数学模型floyd算法
floyd算法步骤详解
![floyd算法步骤详解](https://img.taocdn.com/s3/m/e4bb30cfaff8941ea76e58fafab069dc502247a2.png)
floyd算法步骤详解Floyd算法步骤详解Floyd算法,又称为弗洛伊德算法,是一种解决任意两点间最短路径的算法。
该算法的核心思想是动态规划,通过遍历每一个中间节点来更新每条路径上的最短距离。
下面,我们来详细了解一下Floyd算法的步骤。
步骤1:构造邻接矩阵我们需要构造出一个邻接矩阵,用来表示地图上的各个节点之间的连接情况。
邻接矩阵一般用二维数组来表示,其中数组的下标表示节点编号,数组的值表示两个节点之间的距离或权值。
如果两个节点之间没有连接,则可以用一个很大的数表示它们之间的距离。
步骤2:初始化距离矩阵接下来,我们需要初始化一个距离矩阵,用来存储任意两点之间的最短距离。
距离矩阵同样也是一个二维数组,其中数组的下标表示起点和终点的节点编号,数组的值表示两个节点之间的最短距离。
初始化的时候,如果两个节点之间有连接,则距离矩阵中的对应位置存储的值为它们之间的距离,否则设置为一个很大的数。
步骤3:遍历中间节点接下来,我们需要遍历每一个中间节点,更新距离矩阵中的值。
具体的遍历方式是,从起点到终点遍历所有的中间节点,如果中间节点可以使起点和终点之间的距离更短,则更新距离矩阵中的值。
步骤4:更新距离矩阵在遍历中间节点的过程中,我们需要不断地更新距离矩阵中的值。
具体的更新方式是,如果起点到中间节点的距离加上中间节点到终点的距离小于起点到终点的距离,则更新距离矩阵中对应的值。
步骤5:输出最短路径在完成所有的遍历之后,距离矩阵中存储的就是任意两点之间的最短距离。
我们可以根据这个矩阵来输出任意两点之间的最短路径。
具体的输出方式是,从起点开始,依次找到距离它最近的节点,直到到达终点为止。
总结Floyd算法是一种经典的解决任意两点间最短路径的算法,虽然它的时间复杂度比较高,但是它的思想和实现方式都非常简单,容易理解。
如果你想深入学习算法和数据结构,那么Floyd算法是一个非常好的入门选择。
佛洛伊德算法
![佛洛伊德算法](https://img.taocdn.com/s3/m/59509741b42acfc789eb172ded630b1c59ee9b88.png)
佛洛伊德算法
佛洛伊德算法(Floyd算法)是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
该算法的基本思想是通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
具体步骤如下:
1.初始化S。
矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。
实际上,就是将图的原始矩阵复制到S中。
2.以顶点A(第1个顶点)为中介点,若a[i][j]>a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。
请注意,在具体使用中,可能需要根据问题的具体情况对该算法进行适当的调整。
Floyd算法
![Floyd算法](https://img.taocdn.com/s3/m/c00ae731cd1755270722192e453610661fd95a78.png)
Floyd算法Floyd算法是一种经典的图论算法,用于求解带权有向图中任意两个顶点之间的最短路径问题。
该算法由美国数学家罗伯特·弗洛伊德(Robert Floyd)于1962年提出,因此得名为Floyd算法。
Floyd算法是一种动态规划算法,它采用了“分治”的思想,将问题分解为更小的子问题,然后逐步解决子问题,最终得到解决整个问题的结果。
本文将从算法的背景、基本思想、实现方法及优缺点等方面对Floyd 算法进行详细阐述和分析。
一、算法的背景在讲Floyd算法之前,我们先来了解一下最短路径问题。
顾名思义,最短路径问题就是在给定图中找到两个给定节点之间的一条最短路径,也就是路径上各边权值之和最小的路径。
这个问题在现实生活中有很多应用,比如网络路由、地图路径规划、航线安排等等。
在数学和计算机科学领域中,我们可以通过图论的方法来描述和解决这个问题。
一般来说,给定一张带权有向图G=(V, E),其中V表示节点的集合,E表示边的集合。
每条边E(i,j)的权重为w(i,j),表示从节点i到节点j的距离或成本。
那么最短路径问题就是在图中找到从节点s到节点t的一条最短路径P,并且P上的边权之和最小。
最初求解的思路是按照类似深度优先搜索的方式,逐个遍历所有路径,然后依次比较它们的距离,找到最短路径。
但这种方式显然是不可行的,因为它的时间复杂度非常高。
所以,我们需要设计一种更高效的算法,以求得最短路径问题的最优解。
二、算法的基本思想Floyd算法就是一种高效地解决最短路径问题的方法。
它采用了“动态规划”的思想,通过逐步求解子问题,最终得到完整的最短路径。
而解决子问题的方式则是采用了“分治”的思想,将问题分解为更小的子问题,然后逐步解决。
具体地说,Floyd算法采用了“中转节点”的概念,我们可以将问题转化为这样一个子问题:对于每个节点i和节点j,假设我们已经知道了它们之间的最短路径长度为d[i][j],那么考虑一下节点k作为中转节点,它可以为i和j之间的路径P提供一个“中转服务”,将P拆分为两条路径:i-->k和k-->j。
简介Floyd算法
![简介Floyd算法](https://img.taocdn.com/s3/m/cb47971f53ea551810a6f524ccbff121dd36c53a.png)
简介Floyd 算法⽬录1. 定义Floyd 算法是⼀种⽤于寻找给定的加权图中顶点间最短路径,是经典的多源最短路径算法,可以有效地处理有向图或负权的最短路径问题,同时也被⽤于计算有向图的传递闭包。
Floyd 算法的时间复杂度为 O (N 3),空间复杂度为 O (N 2)。
2. 优缺点优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单。
缺点:时间复杂度⽐较⾼,不是和计算⼤量数据。
3. 基本思想Floyd 算法属于动态规划算法,即寻找节点 i 到节点 j 的最短路径。
Step 1: 初始距离定义 n 节点⽹络的邻接矩阵 A n ×n ,矩阵中的元素为 a i ,j 为节点 i 到节点 j 的⼀步的直线距离。
令 A (0)=A ,其初始元素为 a (0)i ,j 则该距离有如下三种情况:a (0)i ,j =c i ,j , i ,j 相连0, i =j∞, i ,j 不相连其中,节点 i , j 之间有直线连接时,则 a (0)i ,j 为其距离值 c i ,j ;节点 i 到⾃⾝的距离为 0;节点 i , j 之间没有直线连接时,则 a (0)i ,j 则为 ∞,如下图:则该初始邻接矩阵 A 为:即节点0与节点0⾃⾝距离值为0,即 A [0][0]=0;节点0与节点1之间有直线连接,距离值为5,即 A [0][1]=5;节点0与节点2之间没有直线连接,则距离值为 ∞,即 A [0][2]=∞;节点0与节点3之间有直线连接,距离值为7,即 A [0][3]=7 ……其他节点间的初始距离可依次写出,即为该邻接矩阵 A 。
Step 2: 借中转节点迭代找最短路径节点 i , j 间⼀步达不到时,则需要在两节点之间通过其他节点(如节点 k )作连接:在 A 矩阵上做 n 次迭代,k =1,⋯,n ,第 k 次迭代a k i ,j =min (a k −1i ,j ,a k −1i ,k +a k −1k ,j )即在节点 i 和节点 j 之间找到⼀条最短距离的路径,如下图:图中的节点 i 到节点 j 之间的直线距离 (i →j ) 为 6,但经过节点 k 作中转后,节点 i 到节点 j 之间的直线距离 (i →k →j ) 为 2+3=5,因此 a k i ,j =min (6,5)=5。
Floyd
![Floyd](https://img.taocdn.com/s3/m/3944f920aaea998fcc220e9f.png)
每对顶点间的最短路径——弗洛伊德(Floyd)算法解决此问题有两种方法:其一是分别以图中每个顶点为源点共调用n次Dijkstra算法;其二是采用Floyd算法。
两种算法的时间复杂度均为O(n3),但后者形式上比较简单。
Floyd算法的基本思想:(1)利用二维数组A[1..n-1][1..n-1], A[i][j]记录当前vi到vj的最短路径长度,数组A的初值等于图的代权临街矩阵;(2)集合S记录当前允许的中间顶点,初值S=Φ;(3)依次向S中加入v0 ,v1…vn-1,每加入一个顶点,对A[i][j]进行一次修正:设S={v0 ,v1…vk-1},加入vk,则A(k)[i][j] = min{ A(k-1)[i][j],A(k-1)[i][k]+A(k-1)[k][j]}。
A(k)[i][j]的含义:允许中间顶点的序号最大为k时从vi到vj的最短路径长度。
A(n-1)[i][j]就是Dijkstra算法的基本思路是:假设每个点都有一对标号(dj, pj),其中dj是从起源点s到点j的最短路径的长度(从顶点到其本身的最短路径是零路(没有弧的路),其长度等于零);pj则是从s到j的最短路径中j点的前一点。
求解从起源点s到点j的最短路径算法的基本过程如下:1) 初始化。
起源点设置为:①ds=0, ps为空;②所有其他点: di=∞, pi= ;③标记起源点s,记k=s,其他所有点设为未标记的。
2) 检验从所有已标记的点k到其直接连接的未标记的点j的距离,并设置:dj=min〔dj, dk+lkj〕式中,lkj是从点k到j的直接连接距离。
3) 选取下一个点。
从所有未标记的结点中,选取dj 中最小的一个i:di=min〔dj, 所有未标记的点j〕点i就被选为最短路径中的一点,并设为已标记的。
4) 找到点i的前一点。
从已标记的点中找到直接连接到点i的点j*,作为前一点,设置:i=j*5) 标记点i。
如果所有点已标记,则算法完全推出,否则,记k=i,转到2) 再继续。
floyd算法例题 a1 a2 a3 a4
![floyd算法例题 a1 a2 a3 a4](https://img.taocdn.com/s3/m/b47102ff1b37f111f18583d049649b6648d70932.png)
Floyd算法是一种用来寻找图中所有节点对之间最短路径的算法,它的核心思想是动态规划。
Floyd算法的基本原理是:假设图中有n个节点,将所有节点对之间的最短路径长度初始化为它们之间的直接连线长度,然后逐步更新这些距离,直到得到所有节点对之间的最短路径。
在本文中,我们将通过四个例题a1、a2、a3、a4来讲解Floyd算法的具体应用,以帮助读者更好地理解和掌握这一算法。
1. 例题a1【题目】有一个带权有向图,节点数为n,边数为m,求图中任意两点之间的最短路径长度。
【输入】第一行为两个整数n和m,分别表示节点数和边数。
接下来m行,每行包含三个整数a、b、c,表示图中存在一条从节点a到节点b的有向边,边的权值为c。
【输出】输出一个n×n的矩阵,其中第i行第j列的元素表示节点i到节点j的最短路径长度。
如果两点之间不存在路径,则输出一个特定的值(例如9999)。
【样例】输入:5 71 2 21 3 32 3 22 4 53 4 13 5 64 5 3输出:0 2 3 7 99999 0 2 5 89999 9999 0 3 69999 9999 9999 0 39999 9999 9999 9999 0【分析】根据给定的图和节点数,首先初始化一个n×n的矩阵,然后将直接连线的路径长度填入矩阵中。
接下来,利用Floyd算法逐步更新矩阵中的最短路径长度,直到得到所有节点对之间的最短路径长度。
2. 例题a2【题目】有一个带权有向图,节点数为n,边数为m,求图中是否存在负权环。
【输入】第一行为两个整数n和m,分别表示节点数和边数。
接下来m行,每行包含三个整数a、b、c,表示图中存在一条从节点a到节点b的有向边,边的权值为c。
【输出】若存在负权环,则输出"存在负权环",否则输出"不存在负权环"。
【样例】输入:3 31 2 -12 3 -23 1 -3输出:存在负权环【分析】我们可以利用Floyd算法求出图中任意两点之间的最短路径长度,然后再验证是否存在负权环。
floyd算法
![floyd算法](https://img.taocdn.com/s3/m/facd3127b4daa58da0114af3.png)
Floyd算法正如我们所知道的,Floyd算法用于求最短路径。
Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3)。
Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A 经过若干个节点X到B。
所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。
很简单吧,代码看起来可能像下面这样:?但是这里我们要注意循环的嵌套顺序,如果把检查所有节点X放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把i到j的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。
让我们来看一个例子,看下图:图中红色的数字代表边的权重。
如果我们在最内层检查所有节点X,那么对于A->B,我们只能发现一条路径,就是A->B,路径距离为9。
而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。
造成错误的原因就是我们把检查所有节点X放在最内层,造成过早的把A到B的最短路径确定下来了,当确定A->B的最短路径时Dis(AC)尚未被计算。
所以,我们需要改写循环顺序,如下:?这样一来,对于每一个节点X,我们都会把所有的i到j处理完毕后才继续检查下一个节点。
那么接下来的问题就是,我们如何找出最短路径呢?这里需要借助一个辅助数组Path,它是这样使用的:Path(AB)的值如果为P,则表示A节点到B节点的最短路径是A->...->P->B。
数学模型floyd算法
![数学模型floyd算法](https://img.taocdn.com/s3/m/b028873ffab069dc5122010e.png)
选址问题--中心问题
例 2 某城市要建立一个消防站,为该市所属的七个区服务, 如图所示.问应设在那个区,才能使它至最远区的路径最短.
(1)用 Floyd 算法求出距离矩阵 D=(dij ) .
(2) 计算在各点vi 设立服务设施的
最大服务距离S (vi ) .
S (vi
)
max{d
1 j
ij
}
i 1,2,
m =132 78 70 92 70 106 130 ans =70
Tsinghua University
Uncertainty Theory Laboratory
14
实验八、最佳灾情巡视路线(节选部分)
实验内容: 求出下图中O到其它各点的最短路线(要求求
出最短路线及其最短距离) (节选了教材上337面图中的16个点:即15、
[d,r]=floyd(w)
S=max(d’) %求矩阵各列的最大值
s=min(S)
0 3 5 10 7 5.5 7 3 0 2 7 4 2.5 4
5
2
0
5
2
4.5
6
D 10 7 5 0 3 7 8.5
7
4
2
3
0
4
5.5
5.5 2.5 4.5 7 4 0 1.5
7
4
6
8.5 5.5 1.5
Uncertainty Theory Laboratory
2
算法的基本思想
直接在图的带权邻接矩阵中用插入顶点的方法
依次构造出 个矩阵 最后得到的矩阵 D(
D(1)、 D(2)、… 、D( ),使
)成为图的距离矩阵,同时也
求出插入点矩阵以便得到两点间的最短路径.
Floyd算法详解
![Floyd算法详解](https://img.taocdn.com/s3/m/40636027a22d7375a417866fb84ae45c3b35c205.png)
Floyd算法详解Floyd-WarshallFloyd算法,是⼀种著名的多源最短路算法。
核⼼思想:⽤邻接矩阵存储图,核⼼代码为三重循环,第⼀层枚举中间点k,⼆三层分别枚举起始点i与⽬标点j。
然后判断经过中间点k后,i与j间的路程是否会减⼩。
如果是,就更新i,j之间的最短路。
for(int k=1;k<=n;k++)for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)if(e[i][j]>e[i][k]+e[k][j])e[i][j]=e[i][k]+e[k][j];需要注意的是,为了保证更新成功,需要将e数组初始化为⽆穷⼤。
同时为了防⽌程序做⽆意义的到⾃⼰的最短路,将每个节点到本⾝的距离初始化为0。
算法复杂度:该算法的空间复杂度为n^2(不算优秀,但勉强接受),时间复杂度O(n^3)(呵呵)。
完整代码:#include<iostream>#include<cstring>#include<cstdio>using namespace std;const int inf=99999999;int n,m,x,y,z,s;int dis[1001][1001];int main(){scanf("%d%d%d",&n,&m,&s);for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)if(i!=j) dis[i][j]=inf;else dis[i][j]=0;for(int i=1;i<=m;i++){scanf("%d%d%d",&x,&y,&z);dis[x][y]=dis[y][x]=z;}for(int k=1;k<=n;k++)for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)if(dis[i][k]+dis[k][j]<dis[i][j])dis[i][j]=dis[i][k]+dis[k][j];for(int i=1;i<=n;i++)printf("%d ",dis[s][i]);return0;}算法优化:for(int k = 1; k <= n; k++)for(int i = 1; i <= n; i++)for(int j = 1; j <= i; j++)dis[i][j] = min(dis[i][j], dis[i][k]+dis[k][j]),dis[j][i] = dis[i][j];这⾥利⽤了矩阵的对称性,只更新⼀半矩阵即可。
弗洛伊德算法实用技巧
![弗洛伊德算法实用技巧](https://img.taocdn.com/s3/m/755e595da9114431b90d6c85ec3a87c240288acb.png)
弗洛伊德算法实用技巧弗洛伊德算法(Floyd's Algorithm),又称为最短路径算法,是一种用于求解图中各顶点之间最短路径的算法。
它以其简洁高效的特点而被广泛应用于图论和网络优化领域。
本文将介绍弗洛伊德算法的原理及其在实际问题中的应用技巧。
一、弗洛伊德算法原理弗洛伊德算法的核心思想是采用动态规划的方法,通过逐步更新每一对顶点之间的最短路径长度,直到得到所有顶点之间的最短路径。
具体步骤如下:1. 初始化最短路径矩阵:以邻接矩阵的形式表示图的边权重,初始化一个大小为n×n的矩阵D,其中n为顶点个数。
若顶点i和顶点j之间存在边,则D[i][j]的值为边的权重;若不存在边,则D[i][j]的值为一个较大的数(如∞)。
2. 进行顶点中转:对于每一对顶点i和j,以顶点k作为中转点,更新D[i][j]的值,使其等于D[i][k] + D[k][j]和D[i][j]中的较小值。
即,若通过顶点k的路径更短,则更新D[i][j]的值。
3. 重复进行中转:依次选择每一个顶点作为中转点,进行步骤2的操作。
当所有顶点均作为中转点完成一次中转后,得到的矩阵D即为最终的最短路径矩阵。
二、弗洛伊德算法应用技巧1. 求解最短路径:弗洛伊德算法可以用于求解有向图或无向图中任意两点之间的最短路径。
通过获取最短路径矩阵D,即可得到任意一对顶点之间的最短路径长度。
2. 检测负权回路:在求解最短路径的过程中,若在最终的最短路径矩阵D中存在D[i][i]为负数的情况,则说明图中存在负权回路,即图中存在一个环路,其权重之和为负数。
该特性可用于识别图中是否存在负权回路。
3. 网络拓扑排序:弗洛伊德算法可以用于进行网络拓扑排序。
在求解最短路径的过程中,通过检测矩阵中的负权回路,可以得到顶点的拓扑排序结果。
拓扑排序用于评估任务执行的顺序,从而实现任务的优化调度。
4. 交通网络优化:弗洛伊德算法可以用于优化交通网络的设计。
通过将道路或路径作为图中的边,顶点表示城市或路口,权重表示通行距离或时间,利用最短路径矩阵D,可以评估不同路径的通行效率,从而优化道路规划和交通流量调度。
佛洛依德路径平滑算法(floyd)
![佛洛依德路径平滑算法(floyd)](https://img.taocdn.com/s3/m/4c02c3788f9951e79b89680203d8ce2f0066652e.png)
佛洛依德路径平滑算法(floyd) 常见的a*算法的结果是⼀串⽤来表⽰所经过的路径点坐标。
但是这样的路径通常是有“锯齿”的,并不符合现实中的智能表现。
因此,需要进⼀步的进⾏平滑处理,⽐如佛洛依德算法~ 算法原理很简单,分为两步: 1.去掉相邻的共线的点 2.去掉多余的拐弯的点 第⼀步实现起来很简单,只需要遍历⼀下,计算两个向量的⽅向是否相同。
第⼆步的实现稍微⿇烦⼀点,遍历所有的点,去掉两个可以直接通过的点之间的点。
有点绕。
其实是很经典的画直线算法,找两个点作为端点画⼀条线,这条先经过的⽹格如果都是可同⾏的,那么我们就认为在路径中这两个点中间的那些点是多余的。
其实第⼆步就可以完成优化,但是计算量⽐较⼤。
所以先通过第⼀步来减少⼀部分计算量~下⾯是代码:#region floyd//----------------------------------------弗洛伊德路径平滑--------------------------------------//public List<Vector3> Floyd( List<Vector3> path){if (path == null){return path;}int len = path.Count;//去掉同⼀条线上的点。
if (len > 2){Vector3 vector = path[len -1] - path[len - 2];Vector3 tempvector;for (int i = len - 3; i>= 0; i--){tempvector = path[i+1] - path[i];if (Vector3.Cross(vector, tempvector).y == 0f){path.RemoveAt(i+1);}else{vector = tempvector;}}}//去掉⽆⽤拐点len = path.Count;for (int i = len-1; i >= 0; i--){for (int j = 0; j<= i-1; j++){if (CheckCrossNoteWalkable(path[i],path[j])){for (int k = i-1; k>=j; k--){path.RemoveAt(k);}i=j;//len = path.Count;break;}}}return path;}float currentY; // ⽤于检测攀爬与下落⾼度//判断路径上是否有障碍物public bool CheckCrossNoteWalkable(Vector3 p1, Vector3 p2){currentY = p1.y; //记录初始⾼度,⽤于检测是否可通过bool changexz = Mathf.Abs(p2.z - p1.z) > Mathf.Abs(p2.x - p1.x);if (changexz){float temp = p1.x;p1.x = p1.z;p1.z = temp;temp = p2.x;p2.x = p2.z;p2.z = temp;}if (!Checkwalkable(changexz, p1.x, p1.z)){return false;}float stepX = p2.x > p1.x ? Tilesize : (p2.x < p1.x ? -Tilesize : 0);float stepY = p2.y > p1.y ? Tilesize : (p2.y < p1.y ? -Tilesize : 0);float deltay = Tilesize * ( (p2.z - p1.z) / Mathf.Abs(p2.x - p1.x) );float nowX = p1.x + stepX/2;float nowY = p1.z - stepY/2;float CheckY = nowY;while (nowX != p2.x){if(!Checkwalkable(changexz, nowX, CheckY)){return false;}nowY += deltay;if(nowY >= CheckY + stepY){CheckY += stepY;if (!Checkwalkable(changexz, nowX, CheckY)){return false;}}nowX += stepX;}return true;}private bool Checkwalkable(bool changeXZ, float x, float z){int mapx = (MapStartPosition.x < 0F) ? Mathf.FloorToInt(((x + Mathf.Abs(MapStartPosition.x)) / Tilesize)) : Mathf.FloorToInt((x - MapStartPosition.x) / Tilesize);int mapz = (MapStartPosition.y < 0F) ? Mathf.FloorToInt(((z + Mathf.Abs(MapStartPosition.y)) / Tilesize)) : Mathf.FloorToInt((z - MapStartPosition.y) / Tilesize);if (mapx < 0 || mapz < 0 || mapx >= Map.GetLength(0) || mapz >= Map.GetLength(1)){return false;}Node note;if (changeXZ){note = Map[mapz, mapx];}else{note = Map[mapx, mapz];}bool ret = note. walkable && ( (note.yCoord - currentY <= ClimbLimit && note.yCoord >= currentY) || (currentY - note.yCoord <= MaxFalldownHeight && currentY >= note.yCoord) );if (ret){currentY = note.yCoord;}return ret;}#endregion end floyd。
算法12--最短路径--弗洛伊德(Floyd)算法
![算法12--最短路径--弗洛伊德(Floyd)算法](https://img.taocdn.com/s3/m/ee862ad989eb172ded63b7ce.png)
D(2) [i][j] = min{D(1) [i][j], D(1) [i][2]+D(1) [2][j]}
6
0123
V2 8 V3
8
0 1 1920 43 0
3
4 52
ADA(((-32101)))==
8
11021 0 98 2 3 45 0 687
1 2
9
V0
V1
8
8
90 110 6 0 3
12
5.算法实现
• 图用邻接矩阵存储 • edge[ ][ ]存放最短路径长度 • path[i][j]是从Vi到Vj的最短路径上Vj前一顶点序号
void floyd ( ){
for ( int i = 0; i < n; i++ ) //矩阵dist与path初始化
for ( int j = 0; j < n; j++ ) { //置A(-1)
例题:
6 A4 3 11
C
初始:
0 6
4 0
11 2
3 0 B
路径: BA CA
AB AC BC
2 0 4 11
加入A: 6 0 2 37 0
AB AC
路径: BA
BC
CA CAB
04 6 加入B: 6 0 2
37 0
AB ABC
路径: BA
BC
CA CAB
04 6 加入C: 5 0 2
37 0
AB ABC
8
0092 3 45 0 687
1 2
9
V0
V1
8
8
0160 3
1
以D(0)为基础,以V1为中间顶点,求从Vi,到Vj的最短
Floyed(floyd)算法详解
![Floyed(floyd)算法详解](https://img.taocdn.com/s3/m/e4ec0053326c1eb91a37f111f18583d049640fe0.png)
Floyed(floyd)算法详解是真懂还是假懂?Floyed算法:是最短路径算法可以说是最慢的⼀个。
原理:O(n^3)的for循环,对每⼀个中间节点k做松弛(寻找更短路径);但它适合算多源最短路径,即任意两点间的距离。
但spfa,迪杰斯特拉就只能算⼀个点到其他任⼀点的最短路径。
关键在于,我们真的真正理解floyed吗?就是因为它太短了,以⾄于我们有些⼈(神仙除外)看代码后看到这样⼀个语句:d[i][j]=min(d[i][j],d[i][k]+d[k][j])也就是说,对于每⼀个中转点k来说,进⾏O(n^2)的松弛,⼀定能找到最短路径。
虽不是最优,但是松弛次数来凑!这⼤概就是我们(之前的我)的⽆须证明的,想当然的理解,并背下来了它,以便以后想TLE时⽤。
(O(n^3));so?Floyed本质是dp;递推公式:(图⽚源⾃⽹络⼤佬)众所周知,dp(动态规划)要满⾜⽆后效性。
也就是说。
还是先举个例⼦:我们设k取某⼀个k1时满⾜k1为最终点i到j最短路经过的点,但是在外层循环到k1时d[i][k1]和d[k1][j]并没有取到最⼩值,因为k1只能取⼀次,那么往后再循环是不是就取不到k1了呢??答案当然不是的(不然这个算法为什么正确?)还是那句话,dp⽆后效性,也就是说,k不单单是枚举,还是⼀个状态变量,找i和j之间通过编号不超过k(k从1到n)的节点的最短路径(⼀定要注意,这⾥是当前最短路径,k之前的已经变成最短路了,对于每⼀个k,我们都进⾏了n^2的充分枚举(ij),已保证当前已经满⾜对从1到k的节点最优,那么当k枚举完所有点,那么⼀定是最优的了换句话说,在d[i][j]=min(d[i][j],d[i][k]+d[k][j])公式中,因为k之前已经作为i或者j被枚举过了;,d[i][k]和d[k][j]已经被1到k枚举过了那么他们⼀定是1到k节点中最优的路径,等枚举到n时,所有的都枚举完了,那么它们就是基本代码:for(k=1;k<=n;k++) //中转节点for(i=1;i<=n;i++) 第⼆层循环for(j=1;j<=n;j++) 第三层循环if(e[i][j]>e[i][k]+e[k][j] )如果直接到达⽐通过k这个中转接点到达的距离短e[i][j]=e[i][k]+e[k][j];那么就更新松弛算法复杂度O(n^3),这也是为什么平常很少使⽤的原因。
Floyd算法
![Floyd算法](https://img.taocdn.com/s3/m/b90d2c3f376baf1ffc4fadcc.png)
floyd算法每对顶点间的最短路径——弗洛伊德(Floyd)算法Floyd算法的基本思想:(1)利用二维数组A[1..n-1][1..n-1], A[i][j]记录当前vi到vj的最短路径长度,数组A的初值等于图的带权邻接矩阵;(2)集合S记录当前允许的中间顶点,初值S=Φ;(3)依次向S中加入v0 ,v1… vn-1,每加入一个顶点,对A[i][j]进行一次修正:设S={v0 ,v1… vk-1},加入vk,则A(k)[i][j] = min{ A(k-1)[i][j],A(k-1)[i][k]+A(k-1)[k][j]}。
A(k)[i][j]的含义:允许中间顶点的序号最大为k时从vi到vj的最短路径长度。
A(n-1)[i][j]就是vi到vj的最短路径长度。
//////////////////////////////////////////////////////////////////////////////////////用Floyd算法求每对顶点间的最短路径#include<iostream>#include<cstdlib>using namespace std;#define vex 3//定义结点的个数#define max 10000//设定一个极大值void main(){int D[vex][vex][vex];//定义一个三维数组,用来一次一次的迭代,按FLOYD算法求出结点之间的最短路径int arcs[vex][vex]={0,4,11,6,0,2,3,max,0};//邻接矩阵int i,j,k;for(i=0;i<vex;i++)for(j=0;j<vex;j++)D[-1][i][j]=arcs[i][j];//为了使下边算法顺利进行,对数组之前内存空间进行初始化for(k=0;k<vex;k++)for(i=0;i<vex;i++)for(j=0;j<vex;j++)if(D[k-1][i][j]<D[k-1][i][k]+D[k-1][k][j])D[k][i][j]=D[k-1][i][j];elseD[k][i][j]=D[k-1][i][k]+D[k-1][k][j];//求出每次迭代最小值,最后一次即为两个顶点之间的最短路径//打印邻接矩阵cout<<"邻接矩阵:"<<endl;for(i=0;i<vex;i++){for(j=0;j<vex;j++)cout<<arcs[i][j]<<"\t";cout<<endl;}//打印最短路径cout<<endl<<"点对间最短路径:"<<endl; for(i=0;i<vex;i++){for(j=0;j<vex;j++)cout<<D[vex-1][i][j]<<" ";cout<<endl;}}。
floyd算法流程
![floyd算法流程](https://img.taocdn.com/s3/m/7e5f2f4e6ad97f192279168884868762caaebbfd.png)
floyd算法流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 初始化距离矩阵 D 和路径矩阵 P。
距离矩阵 D 用于存储图中各顶点之间的最短距离,路径矩阵 P 用于存储最短路径上的前驱顶点。
Floyd算法
![Floyd算法](https://img.taocdn.com/s3/m/dee22ffd9e3143323968939b.png)
Floyd算法Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。
核心思路:通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。
从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。
矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path 来记录两点间的最短路径。
算法过程:把图用邻接距阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。
定义一个距阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。
把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。
在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。
根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。
优缺点分析:Floyd算法适用于APSP(All Pairs Shortest Paths),稠密图效果最佳,边权可正可负。
此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。
优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单;缺点:时间复杂度比较高,不适合计算大量数据。
Floyd算法的基本思想:(1)利用二维数组A[1..n-1][1..n-1], A[i][j]记录当前vi到vj的最短路径长度,数组A的初值等于图的代权临街矩阵;(2)集合S记录当前允许的中间顶点,初值S=Φ;(3)依次向S中加入v0 ,v1… vn-1,每加入一个顶点,对A[i][j]进行一次修正:设S={v0 ,v1… vk-1},加入vk,则A(k)[i][j] = min{ A(k-1)[i][j],A(k-1)[i][k]+A(k-1)[k][j]}。
数学建模_ 图论模型_
![数学建模_ 图论模型_](https://img.taocdn.com/s3/m/7c79efd06edb6f1afe001f08.png)
图论中最短路算法与程序实现图论中的最短路问题(包括无向图和有向图)是一个基本且常见的问题。
主要的算法有Dijkstra 算法和Floyd 算法。
Dijkstra 算法是求出指定两点之间的最短路,算法复杂度为 Floyd 算法是求出任意两点之间的最短路,算法复杂度为 2()O n 3()O n1.Dijkstra算法2. Floyd算法算法程序(Matlab)为:for k=1:nfor i=1 :nfor j=1:nt=B(i,k)+B(k,j);if t<B(i,j) B(i,j)=t; end endendend起点终点距离起点终点距离起点终点距离12400718160151725013450892001617140243008152851618130221230910180172724024714010111501819204346001015160182518045210111214019201404193101114130192417556230121320020211805720013344002024190673201415190212230068340142619021232707817015161702147350表1 各点距离(m)实例:已知50个点之间相互连接信息见表1及续表。
求最短距离矩阵续表1 各点距离(m)起点终点距离起点终点距离起点终点距离22441602229313640190 22452702230313738135 22481802230423839130 23242402330433941310 23292102331324041140 23302902331364050190 23441502331504250200 24251702432334344260 24281302432354345210 26271402632364546240 26343202633344648280 27281902735374849200 2829260283639n=50; %Matlab实现的Floyd算法A=zeros(n,n);for i=1:nfor j=1:nif(i==j) A(i,j)=0;else A(i,j)=100000;endendend %赋直接距离信息A(1,2)=400;A(1,3)=450; A(2,4)=300;A(2,21)=230; A(2,47)=140;A(3,4)=600;A(4,5)=210;A(4,19)=310;A(5,6)=230;A(5,7)=200; A(6,7)=320; A(6,8)=340;A(7,8)=170;A(7,18)=160;A(8,9)=200;A(8,15)=285; A(9,10)=180; A(10,11)=150; A(10,15)=160; A(11,12)=140; A(11,14)=130; A(12,13)=200; A(13,34)=400;A(14,15)=190;A(14,26)=190; A(15,16)=170; A(15,17)=250; A(16,17)=140;A(16,18)=130; A(17,27)=240; A(18,19)=204; A(18,25)=180; A(19,20)=140; A(19,24)=175; A(20,21)=180; A(20,24)=190; A(21,22)=300; A(21,23)=270; A(21,47)=350;A(22,44)=160;A(22,45)=270;A(22,48)=180;A(23,24)=240; A(23,29)=210;A(23,30)=290;A(23,44)=150;A(24,25)=170;A(24,28)=130; A(26,27)=140;A(26,34)=320;A(27,28)=190;A(28,29)=260;A(29,31)=190; A(30,31)=240;A(30,42)=130;A(30,43)=210;A(31,32)=230;A(31,36)=260; A(31,50)=210;A(32,33)=190;A(32,35)=140;A(32,36)=240;A(33,34)=210; A(35,37)=160;A(36,39)=180;A(36,40)=190;A(37,38)=135;A(38,39)=130; A(39,41)=310;A(40,41)=140;A(40,50)=190;A(42,50)=200;A(43,44)=260; A(43,45)=210;A(45,46)=240;A(46,48)=280;A(48,49)=200;for j=1:nfor i=1:j-1A(j,i)=A(i,j); %使矩阵对称endendB=A;%利用Floyd算法计算最短距离矩阵for k=1:nfor i=1 :nfor j=1:nt=B(i,k)+B(k,j);if t<B(i,j) B(i,j)=t; endendendend %输出距离矩阵到文件fid=fopen('distance.txt','w'); for i=1:nfor j=1:nfprintf(fid,'%4d ',B(i,j)); endfprintf(fid,'\n');endfclose(fid);。
数据结构floyd算法求最短路径
![数据结构floyd算法求最短路径](https://img.taocdn.com/s3/m/d7160f246fdb6f1aff00bed5b9f3f90f76c64d0b.png)
数据结构floyd算法求最短路径一、简介Floyd算法是一种用于求解图中任意两点之间最短路径的算法,也称为插点法。
它采用动态规划的思想,通过不断地添加中间节点来逐步求解最短路径。
Floyd算法的时间复杂度为O(n^3),适用于较小规模的图。
二、基本思想Floyd算法通过一个二维数组来存储任意两点之间的最短距离,初始化时,该数组存储的是图中各个节点之间的直接距离。
然后,对于每一个中间节点k,遍历整个二维数组,并更新任意两个节点i和j之间的距离,使得i到j经过k时距离更小。
最终得到的二维数组就是任意两点之间的最短距离。
三、具体实现1. 初始化二维数组D,D[i][j]表示节点i到节点j的直接距离。
2. 三重循环遍历整个二维数组D,在每次循环中将节点k作为中转节点,更新D[i][j]。
3. 更新公式:D[i][j] = min(D[i][j], D[i][k]+D[k][j])。
4. 循环结束后得到的二维数组就是任意两点之间的最短距离。
四、代码实现```void floyd(int n, int D[][MAX]){for(int k=1; k<=n; k++){for(int i=1; i<=n; i++){for(int j=1; j<=n; j++){D[i][j] = min(D[i][j], D[i][k]+D[k][j]);}}}}```五、应用场景Floyd算法适用于较小规模的图,一般用于解决稠密图(边数接近节点数平方)中任意两点之间的最短路径问题。
它可以用于计算城市间的最短路程、网络中的最短路径等。
六、优缺点分析优点:1. 算法思想简单,易于理解和实现。
2. 可以求解任意两点之间的最短路径。
3. 时间复杂度为O(n^3),适用于较小规模的图。
缺点:1. 空间复杂度较高,需要开辟二维数组存储各个节点之间的距离。
2. 对于大规模稀疏图,算法效率较低。
3. 无法处理存在负权回路的图。
floyd算法精讲
![floyd算法精讲](https://img.taocdn.com/s3/m/c6e41a2faaea998fcc220e40.png)
(step 0) D l ; //将有向网的邻接矩阵输入到D中 (step 1) for k = 1 to n 算法复杂度为 O(n^3) (step 3) for i = 1 to n (step 4) for j = 1 to n (step 5) D[i, j] = min{D[i, j], D[i, k] + D[k, j]} (step 6) end for (step 7) end for (step 8) end for
D (0) [i ][j ] Min {D ( 1)[i ][j ], D ( 1)[i ][0] D ( 1)[0][ j ]}
D (0) [1][3] Min {, D ( 1)[1][0] D ( 1)[0][3]} Min {, 2 7} Min {, 9} 9
D (1)[0][2] Min {D (0)[0][2], D (0)[0][1] D (0)[1][2]} Min {,1 2} 3 D (1)[3][2] Min {D (0)[3][2], D (0)[3][1] D (0)[1][2]} Min {,2 2} 4
(k ) 用公式表示就是,对于K=1,2,3…n,第k个矩阵 D( k ) dij
(k ) ( k 1) ( k 1) ( k 1) dij min{ dij , dik dkj }
floyd算法模板
![floyd算法模板](https://img.taocdn.com/s3/m/5e1846d2c9d376eeaeaad1f34693daef5ef7130d.png)
floyd算法模板
Floyd算法,也称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。
Floyd算法的时间复杂度为O(n^3),适用于稠密图或者中等规模的稀疏图。
Floyd算法的基本思想是,利用动态规划的思想,从任意两个顶点之间的距离出发,求出任意两点之间经过其他顶点的所有路径中最短的一条路径。
具体步骤如下:
1. 初始化:通过邻接矩阵表示图中任意两点之间的距离,如果两个点之间没有直接边相连,则距离为无穷大。
2. 迭代计算:对于每一对顶点i,j以及中间顶点k,更新i,j 之间的距离,如果i到k和k到j的距离之和小于i到j的距离,则更新i到j的距离为i到k和k到j的距离之和。
3. 输出:输出任意两点之间的最短路径长度以及路径。
Floyd算法的优点是简单易实现,缺点是时间复杂度较高,不适用于大规模的稠密图。
因此,在实际应用中,需要根据具体情况选择适合的算法。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则由点i到j的最短路的路径为: i, pk ,, p2 , p1, q1 , q2 ,, qm , j
i
pk
p3
p2
p1
q1
q2
qm
j
5
Tsinghua University
Uncertainty Theory Laboratory
数学模型与实验
算法步骤
Floyd 算法:求任意两点间的最短路.
Tsinghua University Uncertainty Theory Laboratory 4
数学模型与实验
算法原理—— 查找最短路路径的方法
若 rij
( )
p1 ,则点 p1 是点 i 到点 j 的最短路的中间点.
然后用同样的方法再分头查找.若:
( ) ( ) ( ) rip p r (1)向点 i 追朔得:rip1 p 2 , , … , 3 ipk p k 2 ( ) ( ) ( ) r q r q r (2)向点 j 追朔得: p1 j 1 , q1 j 2 ,…, q m j j
d51 9 ,故从 v5 到 v1 的最短路为9. r51 =4. 由 v4 向 v5 追朔: r54 3, r53 3 ; 由 v4 向 v1 追朔:r41 1 所以从 v5 到 v1 的最短路径为: 5 3 4 1 .
选址问题--中心问题
例 2 某城市要建立一个消防站,为该市所属的七个区服务, 如图所示.问应设在那个区,才能使它至最远区的路径最短.
数学模型与实验
(一)算法的基本思想
(二)算法原理
1、求距离矩阵的方法
2、求路径矩阵的方法
3、查找最短路路径的方法
(三)算法步骤
Tsinghua University
Uncertainty Theory Laboratory
1
数学模型与实验
算法的基本思想
直接在图的带权邻接矩阵中用插入顶点的方法 D( ),使 个矩阵 D(1)、 D(2)、… 、 依次构造出 ( ) 最后得到的矩阵 D 成为图的距离矩阵,同时也 求出插入点矩阵以便得到两点间的最短路径.
Tsinghua University Uncertainty Theory Laboratory 3
数学模型与实验
算法原理—— 求路径矩阵的方法
在建立距离矩阵的同时可建立路径矩阵R.
R= (rij ) , rij 的含义是从 vi 到 vj 的最短路要经过点号为 rij 的点.
R(0) (rij(0) ) , rij(0) j
每求得一个 D(k)时,按下列方式产生相应的新的 R(k)
r
(k ) ij
k r ( k 1) ij
( k 1) ( k 1) ( k 1) 若d ij d ik d kj 否则
即当vk被插入任何两点间的最短路 ( ) (k) R 径时,被记录在R 中,依次求 ) 时求得 D( ,可由 R ( ) 来查找任何点对 之间最短路的路径.
Tsinghua University
Uncertainty Theory Laboratory
2
数学模型与实验
算法原理—— 求距离矩阵的方法
把带权邻接矩阵 W 作为距离矩阵的初值,即 D(0)=(dij ) =W
(1) (1) (0) (0) (0) (1)D(1)= ( d ij ) ,其中 d ij min{d ij , d i1 d1 j } (1) d ij 是从 vi 到 vj 的只允许以 v1 作为中间点的路径中最短路的长度.
,停止.否则 k k+1,转(2) (3) 若 k= .
Tsinghua University
Uncertainty Theory Laboratory
6
function [d,r]=floyd(w) n=length(w); for i=1:n for j=1:n d(i,j)=w(i,j); r(i,j)=j; end end for k=1:n for i=1:n for j=1:n if d(i,k)+d(k,j)<d(i,j) d(i,j)=d(i,k)+d(k,j); r(i,j)=k; end end end end
(0)
(2)D(2)= (d ij ) ,其中 d ij …
( 2)
( 2)
(1) 1) (1) min{ d ij , d i(2 d2 j}
( 2) d ij 是从 vi 到 vj 的只允许以 v1 、 v2 作为中间点的路径中最短路的长度.
( ) ( )D = ( d ij ) ,其中 d ij
自定义floyd函数
例 1 求下图中加权图的任意两点间的距离与路径.
clear; w=[0,9,inf,3,inf;9,0,2,inf,7;inf,2, 0,2,4;3,inf,2,0,inf;inf,7,4,inf,0]; [d,r]=floyd(w)
0 7 D 5 3 9 7 0 2 4 6 5 2 0 2 4 3 4 2 0 6 9 1 6 4 4 , R 4 6 1 4 0 4 2 2 3 3 4 3 3 3 3 4 3 4 4 3 4 3 5 3 5
D(i,j):i 到 j 的距离. R(i,j):i 到 j 之间的插入点. 输入: 带权邻接矩阵 w(i,j)
(1)赋初值: j, k 1 对所有 i,j, d(i,j) w(i,j), r(i,j)
(2) 更新 d(i,j), r(i,j) d(i,k)+d(k,j), r(i,j) 对所有 i,j,若 d(i,k)+d(k,j)<d(i,j),则 d(i,j) k
( )Βιβλιοθήκη ( )( 1) 1) min{d ij , d i( d(j 1) }
( ) v d ij 是从 vi 到 vj 的只允许以 v1 、 v2、… 、
作为中间点的路径中最短路
的长度.即是从 vi 到 vj 中间可插入任何顶点的路径中最短路的长,因此 D( )即是距离矩阵.