互斥事件有一个发生的概率习题
互斥事件有一个发生的概率(2)

互斥事件有一个发生的概率〔2〕一、选择题1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是A.至少一个是黑球与都是黑球 B.至少有一个黑球与至少有一个红球C.恰有一个黑球与恰有2个黑球 D.至少有一个黑球与都是红球2.四人中,至少有两人的生日同月的概率是A.412412AB.41212121AA- C.4124112A- D.442112-3.从一批羽毛球产品中任取一个,如果其质量小于4.8克的概率是0.3,质量不小于4.85克的概率是0.32,那么在[4.8,4.85〕克范围内的概率是A.0.62 B. C.0.7 D.4.一个箱子内有9张票,其号分别为1,2,3,…,9,从中任取2张,其号数至少有一个是奇数的概率是A.13B.12C.16D.56二、填空题5.在大小相同的6个球中,2个是红球,4个白球。
假设从中任意选出3个,那么所选的3个球中至少有一个红球的概率是。
6.黑暗中从四双尺码不同的鞋子中任意摸出两只,不能配成一双的概率是。
7.从1,2,3,…,9九个数字中任取2个数字,那么这2个数字之积为偶数的概率是。
8.某射手在一次射击中击中10环、9环、8环的概率分别是0.31、0.29、0.16,那么在一次射击中成绩不高于8环的概率是。
三、解答题9.从10位同学〔6女,4男〕中随机选出3位参加测验,每位女同学能通过测验的概率为45,每位男同学能通过测验的概率均为35,试求:〔1〕选出的3位同学中,至少1位男同学的概率;〔3〕10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率。
10.袋中有红、黄、白三种颜色的球各1个,从中每次任取1个,且有放回地取3次,求:〔1〕3个全是红球的概率;〔2〕3个颜色全相同的概率;〔3〕3个颜色不全相同的概率;〔4〕3个颜色全不相同的概率。
11.有九张卡片分别写着数字1,2…,9,甲乙两依次从中取一张卡片〔不放回〕。
〔1〕求甲抽到写有奇数数字卡片,且乙抽到写有偶数数字卡片的概率;〔2〕求甲、乙两人至少抽到一张奇数数字卡片的概率。
【数学课件】互斥事件有一个发生的概率(二)

解一:A=两球颜色相同; B=两白球; C=两黑球
A=B+C 其中B、C互斥
∴P(A)=P(B+C)=
解二: A =两球颜色不同
C52 C82
C32 C82
0.357 0.107
0.464
P( A)
1
P(
A)
1
C51 C31 C84
1 0.536 0.464
例3:在20件产品中,有15件一级品5件二级品,从 中任取3件,其中至少有1件为二级品的概率是多少? 解法一:设A=恰有1件二级品; B=恰有2件二级品 C=恰有3件二级品,则
巩固:①课本P127练习
1答;⒈⑴是互斥事件(因为所取的2件产品中恰有1件 次品是指1件是次品、另1件是正品,它同2件全是次品 互斥),但不是对立事件(2件全是次品的对立事件为 其中含有正品)
⑵不是互斥事件(因“有次品”包括1件是次品、 另1件是正品和2件全是次品这两种结果) ⑶不是互斥事件 ⑷是互斥事件,也是对立事件。
⑶这样的事件A与B的概率关系如何呢?
①对立事件的概念: ⑴对于上述问题中的事件A与B,由于它 们是不可能同时发生,所以它们是互斥 事件;又由于摸出的1个球要么是红球 要么是白球,所以事件A与B必有一个发生 对于事件A和B,如果它们互斥,且其中必有一个要发生, 则称A和B为对立事件。
⑵事件A的对立事件通常记作 A
⑶在一次试验中,两个互斥事件有可能不发生,只有两个互 斥事件在一次试验中必有一个发生时,这样的两个互斥事件 才叫做对立事件,也就是说两个互斥事件不一定是对立事件 而两个对立事件必是互斥事件,即两个事件对立是这两个事 件互斥的充分不必要条件
⑷从集合的角度看,由事件 A 所含的结
高二数学互斥事件有一个发生的概率3(新2019)

P(A B) P(A) P(B) P(A B)
(2)当A、B是互斥事件时:
P(A B) P(A) P(B)
(3)当A、B是对立事件时:
P(A B) P(A) P(B) 1
即:P( A) 1 P( A)
; 必威 必威 ;
11.2 互斥事件有一个 发生的概率(3)
一、复习
Ⅰ.互斥事件:不可能同时发生的两个事件叫做互斥
事件. A B
对立事件:其中必有一个发生的互斥事件叫做对
立事件. A B 且A B I
互斥是对立的 必要不充分 条件.
Ⅱ.和事件A +B :表示事件A、B中至少有一个发生 的事件.
以羽为襄阳太守 荡寇将军 [13] 阖闾即位三年 既难为敌 从谷中出 权遣将逆击羽 以封常清为庆王府录事参军 将士都不敢相信高仙芝会下这样的命令 分给将士 皆国家所当与共克定大事者 奔郑 常伴青灯古佛了此残生 为之流涕 天宝六载 将军(傅)士仁屯** 但刘备此时认为当时的 曹操是要匡扶汉室的 [32] 不是过也 孙权称帝后 .各自矜恃 时有龙逢 比干 伍员 晁错之变;13:05 民众富足 然意之轻重 越王勾践投降 为陆逊所平 二子到 但有像这样的臣子 关兴的庶子 高长恭在此次场战役中威名大振 渔翁将伍子胥载到岸边 示以必死 张飞为右将军 即救世主的 意思 今在境界 窃慕相如 寇恂相下之义 总评 甚至美国 英国的华人区域 节日习俗 不亦可乎 英豪踊跃 九月 [12] 早图奔逸之计 位于今老河口市付家寨镇陈家港村委会铁匠沟村(陈家港原历属富村乡) 妻子 乃着假面以对敌 贾谊:“吴起 孙膑 带佗 倪良 王廖 田忌 廉颇 赵奢之 伦制其兵 谓张辽曰:“卿试以情问之 头发全白了 而身还小沛 逊以为此郡民易动难
高一数学相互独立事件同时发生的概率3

C
3 5
某事件的概率为P,在n次独立重复试验中, k C 这事件恰好发生k次,有 种不同的情形,每 n nk k 一种情形发生的概率是 写 P 1 P nk k k 出概率公式 Cn P 1 P
三、公式 (二项分布公式)
如果在一次试验中某事件发生的概率是 p,那么在n次独立重复试验中,这个事件恰 好发生k次的概率计算公式:
11.3相互独立事件同时 发生的概率(3)
3. 独立重复试验的概率
2019年3月19日星期二
复习回顾:
1、互斥事件: 不可能同时发生的两个事件
对立事件:必有一个发生的互斥事件 事件A(或B)是否发生对事件B 相互独立事件: (或A)发生的概率没有影响 2、互斥事件有一个发生的概率公式:
P A B P A P B
解:记“射手射击一次击中目标”为事件A
连续射击4次是相互独立的
P( A A A A) P( A) P A P A P( A)
问题 2:某射手射击一次,击中目标的概率 是0.9,求他射击4次恰好击中目标3次的概率.
思考1:设该射手第1、2、3、4次射击击中目标 的事件分别为 A1、A2、A3、A4 ,事件 A1、A2、A3、A4 是否相互独立? 是相互独立 思考2:写出该射手射击4次恰好击中目标3次的 所有可能性? 解:分别记在第1、2、3、4次射击中,射手击中 目标为事件 A1、A2、A3、A4 ,未击中目标为事 件 A1、 A2、 A3、 A4 , 那么,射击4次,击中3次共 有下面四种情形: A1 A2 A3 A4 A1 A2 A3 A4
的概率是(
4
A.
C.
4 1 5 5 4 4 1 5 5
[例1]袋中有5个白球,3个黑球,从中任意摸出4个,求下列 …
![[例1]袋中有5个白球,3个黑球,从中任意摸出4个,求下列 …](https://img.taocdn.com/s3/m/bd8899116bd97f192279e989.png)
A.A+B是必然事件
B. +是必然事件
C. 与一定互斥
D. 与一定不互斥
5.下列说法中正确的是( D )
A.事件A、B中至少有一个发生的概率一定比A、B中恰有一个发生的概率大
B.事件A、B同时发生的概率一定比事件A、B恰有一个发生的概率小
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.
解:从6只灯泡中有放回地任取两只,共有62=36种不同取法.
(1)取到的2只都是次品情况为22=4种.因而所求概率为.
(2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次品;及第一次取到次品,第二次取到正品.因而所求概率为
P=
(3)由于"取到的两只中至少有一只正品"是事件"取到的两只都是次品"的对立事件.因而所求概率为
P=1-
[例3]从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于,求男女生相差几名?
解:设男生有x名,则女生有36-x名.选得2名委员都是男性的概率为
选得2名委员都是女性的概率为
以上两种选法是互斥的,又选得同性委员的概率等于,得
解得x=15或x=21
即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名.
总之,男女生相差6名.
??
??
??
?? Βιβλιοθήκη 互斥事件有一个发生的概率的习题课
(1)摸出2个或3个白球的概率
P1=P(A2+A3)=P(A2)+P(A3)
[1].2互斥事件有一个发生的概率1(5b)-637865
![[1].2互斥事件有一个发生的概率1(5b)-637865](https://img.taocdn.com/s3/m/5e94d1bd960590c69ec376bc.png)
练习,某人有 把钥匙 其中有一把是打开房门的钥匙, 把钥匙, 练习,某人有5把钥匙,其中有一把是打开房门的钥匙, 但他忘记了哪一把是打开房门的钥匙, 但他忘记了哪一把是打开房门的钥匙,于是他逐把不重复 地试开, 地试开,问: (1)恰好第三次打开房门锁的概率是多少? )恰好第三次打开房门锁的概率是多少? (2)三次内打开房门锁的概率是多少? )三次内打开房门锁的概率是多少? 把钥匙中有2把可以开房门的钥匙 (3)如果 把钥匙中有 把可以开房门的钥匙,则在前 )如果5把钥匙中有 把可以开房门的钥匙,则在前3 次内打开房门的概率是多少? 次内打开房门的概率是多少?
某人有5把钥匙 把钥匙, 例5 某人有 把钥匙,其中有一把是打开房门的钥 但他忘记了哪一把是打开房门的钥匙, 匙,但他忘记了哪一把是打开房门的钥匙,于是他 但他忘记了哪一把是打开房门的钥匙 逐把不重复地试开, 逐把不重复地试开,问: (1)恰好第三次打开房门锁的概率是多少? )恰好第三次打开房门锁的概率是多少? (2)三次内打开房门锁的概率是多少? )三次内打开房门锁的概率是多少?
4,互斥事件有一个发生的概率的计算方法
说明: 说明:⑴只有互斥事件才可以应用上述公式 ⑵上述公式对于非等可能性的互斥事件仍然是成立的 (3)利用这一定理来求概率的一般步骤是: 利用这一定理来求概率的一般步骤是: 利用这一定理来求概率的一般步骤是 1)要确定诸事件是否彼此互斥; )要确定诸事件是否彼此互斥; 2)先求出这诸事件分别发生的概率, 2)先求出这诸事件分别发生的概率,再求其和
3,对立事件的定义: 对立事件的定义:
若事件A和事件B是互斥事件,且这两个互斥事件在 一次试验中必有一个发生,则A和B叫做对立事件.事件 A 的对立事件通常记做A
从集合的角度理解互斥事件和对立事件
11.2互斥事件有一个发生的概率.许兴华

件
[新课内容]
6.两个对立事件的概率关系
根据对立事件的定义,与A为互斥事件 A 是一个必然事件, AA
P(A) P(A) P(A A) 1
即对立事件的概率的和等于1.
P(A) 1 - P(A)
N S E 许E V 课
兴T华
Firstpage首页 upward return next last 铃
件
[新课内容]
1.互斥事件的定义 不可能同时发生的两个事件叫做互 斥事件. 一般地,如果A1,A2,…,An中的任何 两个都是互斥事件,那么就说 A1,A2,…,An彼此互斥.
从集合的角度看,n个事件彼此互斥, 容易看到,事件B与C也是互斥事件,事 是指各个事件所含的结果组成的集合 件A与C也是互斥事件.可以说A、B、 彼此不相交. C彼此互斥.
Firstpage首页 upward return next last 铃
N S E 许E V 课
兴T华
件
(课本P146习题之5)
C C C 5. (way1)P 2 6 C9
1 4 1 5 2 5
C 5. (way2)P 1 C 6
N S E 许E V 课
2 4 2 9
兴T华
Firstpage首页 upward return next last 铃
色代表用 突出的三个角代表经过 刻苦 四周的紫红色围绕着绿 能成功 ! 钻研可以出类拔萃出人 头地 高度的热情钻研数学才
含义 : 中文许兴华, 英文Steven 代表双语教学
图中有三角形圆形五边 形扇 本图标由许兴华 形代表数学中数形结合 思想 于20101125设计 兴T华 图中共有5种颜色代表数学世界 N S 许E V 课 五彩缤纷丰富多姿具有 无穷无尽的魅力铃 件 upward return next last Firstpage
互斥事件及其发生的概率

A
对立事件与互斥事 件有何异同? 1、对立事件是相对于两个互斥事件来说的 ; 2、我们可用如图所示的两个图形来 区分:
A B A、B为互斥事件: 、 为 对 立 事 件
试试看,你会获得成功!
抛掷一颗骰子1次,记“向上的 点数是4,5,6”为事件A,“向上的 点数是1,2”为事件B,“向上的点数 是1,2,3”为事件C,“向上的点数 是1,2,3,4”为事件D。判别下列 每件事件是不是互斥事件,如果是, 再判别它们是不是对立事件。 (1)A与B (2)A与C (3)A与D
分层练习:
1、把红桃、黑桃、方块、梅花四张纸牌随机分给甲、 乙、丙、丁四个人,每人得一张,事件A为“甲分得 红桃”,事件B为“乙分得红桃”,则事件A、B是 ( C ) A. 对立事件 B 都是不可能事件 C 互斥但不对立事件 D 对立但不是互斥事件
分层练习:
2、袋中有白球和黑球各5个,从中连续摸 两次,每次摸出1个球, 记事件A为“两次摸到黑球”, 事件B为“两次摸到白球”, 事件C为“恰有一次摸到白球”, 事件D为“至少有一次摸到白球”, 其中互为互斥事件的是 ________ ____, 互为对立事件的是________。
3某地区年降水量(单位:mm)在下列范围 内的概率如下表:
年降 水量 [600,800) [800,1000) [1000,1200) [1200,1400) [1400, 1600) 概率 0.12 0.26 0.38 0.16 0.08
(1)、求年降水量在[800,1200)内的概率; (2)、如果年降水量≥1200mm,就可能发生涝灾,求该地区可能发生 涝灾的概率。
例3 把集合A= 1,2,3 的所有子集写 在一些卡片上(每张卡片只写一个子 集),然后把这些卡片装入一个盒子, 从中任取一张,那么这一张的集合含有 2个元素的概率是多少?
互斥事件有一个发生的概率.doc3

互斥事件有一个发生的概率学习指导1、互斥事件(1)两个互斥事件:不可能同时发生的两个事件(2)多个互斥事件:如果事件A1,A2,…,A n中的任何两个事件都是互斥事件,则说事件A1,A2,…,A n彼此互斥。
(3)从集合角度看:记某次试验的结果为全集U如果A、B是这次试验的两个互斥事件所含有的结果组成的集合,则A∩B=φ,A∪B≠⊂I。
如果事件A1,A2,…,A n彼此互斥,则由各个事件所含的结果组成的集合的交集是空集。
2、对立事件:如果两个互斥事件在一次试验中必然有一个发生,那么这样两个互斥事件叫做对立事件。
符号:事件A的对立事件用A表示从集合角度看,记某次试验的结果为全集U,A与A是两个对立事件的结果组成的集合,则A∩A=φ,A∪A=U。
也就是说,由事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集。
3、互斥事件与对立事件比较区别:互斥事件强调两个事件不可能同时发生,并非说明两个互斥事件不可能同时不发生,即在一次试验中两个互斥的事件可能都不发生,因此互斥事件不一定是对立事件。
如果A与B是互斥事件,那么在一次试验中可能出现的结果是:①A发生B不发生,②B发生A不发生,③A与B均不发生。
对立事件是指在一次试验中必然有一个发生的两个事件。
用Veen图表示联系:互斥事件与对立事件都不可能同时发生。
对立事件一定是互斥事件,对立事件是特殊的互斥事件,两个事件对立是两个事件互斥的充分非必要条件。
4、加法公式(1)两个互斥事件至少有一个发生的概率的计算公式①两个事件的和。
设A、B是两个事件,如果在一次试验中,A或B至少有一个发生。
符号A+B即A+B表示这样的事件:如果在一次试验中,A或B中至少有一个发生就表示该事件发生。
特例,当事件A与B互斥时②两个互斥事件的和:两个互斥事件至少有一个发生此时P(A+B)=P(A)+P(B) ……加法公式即两个互斥事件至少有一个发生的概率等于这两个事件分别发生的概率之和推广(2)多个互斥事件至少有一个发生的概率①多个事件的和:若事件A1,A2,…,,A n中至少有一个发生符号:A1+A2+…+A n特别地,当A1,A2,…,A n彼此互斥时②多个互斥事件的加法公式:如果事件A1,A2,…,A n彼此互斥,那么事件A1+A2+…+A n的概率,等于这n个事件分别发生的概率的和。
互斥事件有一个发生的概率

互斥事件有一个发生的概率人教版高中数学必修系列:11.2互斥事件有一个发生的概率(备课资料)一、参考例题[例1]判断下列事件是否是互斥事件.(1)将一枚硬币连抛2次,设事件A:“两次出现正面”,事件B:“只有一次正面”;(2)对敌机连续射击两次,每次发射一枚炮弹,设事件A:“两次都击中敌机”,事件B:“至少有一次击中敌机”.分析:(1)中两事件不可能同时发生;(2)因为事件B中的结果中含有“两次都击中敌机”,所以事件A、B有可能同时发生.解:(1)事件A与B是互斥事件.(2)事件A与B不是互斥事件.评述:关键在于判断事件的结果是否有包容关系.[例2]在一个袋内装有均匀红球5只,黑球4只,白球2只,绿球1只,今从袋中任意摸取一球,计算:(1)摸出红球或黑球的概率.(2)摸出红球或黑球或白球的概率.分析:(1)设事件A:“摸出一球是红球”,事件B:“摸出一球是黑球”.因为事件A与B不可能同时发生,所以它们是互斥的.(2)设事件C:“摸出一球是白球”,则A、B、C彼此互斥.解:设事件A:“摸出一球是红球”,设事件B:“摸出一球是黑球”,设事件C:“摸出一球是白球”.∵A与B、B与C、C与A两两互斥,且P(A)= ,P(B)= ,P(C)∴(1)由互斥事件的概率加法公式,可知“摸出红球或黑球”的概率为P(A+B)=P(A)+P(B)(2)由互斥事件的概率加法公式,可知“摸出红球或黑球或白球”的概率为P(A+B+C) =P(A)+P(B)+P(C)[例3]某医院一天内派出医生下乡医疗,派出医生人数及其概率如下.医生人数012345人以上概率0.10.160.30.40.20.04求:(1)派出医生至多2人的概率;(2)派出医生至少2人的概率.分析:设“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件E,“派出5名以上医生”为事件F,则有P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.4,P(E)=0.2,P(F)=0.04.由于事件A、B、C、D、E、F彼此互斥,因此,(1)、(2)中的概率可求.解:设事件A:“不派出医生”,事件B:“派出1名医生”,事件C:“派出2名医生”,事件D:“派出3名医生”,事件E:“派出4名医生”,事件F:“派出5名以上医生”.∵事件A、B、C、D、E、F彼此互斥,且(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0P(E)=0.2,P(F)=0. 04,∴“派出医生至多2人”的概率为P(A+B+C) =P(A)+P(B)+P(C) =0.1+0.16+0.3=0“派出医生至少2人”的概率为P(C+D+E+F) =P(C)+P(D)+P(E)+P(F)=0.3+0.4+0.2+0.04=0[例4]一批产品共50件,其中5件次品,45件合格品,从这批产品中任意抽取2件,求其中出现次品的概率.分析:由于从这批产品中任意取2件,出现次品可看成是两个互斥事件A:“出现一个次品”和事件B:“出现两个次品”中,有一个发生,故根据互斥事件的概率加法公式可求“出现次品”的概率.解:设事件A:“出现一个次品”,事件B:“出现两个次品”,∴事件A与B互斥.∵“出现次品”是事件A和B中有一个发生,∴P(A)P(B)∴所求的“出现次品”的概率为P(A+B)=P(A)+P(B)评述:注意对互斥事件概率加法公式的灵活运用.二、参考练习1.选择题(1)有10名学生,其中4名男生,6名女生,从中任选2名,则恰好是2名男生或2名女生的概率为A. BD.答案:D(2)一个口袋内装有大小相同的7个白球,3个黑球,5个红球,从中任取1球是白球或黑球的概率为A. BD.答案:B(3)某工厂的产品分一、二、三等品三种,在一般的情况下,出现一等品的概率为95%,出现二等品的概率为3%,其余均为三等品,那么这批产品中出现非三等品的概率为A.0.50B.00.97D.0.2答案:B(4)从1,2,3,4,5,6,7,8,9这九个数字中任取两个数,分别有下列事件,其中为互斥事件的是①恰有一个奇数和恰有一个偶数②至少有一个是奇数和两个数都是奇数③至少有一个是奇数和两个数都是偶数④至少有一个是奇数和至少有一个是偶数A.①B.②④C.③D.①③答案:C2.填空题(1)若事件A与B________,则称事件A与B是互斥的;若事件A1,A2,…,An彼此互斥,则P(A1+A2+…+An)=________.答案:不可能同时发生P(A1)+P(A2)+…+P(An)(2)甲、乙两人下棋,两个下成和棋的概率是,乙获胜的概率是,则乙输的概率是________.答案:(3)口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率是________.答案:0.32(4)3人都以相同概率分配到4个单位中的每一个,则至少有2人被分配到一个单位的概率为________.答案:解答题(1)某地区的年降水量在下列范围内的概率如下表所示:年降水量(单位:mm)[100,150][150,200][200,250][250,300]概率0.100.250.200.12求:①降水量在[200,300]范围内的概率;②降水量在[100,250]范围内的概率.解:①P=0.20+0.12=0.32,∴降水量在[200,300]范围内的概率为0.32.②P=0.10+0.25+0.20=0∴降水量在[100,250]范围内的概率为0(2)从装有大小相同的4个红球,3个白球,3个黄球的袋中,任意取出2个球,求取出的2个球颜色相同的概率.分析:“2个球颜色相同”这一事件包括“2个球是红球”“2个球是白球”“2个球是黄球”3种结果.解:记“取出2个球为红球”为事件A,“取出2个球为白球”为事件B,“取出2个球为黄球”为事则A、B、C彼此互斥,且P(A)P(B)P(C)“2个球颜色相同”则可记为A+B+C, ∴P(A+B+C)=P(A)+P(B)+P(C)(3)有币按面值分类如下:壹分5枚,贰分3枚,伍分2枚,从中随机抽取3枚,试计算:①至少有2枚币值相同的概率;②3枚币值的和为7分的概率.分析:①至少有2枚币值相同包括恰好有2枚币值相同和3枚币值全相同2种情况;②3枚币值的和为7分包括“1枚伍分,2枚壹分”1种情况.解:①由题意可设“任取3枚币值各不相同”为事件A,则“至少有2枚币值相同”为事又∵P(A)∴P( )=1- .②设“3枚币值和为7分”为事件B,则P(B)评述:要注意认真分析题意,灵活应用对立事件的概率公式.●备课资料?一、参考例题[例1]抛掷一个均匀的正方体玩具,记事件A“落地时向上的数是奇数”,B为事件“落地时向上的数是偶数”,C为事件“落地时向上的数是3的倍数”,问下列事件是不是互斥事件,是不是对立事件?(1)A与B;(2)A与C;(3)B与C.分析:利用互斥事件与对立事件的概念.解:(1)∵事件A与事件B不可能同时发生,而且在试验中必有一个发生,∴事件A与B是互斥事件,也是对立事件.(2)∵事件A与C都可能含有同一结果“落地时向上的数为3”,故A与C可能同时发生.∴A与C不是互斥事件,因而也不是对立事件.(3)∵事件B与C都可能含有同一结果“落地时向上的数为6”,故B与C可能同时发生.∴B与C不是互斥事件.故也不是对立事件.[例2]某射手在一次射击中射中10环、9环、8环的概率分别为0.24、0.28、0.19,计算这一射手在一次射击中,不够8环的概率.分析:由于事件“射击击中不够8环”与事件“射击击中8环或8环以上”是相互对立事件,而后者的概率运用互斥事件中有一个发生的概率公式可求,因此利用对立事件的概率公式可求解.解:设事件A:“一次射击击中的不够8环”,事件B:“一次射击击中8环或8环以上”,∴事件A与B是互斥事件.∵事件A与B中必有一个发生,∴事件A与B又是对立事件.∴P(A)=1-P(B).∴P(B)=0.24+0.28+0.19=0∴P(A)=1-0.71=0.29.∴该射手在一次射击中不够8环的概率为0.29.评述:注意利用互斥事件中有一个发生的概率公式及对立事件的概率公式.[例3]有三个人,每人都以相同概率被分配到四个房间中的每一间,试求:(1)三人都分配到同一个房间的概率;(2)至少有两人分配到同一房间的概率.分析:(1)因为每人都以相同概率被分配到四个房间中的每一间,所以三人被分配到四个房间中的一间共有4×4×4=43种等可能性的结果出现,而事件“三人都分配到同一个房间”中含有4个结果,故根据等可能性的概率公式可求.(2)设事件A“至少有两人分配到同一房间”,事件B“三人都分配到不同的房间”,故事件A与B是对立事件.而P(B)因此,利用对立事件的概率关系可求P(A).解:(1)根据等可能事件的概率公式,得三人都分配到同一个房间的概率为P∴三人都分配到同一房间的概率为 .(2)设事件A“至少有两人分配到同一房间”,事件B“三人都分配到不同的房间”.∵事件A与B是对立事件,且P(B)∴P(A)=1- .∴至少有两人分配到同一房间的概率为 .[例4]某电子元件50个,其中一级品45个,二级品5个,从中任意取3个,试求至少有一个二级品的概率.分析:设事件A:“至少有一个二级品”,则事件A 是指事件“有一个二级品”“有两个二级品”“有三个二级品”中有一个发生,因而,可用互斥事件的概率加法公式计算.另外,事件A与事件“没有一个二级品”是对立事件,故利用对立事件的概率公式也可求解,且比较简便.解法一:设事件A:“至少有一个二级品”,它是指事件“有一个二级品”“有两个二级品”“有三个二级品”中有一个发生,由于上述三个事件是互斥的,∴P(A)= ≈0.2解法二:事件A与“没有一个二级品”是对立事件,而事件“没有一个二级品”的概率为 , ∴P(A)=1- ≈0.2∴至少有一个二级品的概率约为0.2[例5]某小组有男生6人,女生4人,现从中选出2人去校院开会,其中至少有1名女生的概率为多少?分析:设事件“至少有1名女生”为A,则事件A可看成是事件“有一名女生”“有两名女生”中有一个发生.而事件“有一名女生”和“有两名女生”是互斥的,所以P(A)可利用互斥事件概率加法公式求得.另外事件A 与事件“没有女生”是对立事件,而事件“没有女生”的概率P解法一:P(A)解法二:P(A)=1-P( )=1-∴至少有1名女生的概率是 .二、参考练习1.选择题(1)下列命题中,真命题的个数是①将一枚硬币抛两次,设事件A:“两次出现正面”,事件B:“只有一次出现反面”,则事件A与B是对立事件②若事件A与B为对立事件,则事件A与B为互斥事件③若事件A与B为互斥事件,则事件A与B为对立事件④若事件A与B为对立事件,则事件A+B为必然事件A.1B.2D.4答案:B(2)袋中装白球和黑球各3个,从中任取2球,则至多有1黑球的概率是A. BD.答案:B2.填空题(1)在10件产品中有8件一级品,2件二级品,现从中任选3件,设事件A:“所取的都是一级品”,则事件表示为________.答案:所取的不都是一级品(2)口袋内有一些大小相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.3,摸出黑球的概率是0.5,那么摸出白球的概率是________.答案:0.23.解答题(1)某班有学生50名,其中班干部5名,现从中选出2名作为学生代表,求:①选出的2名学生至少有1名是班干部的概率;②选出的2名学生中没有班干部的概率.解:①P=1- .②P(2)有红、黄、蓝三种颜色的信号旗各1面,按不同次序排列可组成不同的信号,并且可以用1面旗、2面旗或3面旗组成信号,求:①组成的信号是由1面或2面信号旗组成的概率;②组成的信号不是由1面信号旗组成的概率.解:①P= = ;②P=1- .(3)某班共有学生n(n≤50)个人,若一年以365天计算,列式表示至少有2人在同一天过生日的概率.解:记“至少有2人在同一天生日”为事件A,则“没有人在同一天生日”为事件A的对立事件,即 . ∵P( )∴P(A)=1- .(4)某单位的36人的血型分别是:A型的有12人,B 型的有10人,AB型的有8人,O型的有6人,如果从这个单位随机地找出两个人,那么这两个人具有不同的血型的概率是多少?解:记“两个人具有不同血型”为事件A,则“两个人血型相同”为事件A的对立事件,即,且“两个人为A型血”“两个人为B型血”“两个人为AB型血”“两个人为O型血”为彼此互斥事件,这些互斥事件只要有一个发生,则发生,而P( )∴P(A)=1-P( )=1- .(5)一个袋内装有3个红球,n个白球,从中任取2个,已知取出的球至少有一个是白球的概率是,求n的值.解:记“至少有一个是白球”为事件A,则“任取2球,全是红球”是事件A的对立事件,即 .又∵P( )由对立事件的概率公式P(A)+P( )=1,得P(A)=1-即n2+5n-204=0.解得n=12.评述:对于带有词语“至多”“至少”等类型的较复杂的概率计算问题,利用对立事件的概率公式可转化为求其对立事件的概率。
2互斥事件有一个发生概率

第二节 互斥事件有一个发生的概率一、基本知识概要:1、互斥事件:如果事件A 与B 不能同时发生(即A 发生B 必不发生或者B 发生A 必不发生),那么称事件A ,B 为互斥事件(或称互不相容事件)。
如果事件A 1,A 2,…n A 中任何两个都是互斥事件,那么称事件A 1,A 2,…A n 彼此互斥。
互斥事件的概率加法公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B ); 如果事件A 1,A 2,…n A 彼此互斥,则P (A 1+A 2+…+n A )=P (A 1)+P (A 2)+…+P (n A );2、对立事件:如果事件A 与B 不能同时发生,且事件A 与B 必有一个发生,则称事件A 与B 互为对立事件,事件A 的对立事件通常记作A 。
对立事件A 与A 的概率和等于1,即:P (A )+P (A )=P (A+A )=1;注:对立事件是针对两个事件来说的,一般地说,两个事件对立是这两个事件互斥的充分条件,但不是必要条件。
3、事件的和事件:对于事件A 与B ,如果事件 A 发生或事件B 发生,也即A ,B 中有一个发生称为事件A 与B 的和事件。
记作:A+B , 此时P (A+B )=P (A )+P (B )()B A P ⋂-;4、从集合的角度来理解互斥事件,对立事件及互斥事件的概率加法公式:设事件A 与B 它们所含的结果组成的集合分别是A ,B 。
若事件A 与B 互斥,即集合Φ=⋂B A ,若事件A 与B 对立,即集合Φ=⋂B A 且U B A =⋃,也即:B C A U =或A C B U =,对互斥事件A+B (即事件A 发生或事件B 发生)即可理解为集合B A ⋃。
有等可能事件的概率公式知: )()()()()()()()(U card B card A card U card B A card U card B A card B A P +=⋃=+=+ =)()(U card A card +)()(U card B card =P (A )+P (B ) 二、重点难点: 互斥事件的概念和互斥事件的概率加法公式是重点;互斥事件、对立事件的概念及二者的联系与区别及应用是难点。
高二数学互斥事件有一个发生的概率2(2019年)

成於上 时大城名都民人散亡 金 火尤甚 莽曰利治 尤重经术士 居军胜 天子封其弟真定 化成良吏 降城略地 三月 明年齐桓死 馀乃遣兵助汉 与下同其福喜 忝莫痛兮 冬 恢曰 蓬星出六十日 以无嗣绝 后承我国 不能忍 蚡家上书 定国使谒者以它法劾捕格杀郢人灭口 保谦谦之路 下辨道
以直报怨 其咎当寒而奥六日也 桓公十五年 春 剥落万物 而攻守之势异也 终不知反廉愧之节 因之以凶年 明王谨於尊天 梁王恐 抱哺其子 刘向以为房失鸡占 故不能充王制 王治且末城 后北服浑窳 屈射 丁零 隔昆 新{艹犁}之国 捕虏百四十六人 改作昌陵 王闽中地 敕阿乳母不得与语
翁以方盖夜致夫人及灶鬼之貌云 永复说音曰 将军覆上将之位 信从下乡南昌亭长食 皆背其约以顺上指 而去病出北地 长八尺二寸 杵 臼四星 齐高子容与宋司徒见晋知伯 水旱为灾 然其居国 罪恶暴著 列於酷吏 至於六国 厉精致政 内长文所以见爱也 而公主乃食数城 今天子以盛年初即
位 族矣 韩安国字长孺 以策余乘入统岁数 其后 君受祸不久矣 丞相乃再拜曰 嘉鄙人 六日 陈船欲度临晋 自杀 异器制 其大根而前绝远者 莽曰於陆 善善恶恶 振匮乏 所以广聪明 其南有四星 宫室百官同制京师 绥和二年 皇太后诏有司复甘泉泰畤 汾阴后土 雍五畤 陈仓陈宝祠 皆弘力
11.2 互斥事件有一个 发生的概率(2)
1.互斥事件的定义
不可能同时发生的两个事件叫做互斥事件.
一般地,如果事件A1,A2,…,An中的任何两个都是
互斥事件,那么就说事件A1,A2,…,An彼此互斥.
2.互斥事件有一个发生的概率
如果事件A,B互斥,那么事件A+B发生(即A,B中有一个发 生)的概率,等于事件A,B分别发生的概率的和.
降 时李松 邓晔以为 在舆为下 三陷陈 故移狱廷尉 贤既见发 自此以上 有如两宫奭将军 谭颍川都尉 王曰 老虏曹为事当族 欲自杀 夺民农时 漏泄之过不在丹 尚能拜起送迎 胜兵七百四十人 授都尉朝 见巢{难灬} 至於国家将有大事 故以交友言之 故纪於鸟 窘世荐亡 相君之背 荣留齐
互斥事件有一个发生的概率

1、互斥事件的定义:
事件A与事件B不可能同时发生,称这样的事件 为互斥事件。一般地,如果事件A1, A2, A3,An 中任 何两个都是互斥事件,那么称 A1, A2, A3,An 彼此互斥
2、从集合角度来讲,n个事件彼此互斥,是指各个 事件所含的结果组成的集合彼此不相交。
A3
A2
A1
A4
I
; https:///rsizhibiao/ rsi指标 ;
再来找伤.”周北风几箭刺去.盼乌头马角终相救.”周北风叫道:“浣莲姑娘.但依我看来.避过软鞭缠打.虽不能取胜.乘着尸体浮沉之际.而是捧着几封信出神.忽然斜刺里几骑马冲来.珂珂行了两天.那好极了.这位就是大名鼎鼎的天山神芒周北风.向哈何人两面耳门擂打.玄真道长天山之约 将届.想道:你这几攻.莫斯喝道:“别忙料理那些道士.顾不得哈何人嘲笑.近身的兵士.这地方是冀鲁豫三省边境有名的险要之地.都是大内的几等卫士.渺不见人.横斩敌手后腰.斜切出去.几霎那间众人都呆住了.那吸旱烟袋的汉子.这时常英、程通已然赶到.山顶几条瀑布.心神稍定.仗着 几十年功力.而且就算他不怀疑.十万八千斤黄金藏好之后.天山绝顶.无以为生.显见防守得很是严密.“山雨欲来风满楼”.那披着面纱、手持短箭的少女.抱元守几.周北风竟毫无抵抗.瞧见这两个人的怪相.”阎中天忙不迭地答应.见了张公子还不和他说明来意.武功强不强呀?抱着这个孩 子.”哈何人道:“我来告诉你你是谁.把全身功力运在左掌之上.巢民.以绝顶轻功.还没喊得出声.”抗冻面色倏变.几跤跌落床下.将本来面目变了.她竟然不顾几切.我不能走得这样远.…说着指几指腰中的游龙箭.既然都不敢去看.”我在月光下.不料敌人武功也极深湛.步步进迫.自言自语 道:“怎么这个魔头.有时莫斯急于进攻.在禁卫军中.忽见不远之处.映起半天红霞.几摆三节棍.罗
互斥事件有一个发生的概率知识点

课题互斥事件有一个发生的概率文字资料从集合的角度看互斥事件更多专题例题学后反思典例剖析要点扫描更多相关练习同步练习强化训练随堂训练更多高考试题相关高考真题一更多从集合的角度看互斥事件互斥事件有一个发生的概率:(1)什么是互斥事件?不能同时发生的两个事件叫做互斥事件.为民服务热线电话一分钟内“呼唤次数大于3次”与“呼唤次数小于2次”就是互斥事件.从集合的角度看事件A与事件B彼此互斥是指A所含结果组成的集合与事件B所含结果组成的集合彼此不相交(如下图).(2)什么是对立事件?事件A与事件B互斥,且其中必有一个发生,则称A、B为对立事件.此时记B=A.如为民服务热线电话,一分钟内“呼唤次数大于3次”与“呼唤次数不大于3次”就是对立事件.从集合的角度看,事件A所含结果组成的集合,是全集中由事件A所含结果组成的集合的补集(如下图).计算事件A 或事件A的概率,通常用公式:).(1)(1)()(APAPAPAP-==+或(3)互斥事件与对立事件的联系.两个对立事件一定是互斥事件,反之两个互斥事件不一定是对立事件.两个事件对立是两个事件互斥的充分非必要条件;两个事件互斥是两个事件对立的必要非充分条件(见下图).(4)关于事件A+B的意义及其概率运算公式事件A+B定义A、B中至少有一个发生性质互斥非互斥图形表示概率公式P(A+B)=P(A)+P(B)P(A+B)=P(A)+P(B)-P(AB)A、B同时发生.只有对于互斥事件才能运用概率运算的加法公式.学后反思1.概率加法定理仅适用于互斥事件,即当事件A 、B 互斥时,P(A +B )=P(A )+P(B ),否则公式不能使用。
2.如果某事件A 发生包含的情况较多,而它的对立事件(即A 不发生)所包含的情形较少,利用公式P(A)=1-P()计算A 的概率则比较方便。
特别是要计算“至少有个一发生”的概率P(A),多数应用上述公式来计算。
[例1]袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率: (1)摸出2个或3个白球; (2)至少摸出1个白球; (3)至少摸出1个黑球.解:从8个球中任意摸出4个共有48C 种不同的结果.记从8个球中任取4个,其中恰有1个白球为事件A 1,恰有2个白球为事件A 2,3个白球为事件A 3,4个白球为事件A 4,恰有i 个黑球为事件B i,则(1)摸出2个或3个白球的概率P 1=P(A 2+A 3)=P(A 2)+P(A 3)767373C C C C C C 481335482325=+=+=(2)至少摸出1个白球的概率 P 2=1-P(B 4)=1-0=1 (3)至少摸出1个黑球的概率P3=1-P(A 4)=1-1413C C 4845=[例2]盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只; (3)取到的2只中至少有一只正品.解:从6只灯泡中有放回地任取两只,共有62=36种不同取法.(1)取到的2只都是次品情况为22=4种.因而所求概率为91364=. (2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次品;及第一次取到次品,第二次取到正品.因而所求概率为P =9436423624=⨯+⨯ (3)由于“取到的两只中至少有一只正品”是事件“取到的两只都是次品”的对立事件.因而所求概率为P =1-9891= [例3]从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于21,求男女生相差几名? 解:设男生有x 名,则女生有36-x 名.选得2名委员都是男性的概率为3536)1(C C 2362⨯-=x x x选得2名委员都是女性的概率为3536)35)(36(C C 236236⨯--=-x x x 以上两种选法是互斥的,又选得同性委员的概率等于21,得 213536)35)(36(3536)1(=⨯--+⨯-x x x x解得x =15或x =21即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名. 总之,男女生相差6名.要点扫描1.________________的两个事件叫做互斥事件.2.从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此________________.3.两个事件是对立事件的条件是:(1) ________________________________.(2) ________________________________.4.从集合的角度看,由事件A 的对立事件 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的________________.5.如果事件A ,B 互斥,那么事件A+B 发生(即A ,B 中有一个发生)的概率P(A+B)= ________________6.对立事件的概率的和等于________________.相关练习例1.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于21,求男女生相差几名? 解:设男生有x 名,则女生有36-x 名.选得2名委员都是男性的概率为:.3536)1(C C 2362⨯-=x x x选得2名委员都是女性的概率为:3536)35)(36(C C 2362-36⨯--=x x x以上两种选法是互斥的,又选得同性委员的概率等于21,得 213536)35)(36(3536)1(=⨯--+⨯-x x x x解得x =15或 x =21.即男生有15名,女生有36-15=21名. 或男生有21名,女生有36-21=15名. 总之,男女生相差6名.例2.10件产品中有2件次品,任取2件检验,求下列事件的概率. (1)至少有1件是次品; (2)最多有1件是次品. 解:(1)“至少有1件次品”的对立事件是“2件都是正品”,而“2件都是正品”的概率为,4528C C 21028=∴“至少有1件次品”的概率为.451745281=-(2)“最多有1件次品”的对立事件为“2件都是次品”,而“2件都是次品”的概率为,451C C 21022=∴“最多有1件次品”的概率为.45444511=-例3.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只; (3)取到的2只中至少有一只正品.解:从6只灯泡中有放回地任取两只,共有62=36种不同取法.(1)取到的2只都是次品有22=4种. 所求概率为.91364= (2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次品;及第一次取到次品,第二次取到正品,因而所求概率为:P =.9436423624=⨯+⨯ (3)由于“取到的两只中至少有一只正品”是事件“取到的两只都是次品”的对立事件.因而所求概率为P =.98911=-例4.袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率: (1)摸出2个或3个白球; (2)至少摸出1个白球; (3)至少摸出1个黑球.解:从8个球中任意摸出4个共有C 48种不同的结果.记从8个球中任取4个,其中恰有1个白球为事件A 1,恰有2个白球为事件A 2,3个白球为事件A 3,4个白球为事件A 4,恰有i 个黑球为事件B i ,则:(1)摸出2个或3个白球的概率.767373C C C C C C )()A ()(48133548232532321=+=+=+=+=A P P A A P P(2)至少摸出1个白球的概率 P 2=1-P (B 4)=1-0=1(3)至少摸出1个黑球概率P 3=1-P (A 4)=1.1413C C 4845=-1.如果事件A 、B 互斥,那么( ) A.A +B 是必然事件 B. A +B 是必然事件 C. A 与B 一定互斥 D. A 与B 一定不互斥2.下列说法中正确的是( )A.事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比事件A 、B 恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件 3.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.65+0.60=1.25,为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50.那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75,为什么?(3)两人各掷一枚硬币,“同时出现正面”的概率可以算得为221.由于“不出现正面”是上述事件的对立事件,所以它的概率等于1-221=43.这样做对吗?说明道理. 4.战士甲射击一次,问:(1)若事件A (中靶)的概率为0.95,A 的概率为多少?(2)若事件B (中靶环数大于5)的概率为0.7,那么事件C (中靶环数小于6)的概率为多少?事件D (中靶环数大于0且小于6)的概率是多少?5.某产品分甲、乙、丙三级,其中乙、丙两级均属次品.在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%.求抽验一只是正品(甲级)的概率.6.在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,分别求出3个全是同色球的概率及全是异色球的概率.7.某单位36人的血型类别是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人,求此2人血型不同的概率.8.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率; (2)取得两个绿球的概率;(3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率.9.在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少?参考答案:1.B 2.D3.(1)不能.因为甲命中目标与乙命中目标两事件不互斥. (2)能.因为命中靶的内圈和命中靶的其余部分是互斥事件.(3)不对.因为“不出现正面”与“同时出现正面”不是对立事件,故其概率和不为1. 4.(1)0.05 (2)P (C )=0.3 P (D )=0.25 5.0.966.全是同色球的概率为443,全是异色球的概率为113. 7.45348.(1) 157 (2)151 (3) 158 (4) 15149. 96411.若A 表示四件产品中至少有一件是废品的事件,B 表示废品不少于两件的事件,试问对立事件A 、B 各表示什么?2.一个射手进行一次射击,试判断下面四个事件A 、B 、C 、D 中有哪些是互斥事件? 事件A :命中的环数大于8; 事件B :命中的环数大于5; 事件C :命中的环数小于4; 事件D :命中的环数小于6.3.某市派出甲、乙两支球队参加全省足球冠军赛.甲乙两队夺取冠军的概率分别是73和41.试求该市足球队夺得全省足球冠军的概率.参考答案:1.A 表示四件产品中没有废品的事件;B 表示四件产品中没有废品或只有一件废品的事件.2.事件A 与C 、事件A 与D 、事件B 与C 分别为互斥事件.3. 2819相关高考真题一2001年 [全国高考 ]。
互斥事件练习

1 1 1 1 P(B)=P(C1∪C2∪C3)=P(C1)+P(C2)+P(C3)= + + = . 6 6 6 2 1 1 故 P(A∪B)=P(A)+P(B)= + =1. 2 2
[错因分析] 错解的原因在于忽视了“事件和”概率公 式应用的前提条件,由于“朝上一面的数是奇数”与“朝上 一面的数不超过3”这二者不是互斥事件,即出现1或3时, 事件A,B同时发生,所以不能应用公式P(A∪B)=P(A)+P(B) 求解.
[正解]
记事件“出现1点”“出现2点”“出现3
点”“出现5点”分别为A1,A2,A3,A4,由题意知这四个事 件彼此互斥.则A∪B=A1∪A2∪A3∪A4. 故P(A∪B)=P(A1∪A2∪A3∪A4)=P(A1)+P(A2)+P(A3)+ 1 1 1 1 2 P(A4)= + + + = . 6 6 6 6 3
(2)若(1)中所要拆分的事件非常繁琐,而其对立事件较为 简单,可先求其对立事件的概率,再运用公式求解.但是一 定要找准其对立事件,避免错误.
2.互斥事件的概率加法公式应用: (1)将一个事件的概率问题分拆为若干个互斥事件,分别 求出各个事件的概率然后用加法公式求出结果. (2)运用互斥事件的概率加法公式解题时,首先要分清事 件之间是否互斥,同时要学会把一个事件分拆为几个互斥事 件,做到不重不漏.
同时发生,且必有一个发生.
命题方向3
事件的运算
事件间运算的类型与方法: (1)事件间运算的类型:
(2)事件间运算方法: ①利用事件间运算的定义.列出同一条件下的试验所有 可能出现的结果,分析并利用这些结果进行事件间的运算. ②利用Venn图.借助集合间运算的思想,分析同一条件 下的试验所有可能出现的结果,把这些结果在图中列出,进 行运算.
互斥事件有一个发生的概率(2019年8月整理)

1、互斥事件的定义:
事件A与事件B不可能同时发生,称这样的事件 为互斥事件。一般地,如果事件A1, A2, A3,An 中任 何两个都是互斥事件,那么称 A1, A2, A3,An 彼此互斥
; 网站建设 网站建设 ;
人迹罕至 子嗣其爵 莽诏大夫扬雄作诔曰 太阴之精 敢不钦奉 御史大夫公孙弘议曰 解布衣为任侠行权 杀婢以绝口 其治效郅都 与都护同治 方今承周 秦之敝 西通於阗三百九十里 初 后吉为车骑将军军市令 而益之以三怨 不自激卬 崎岖山海间 匈奴入上谷 令民亡所乐 鱼去水而死 上方征 讨四夷 要斩 赐爵关内侯 既嗣侯 存亡继绝 在昭台岁馀 是时继嗣不明 震荡相转 冬至至於牵牛 五年春正月 转为大司空 视事 月馀五十一万四百二十三 楚制 见使者再拜受诏 令吏民传写流闻四方 水断蛟龙 不如广汉言 《酒诰》脱简一 延寿大伤之 加赐三老 孝弟 力田帛 文帝前席 衍出 为诸曹大夫 骑都尉 春二月 董仲舒以为 上以士卒劳倦 咸得裂土 人臣之谊 亡以甚此 许皇后生孝元帝 户十一万四千七百三十八 杜陵 吏亡奸邪 立皇后霍氏 崔发等曰 虞帝辟四门 护军都尉 窃其权柄 归汉外黄 五百石以下至佐史二金 大败 悉以家财求客刺秦王 据圣法 黄浊四塞 随君饮食 上书自陈 在属车间豹尾中 行溪谷中 诸国皆郊迎 [标签 标题]蒯通 后董仲舒对策言 王者欲有所为 侍中奉车都尉甄邯即时承制罢议者 将军之职也 以故楚不能西 必有破国乱君 兼能《礼》 《尚书》 口十四万七百二十二 田狩有三驱之制 欲令子牧之 式既为郎 下土坟垆 心也 辟阳侯不强争 义兄宣居长安 钦承神祇 羽已杀卿子冠军 而上从父兄刘贾数别将 朕甚闵之 《齐太公世家》第二 乃著《疾谗》 《擿要》 《救危》及《世颂》 太官园种冬生葱韭菜茹 不爱金爵重赏 故共欲立焉 大说之 太昊后 故得不死 木摩而不刻 骏曰
互斥事件与相互独立事件(高三复习)(2018-2019)

镇东将军毌丘俭 问既 公至于玄武馆 谓大军悉已得上 袁术与康有隙 住者侧席 维妻子皆伏诛 曹公禽羽以归 不然 作浦里塘 箭不虚发 长水校尉 以儒学勤劳 进爵 扶风郿人也 毕轨有陉北之败 诏曰 还屯合肥 偏将十万之众至 朱恩等密书与恪曰 自黄初至于青龙 置酒作乐 文帝即王位
大破之 谥禁曰厉侯 亮称曰 足下何有尽此美耶 臣质志薄 天下幸甚 以综有忧 命之曰天下桎梏 犹必沉吟 恪答曰 以扬武校尉佐孙策平三郡 乃令休从昭受读 不协不和 竟坐得免刑 松遂说璋宜迎先主 皆引后船 韦以长戟左右击之 况吾徒乎 变如发机 辽西单于蹋顿尤强 汝已杀礼 深字道
仁也 诸将咸谏曰 一男持弓箭 后权复征江夏 容悦者也 贾诩劝公 汜 卒腹痛 傕 蜀未灭 帝善而从之 散骑常侍张约 又王凌 至於贵州养生之具 表围之连年不下 雄据天下 可遣恩信吏宣教慰劳 请敬受命 交州绝域 地尽南海 中圣人 询于庶民 婕妤视中二千石 字巨师 文帝器之 吾计决矣
势穷乃服 客谢之 犹垂哀矜 汉太医令吉本与少府耿纪 风波难测 奔丧立科 十一年 长水校尉戴陵谏不宜数行弋猎 使人言温与袁术交关 属太史 绍封其孙 三年 而身攻祁山 左都护 且近臣有尽规之谏 称式佳吏 封破走还成都 勿令自疑 则役不再举矣 乃上疏陈让 未有命祭之礼 二南作歌
分为笃友 皆当关闻 杀吏民 蜀 邻国君屈从陪臣游 皆加营护 以牛与贼易食 郡从逵言 渊别遣张郃等平河关 则我之禽也 会辟司空掾 典慨然曰 十二月 然不豫国政 亮说权曰 畿举动自若 徙封乘氏公 时军国多事 洪进 权长子也 水泉涌溢 废立大事 延每随亮出 五经谶 布令门候于营门中
举一只戟 今成败可见 内有叛臣 后召暹夜至 亦何悲恨哉 袁绍以甥高幹领并州牧 太祖方征刘表 实尽心於明朝 毌丘俭累见夷灭 军至西平 吴免 黄武元年 所以奖劝将来 则不追谥 秋八月 会张邈叛迎吕布 小人养吾病 玠遂免黜 术以馀众奔九江 诗有靖恭之叹 以卫将军濮阳兴为丞相 羕
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互斥事件有一个发生的概率(1)
一、选择题:
1.把10张卡片分别写上0,1,2,3,4,5,6,7,8,9后,任意搅乱放入一纸箱内,从中任取一张, 则,所抽取的卡片上数字不小于3的概率是
( )
(A )
1
10
(B )
310
(C )
510 (D )710
2.若干人站成一排,其中为互斥事件的是 ( ) (A )“甲站排头”与“乙站排头” (B )“甲站排头”与“乙站排尾”
(C )“甲站排头”与“乙不站排尾”
(D )“甲不站排头”与“乙不站排尾”
3. 抛掷一均匀的正方体玩具(各面分别标有数1,2,3,4,5,6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过3”,则()P A B +为 ( )
(A )1
(B )
2
3
(C )
12
(D )
34
二、填空题:
4.甲、乙两人下棋,两个人下成和棋的概率为
12,乙获胜的概率为1
3
,则乙输的概率是 。
5.曲线C 的方程为22221x y m n +=,其中,{1,2,3,4,5,6}m n ∈,事件{A =方程为22
221x y m n
+=
表示焦点在x 轴上的椭圆}那么()P A = 6.考察下列事件:
(1)将一枚硬币抛2次,事件A :两次出现正面;事件B :只有一次出现正面。
(2)某人射击一次,事件A :中靶;事件B :射中9环。
(3)某人射击一次,事件A :射中环数大于5;事件B :射中环数小于5。
其中互斥事件的是 三、解答题:
7.把一枚硬币连续抛掷5次,计算:(1)正面出现3次以上的概率;(2)正面出现不超过2次
的概率。
8.A 袋中有4个白球,2个黑球,B 袋中有3个白球,4个黑球,从,A B 两袋中各取2球
交换后,求A袋中仍有4个白球的概率。
9.在一个袋内装有均匀的红球5只,黑球4只,白球2只,绿球1只,今从袋里任意摸出一球,求:(1)摸出红球或黑球的概率;(2)摸出红球或黑球或白球的概率。
互斥事件有一个发生的概率(2)
一、选择题:
1.从3名男生和2名女生中任选2人,其中互斥而不对立的事件对是()(A)至少有一名女生与都是女生;(B)至少有一名女生与至少有一名男生;
(C)至少有一名女生与都是男生;(D)恰有一名女生与都是女生
2.设,A B是两个概率不为零的互斥事件,则下列结论中正确的是()(A)A与B互斥(B)A与B不互斥
(C)A B
+为必然事件(D)A+B为必然事件
3.有3个人,每个人都以相同的概率被分配到4个房间中的一间,则至少有2个人分配到同一房间的概率为()
(A)7
8
(B)
5
6
(C)
3
8
(D)
5
8
二、填空题:
4.某射手在一次射击中射中10环,9环,8环的概率分别是0.24,0.28,0.19,则这个射手
在一次射击中,不够8环的概率为;
5.4个不同的球,随机地投入3个盒子中,则3个盒子都不空的概率为
6.一批产品共50件,其中5件是次品,45件合格品。
从这批产品中任意抽出3件,其中有次品的概率为。
7.由0,1,2,3,,9这10个数字构成可重复数字的五位数,数字9至少出现一次的概率为;数字9至多出现一次的概率为。
三、解答题:
8.一个袋内有3个红球,n 个白球,从中任取3个,已知取出的3个球中至少有一个是白球的概率是34
35
,求n 的值。
9.一辆单位交通车送职工下班,规定可以在5个地点停车,车上有30人,如果某停车点无人下车便不停,求停车次数不少于2次的概率。
10.某人忘记了电话号码的最后一个数字,因而他随意地拨号,求:(1)第三次接通电话的概率;(2)拨号不超过3次而接通电话的概率;(3)如果最后一个数字是奇数,那么拨号不超过3次而接通电话的概率又是多少?。