定时器功能:用户可以通过按键模块设定定时器时间,主控芯片进行倒计时,并在倒计时结束时发出提醒声音;(4) 日期和星期显示:主控芯片从时钟芯片获取日期和星期数据,并将数据转换为数码管或者液晶显示屏上的文字显示;(5) 时间调整功能:用户可以通过按键模块进行时间调整,主控芯片与时钟芯片进行通信,更新时间数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子时钟设计报告1 设计任务与要求1.1 设计任务用STM32设计一个数字电子钟,采用LCD12864来显示并修改,时间或闹铃。

1.2 设计要求1)显示功能:可显示时间等基本功能。

2)具有闹铃功能。

3)按键改变时间。

4)按键改变闹铃。

5)温度的显示。

2 方案设计与论证整个系统用stm32单片机作为中央控制器,由单片机执行采集内部RTC值,时钟信号通过单片机I/O口传给TFT彩屏,单片机模块控制驱动模块驱动显示模块,通过显示模块来实现信号的输出。

系统设有按键模块用于对时间进行调整及扩展多个小键盘。

2.1 显示电路方案一:TFT彩屏。

显示质量高,没有电磁辐射,可视面积大,应用范围广,画面效果好,数字式接口,“身材”匀称小巧,功耗小。

方案二:数码管动态显示。

动态显示,即各位数码管轮流点亮,对于显示器各位数码管,每隔一段延时时间循环点亮一次。

利用人的视觉暂留功能可以看到整个显示,但须保证扫描速度足够快,人的视觉暂留功能才可察觉不到字符闪烁。

显示器的亮度与导通电流、点亮时间及间隔时间的比例有关。

调整参数可以实现较高稳定度的显示。

动态显示节省了I/O口,降低了能耗。

从节省单片机芯片I/O口和降低能耗角度出发,本数字电子钟数码管显示选择设计采用方案一,既TFT彩屏显示。

2.2 电源电路本数字电子钟设计所需电源电压为直流、电压值大小5V的电压源直接用mini USB通过电脑USB接口供电。

2.3 按键电路本数字电子钟设计所需按键用于进行显示时间的调整与设置扩展的小键盘。

单片机芯片4个I/O口可与按键直接相连,通过编程,单片机芯片即可控制按键接口电平的高低,即按键的开与关,以达到用按键进行显示时间的调整与设置扩展的小键盘的设计要求。

2.4 RTC时钟Stm32自带RTC模块,实时时钟是一个独立的定时器。

RTC模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。

修改计数器的值可以重新设置系统当前的时间和日期RTC模块和时钟配置系统(RCC_BDCR寄存器)处于后备区域,即在系统复位或从待机模式唤醒后,RTC的设置和时间维持不变。

系统复位后,对后备寄存器和RTC的访问被禁止,这是为了防止对后备区域(BKP)的意外写操作。

在RTC预分频器余数寄存器(RTC_DIVH / RTC_DIVL)赋值可改变时间,在RTC闹钟寄存器(RTC_ALRH/RTC_ALRL)中改变闹铃时间。

2.5 TFT 彩屏显示电路数字电子钟设计的显示模块用一个TFT彩屏来实现。

2.6 温度传感器模块DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。

主要根据应用场合的不同而改变其外观。

封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。

耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

技术性能描述:①独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

②测温范围-55℃~+125℃,固有测温误差(注意,不是分辨率,这里之前是错误的)0.5℃。

③支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。

④工作电源: 3~5V/DC (可以数据线寄生电源)⑤在使用中不需要任何外围元件。

3 硬件电路设计图1 stm32f103引脚图图2 指示灯与复位电路图3 稳压电路,变压电路,晶震图4 实物图4 软件设计主程序如下#include <stm32f10x_lib.h>#include "rtc.h"#include "sys.h"#include "usart.h"#include "delay.h"#include "led.h"#include "key.h"#include "exti.h"#include "wdg.h"#include "timer.h"#include "lcd.h"#include "rtc.h"#include "wkup.h"#include "adc.h"#include "dma.h"#include "24cxx.h"#include "flash.h"#include "touch.h"#include "24l01.h"#include "mmc_sd.h"#include "remote.h"#include "ds18b20.h"const u8 *COMPILED_DATE=__DATE__;//获得编译日期const u8 *COMPILED_TIME=__TIME__;//获得编译时间const u8* Week[7]={"Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"}; int main(void){u8 t=0;short temp;Stm32_Clock_Init(9);//系统时钟设置delay_init(72);//延时初始化uart_init(72,9600); //串口1初始化LED_Init();LCD_Init();RTC_Init();//RTC_Set(2015,7,15,20,27,50); //设置时间POINT_COLOR=RED;//设置字体为红色LCD_ShowString(30,50," CCNU - NERCEL");LCD_ShowString(30,70," Zhu Xiaobin 2014112786");LCD_ShowString(30,90,"Jiang Xiaomei 2014112787");//LCD_ShowString(30,110,"2015/07/15");//显示时间POINT_COLOR=BLUE;//设置字体为蓝色LCD_ShowString(60,130," - - ");LCD_ShowString(60,162," : : ");while(DS18B20_Init())//初始化DS18B20,兼检测18B20{LCD_ShowString(60,180,"DS18B20 Check Failed!");delay_ms(500);LCD_ShowString(60,180,"Please Check! ");delay_ms(500);LED0=!LED0;//DS0闪烁}LCD_ShowString(60,180,"DS18B20 Ready! ");POINT_COLOR=BLUE;//设置字体为蓝色LCD_ShowString(60,200, "Temperate: . C");while(1){if(t!=timer.sec){t=timer.sec;LCD_ShowNum(60,130,timer.w_year,4,16);LCD_ShowNum(100,130,timer.w_month,2,16);LCD_ShowNum(124,130,timer.w_date,2,16);switch(timer.week){case 0:LCD_ShowString(60,148,"Sunday ");break;case 1:LCD_ShowString(60,148,"Monday ");break;case 2:LCD_ShowString(60,148,"Tuesday ");break;case 3:LCD_ShowString(60,148,"Wednesday");break;case 4:LCD_ShowString(60,148,"Thursday ");break;case 5:LCD_ShowString(60,148,"Friday ");break;case 6:LCD_ShowString(60,148,"Saturday ");break;}LCD_ShowNum(60,162,timer.hour,2,16);LCD_ShowNum(84,162,timer.min,2,16);LCD_ShowNum(108,162,timer.sec,2,16);LED0=!LED0;}delay_ms(10);temp=DS18B20_Get_Temp();if(temp<0){temp=-temp;LCD_ShowChar(140,200,'-',16,0);//显示负号}LCD_ShowNum(148,200,temp/10,2,16);//显示温度值LCD_ShowNum(172,200,temp%10,1,16);//显示温度值//printf("t1:%d\n",temp);delay_ms(200);LED0=!LED0;};}参考文献[1] 康华光.电子技术基础模拟部分第四版[M].北京:高等教育出版社,1999.6.[2] 阎石.数字电子技术基础第四版[M].北京:高等教育出版社,1999.6.[3]王福瑞等.单片微机测控系统设计大全[M].北京航空航天大学出版社,1998(331-337).[4]宁改娣,杨拴科.DSP控制器原理及应用[M].科学出版社,2002.[5] 周立功等.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2005.1.[6] 周立功等.ARM嵌入式系统实验教程[M].北京:北京航空航天大学出版社,2005.1.[7] 罗浩等.一种新的基于ARM的数据采集系统设计[J].信阳师范学院学报(自然科学版),2006.4.[8] 秦伟等.基于ARM 处理器的数据采集系统的设计[J].自动化技术与应用.2006 年第10 期.[9] 杜春雷.ARM体系结构与编程.清华大学出版社,2003.。

相关文档
最新文档