数学建模实验报告-第十一章-最短路问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:第十一章最短路问题
一、实验内容与要求
掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。
二、实验软件
MATLAB7.0
三、实验内容
1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。
V1 1 V2 3 V3 1 V5 6 V6
V4 2 V7 4 V8
程序:
function y=bijiaodaxiao(f1,f2,f3,f4)
v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4;turn=3; f1=v12+v23+v35+v56+turn+v68;
f2=v12+v23+v35+turn+v57+turn+v78;
f3=v12+turn+v24+turn+v47+v78;
f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68;
min=f1;
if f2
min=f2;
end
if f3
min=f3;
end
if f4
min=f4;
end
min
f1
f2
f3
f4
实验结果:
v1到v8的最短时间路径为15,路径为1-2-4-7-8.
2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6
floy.m中的程序:
function[D,R]=floyd(a)
n=size(a,1);
D=a
for i=1:n
for j=1:n
R(i,j)=j;
end
end
R
for k=1:n
for i=1:n
for j=1:n
if D(i,k)+D(k,j)
D(i,j)=D(i,k)+D(k,j);
R(i,j)=R(i,k);
end
end
end
k
D
R
end
程序:
>> a=[0 3 10 inf inf inf inf inf;3 0 inf 5 inf inf inf inf;10 inf 0 6 inf inf inf inf;inf 5 6 0 4 inf 10 inf ;
inf inf inf 4 0 9 5 inf ;inf inf inf inf 9 0 3 4;inf inf inf 10 5 3 0 6;inf inf inf inf inf 4 6 0;];
[D,R]=floyd(a)
实验结果:
D =
0 3 10 Inf Inf Inf Inf Inf
3 0 Inf 5 Inf Inf Inf Inf
10 Inf 0 6 Inf Inf Inf Inf
Inf 5 6 0 4 Inf 10 Inf
Inf Inf Inf 4 0 9 5 Inf
Inf Inf Inf Inf 9 0 3 4
Inf Inf Inf 10 5 3 0 6
Inf Inf Inf Inf Inf 4 6 0
R =
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8