低温省煤器介绍综述
浅析低温省煤器在百万机组中的应用
浅析低温省煤器在百万机组中的应用发布时间:2021-02-04T11:14:44.183Z 来源:《电力设备》2020年第30期作者:蒋琛[导读] 摘要:低温省煤器是为了满足火力发电厂烟气深度冷却增效减排而设计开发的排烟余热回收装置。
(国家能源集团谏壁发电厂)摘要:低温省煤器是为了满足火力发电厂烟气深度冷却增效减排而设计开发的排烟余热回收装置。
本装置回收火电厂排烟余热,加热凝结水,减少汽轮机抽汽,增加发电功率,构成火电厂余热回收凝结水回热加热系统。
关键词:低温省煤器;机组综合效率;安全经济;排烟损失一、概述某厂百万机组增设的低省设备,安装于电除尘之前、空预器之后烟道中,利用烟气余热加热汽机凝结水,提高机组综合效率,同时将排烟温度从132℃降低到105℃(BMCR工况计算值),在提高机组运行效率的同时提高除尘效率,控制烟尘排放符合新的排放要求。
烟气冷却器吸收的烟气余热用来加热凝结水,系统串联在#7低加和#6低加之间,从#7低加出口取全部凝结水85.6℃(水量在低负荷工况时可通过旁路调节阀调节),经烟气冷却器加热至100.2℃后回水至#6低加入口回至凝结水系统。
二、设备主要技术参数表1 低温省煤器参数列表三、低温省煤器结构简介由于低温省煤器的传热温差小,为使受热面结构紧凑以减小体积,并减少材料耗量,传热管必须采用扩展受热面强化传热。
H型翅片管作为换热元件,由于其制造工艺简单,能增大管外换热面积,强化传热,因而在常规锅炉设计与改造、利用中低温余热的余热锅炉以及其它换热设备中得到了广泛的应用。
另外,H型翅片管较光管,可以提高传热管外壁面的温度,有利于减缓低温腐蚀。
低温省煤器布置在空预器之后烟道内,每台机组布置4台低温省煤器,采用H型翅片管,双管圈、顺列、逆流布置,每台低温省煤器分4层换热面,每层换热面设进出口分联箱,通过手动闸阀与总联箱连接,方便单组换热面泄露时进行切除。
每组换热面进水集箱设排污阀,出水集箱设排气、排污阀,详细结构见设备总图。
低温省煤器介绍范文
低温省煤器介绍范文低温省煤器的工作原理是通过在烟气中加装一个热交换器,将烟气中的余热与给水进行换热,使得排出的烟气温度降低,而给水的温度升高。
这样一来,锅炉的进气温度就能降低,从而节约燃料。
同时,低温省煤器还可以减少烟气中的污染物排放,起到环保的作用。
低温省煤器一般由烟道、烟气进出口、管束、水箱、安装支撑和管道连接等组成。
烟道是烟气流动的通道,烟气通过烟道进出口进入低温省煤器,经过管束的热交换后,排出烟道的同时,给水也通过管道进入低温省煤器的水箱,与烟气进行换热。
安装支撑则起到固定和支撑低温省煤器的作用。
低温省煤器的效果主要取决于其换热管束的材质和结构设计。
常见的换热管材料有钢管、合金钢管、不锈钢管等。
不同的材料对于不同工况的烟气都有一定的适应性。
在设计上,采用合理的管束结构,可以增加烟气与给水的接触面积,提高换热效果。
还可以通过增加管束数量或采用螺旋状管束,增加换热效果。
此外,还可以通过降低给水的流速,延长其在煤气中的停留时间,提高换热效果。
另外,还可以采用冷凝器等辅助设备,进一步提高换热效果。
低温省煤器的优点是具有良好的节能效果和环保效益。
通过利用烟气中的余热进行换热,降低了烟气排放温度,减少了烟气中的有害物质的排放。
同时,降低了锅炉烟气的温度,提高了热效率,减少了燃料的消耗。
这不仅节约了能源成本,还可以降低碳排放量,减轻环境污染。
另外,低温省煤器的安装和维护成本相对较低,使用寿命长,具有较高的经济效益。
然而,低温省煤器也存在一些问题。
首先,烟气中的灰尘和硫酸盐等杂质容易在管束表面形成结垢,影响换热效果。
因此,在操作过程中需要经常对低温省煤器进行清洗和维护。
其次,在使用过程中,需要注意控制给水的流速和温度,避免给水温度过高或流速过大,造成设备热负荷过大,对管束造成损坏。
此外,由于低温省煤器需要与锅炉烟道进行连接,也需要考虑连接管道的维护和处理问题。
综上所述,低温省煤器是一种有效的能量回收设备,通过利用锅炉烟气中的余热进行换热,提高热效率,减少能源消耗。
低温省煤器
低温省煤器概述
• 为防止低温省煤器受热面大量积灰影响传 热效器,吹灰汽源取自锅炉低温再热器出 口联箱果,在低温煤器进口烟道安装了六 组蒸汽吹灰。
二.低温省煤器的启动
• 1.启动前的检查 • 1)检查低温省煤器检修工作结束,工作票收回,现场清洁
无杂物。 • 2)检查低温省煤器的管道保温完整,人孔门封闭严密,各
三.低温省煤器的投运
• 1.检查增压水泵放空气门见水后关闭,低温 省煤器水质合格后关闭增压水泵出口手动 门。
• 2.启动增压水泵,缓慢开启泵出口手动门及 再循环调整门。
低温省煤器的投运
• 低温省煤器出口水温在110℃以上时,开启 低温省煤器回水电动总门,投低温省煤器 再循环自动及回水调整门自动,检查各调 整门动作正常,低温省煤器出口烟温不低 于120℃.
低温省煤器运行监视调整
• 2.低温省煤器出口调整门与再循环调整门是 差动控制,当泵出口母管水温高于设定值 时,可关小再循环调整门,同时开大出口 调整门;当泵出口母管水温低于设定值时 可开大再循环调整门,同时关小出口调整 门。
低温省煤器运行监视调整
• 3.一台增压水泵在运行时,低温省煤器再循 环调整门的指令低限为20%,当自动控制 回路切手动且两台增压水泵全停后,低温 省煤器再循环调整门方可全关。
四.低温省煤器投运时危险点分析
• 1.上水时应注意上水温度及上水速度,管壁 与水温差应小于55℃。
• 2 .上水时应注意检查系统有无泄漏,否则 应立即停止上水联系检修处理。
低温省煤器投运时危险点分析
• 3.升压时速度不宜过快,避免产生过大的热 应力损坏低温省煤器,升压过程中应严密 监视低温省煤器水量变化,维持正常水量。
低温省煤器
余热利用装置一 低温省煤器述• 我公司低温省煤器布置在引风机之后、脱 硫吸收塔之前的水平烟道内,采用H型翅片 管,备注:(用H型翅片式省煤器代替光管 省煤器,可以有效增加换热面积,增大烟 气流通截面,降低烟速,减少磨损。有的 设计中将省煤器的弯头全部置于烟道之外, 完全排除了省煤器弯头的磨损问题。
高效氟塑料低温省煤器系统应用简介
高效氟塑料低温省煤器系统应用简介摘要:锅炉排烟温度过高严重影响锅炉运行的经济性,采用低温换热器是一种有效的降低排烟温度,利用烟气余热,提高锅炉热效率的节能方式。
采用管式换热器的余热回收利用系统,其换热能力受到低温腐蚀的限制,而采用高效氟塑料的换热器,能够有效防止酸腐蚀,并将烟气温度降至120℃以内。
高效氟塑料管烟气换热器采用氟塑料作为换热管材料有以下优点,可耐高温,长期安全使用温度:200-260℃;低阻力,具有极小的摩擦系数(0.04),拥有极低的水侧及气侧阻力,不粘灰:具有固体材料中最小的表面张力而不粘附任何物质。
烟气余热回收系统安装在引风机之后、脱硫吸收塔之前的烟道中,可以最大程度地降低烟气温度,回收余热。
关键词:余热回收利用氟塑料烟气温度节能0前言本公司锅炉型号为HG-1102/17.5-YM33型亚临界、一次中间再热、自然循环汽包炉、固态干式排渣。
排烟热损失约占锅炉热损失的60%~70%,存在很大的节能空间。
本文主要对高效氟塑料换热器余热回收系统的启停和运行调整进行分析,从而达到最佳运行状态,最大程度降低烟气温度,提高锅炉热效率。
1 系统简介本系统采用氟塑料管作为换热组件,通有冷却水的氟塑料软管换热组件布置引风机之后、脱硫吸收塔之前的烟道中,冷却水的流动方向与烟气流动方向相反,冷却水为循环水,流量为382t/h。
冷却水由进口水室进入氟塑料管内,经过联络水室,再由出口水室流出;冬季采暖期烟气温度由130℃冷却至82℃,冷却水温度由41℃加热到100℃,夏季非采暖期烟气温度由150℃冷却至92℃,冷却水温度由45℃加热到111℃,吸收的热量用于加热凝结水。
换热器顶盖设有冲洗水管,用于定期冲洗附着在氟塑料管上的灰尘。
整个换热模块垂直悬挂安装于吸收塔入口的烟道内,共8个换热模块。
每个模块都设有两组进出水口,模块的水侧设有供水回水联络母管,每个换热模块的每个进出口都设有独立的关断阀,可以单独隔离。
低温省煤器技术简介及应用讲解
低温省煤器LTE 技术介绍及应用分析福建紫荆环境工程技术有限公司2014年目录1.低温省煤器系统概述 (1)2.国内外低温省煤器目前的应用情况及安装位置 (1)3.低压省煤器节能理论及计算 (3)4.某工程低温省煤器的初步方案 (6)5.加装低温省煤器需要考虑的问题 (8)6 低温省煤器的特点分析 (9)1.低温省煤器系统概述排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤1.2%--2.4%。
若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃。
所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多。
但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况。
为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器。
低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。
在发电量不变的情况下,可节约机组的能耗。
同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量。
2.国内外低温省煤器目前的应用情况及安装位置2.1低温省煤器目前在国内外的应用情况低温省煤器能提高机组效率、节约能源。
目前在国内也已有电厂进行了低温省煤器的安装和改造工作。
山东某发电厂,两台容量100MW发电机组所配锅炉是武汉锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器。
浅谈火力发电厂低温省煤器设置的应用
浅谈火力发电厂低温省煤器设置的应用作者:燕小芬来源:《科学与信息化》2019年第34期摘要本文主要对烟气余热和循环水余热利用进行技术和经济论证。
推荐设置两级低温省煤器,烟气余热加热凝结水,回收了烟气的余热,节约了脱硫的耗水量,降低汽机热耗,提高机组效率。
因此,本文主要针对采用烟气余热利用作具体分析。
关键词火力发电厂;低温省煤器;应用1 低温省煤器系统概述低温省煤器主要是加热凝结水、采暖水,原煤干燥、直接或利用水媒介加热预热器进风等。
凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用,是汽轮机热力系统的一个组成部分。
低温省煤器将节省部分汽轮机的回热抽汽,在汽轮机进汽量不变的情况下,节省的抽汽在汽轮机继续膨胀做功,因此,在发电量不变的情况下,可节约机组的能耗。
2 余热利用的主要方式在当今全球范围内,能源的供需矛盾日益突出,环境污染已经威胁人类的生存,倡导环境、能源、经济的可持续发展成为当前迫在眉睫的战略问题,世界各国都日益重视可再生能源和余热的开发与利用。
火力发电厂大致有以下方法提高全厂的热效率。
首先,提高蒸汽参数,目前国内外主机制造厂都在研究700℃超超临界机组材料,尤其是材料的热强性能、抗蒸汽氧化和抗烟气腐蚀性能、冷热加工性能等。
其次,采用再热系统和增加再热级数都是提高循环热效率的主要手段,对机组热力系统的优化和厂用电率的降低。
再次,降低汽轮机的排汽参数。
由于受电厂所处地理位置和气候条件的限制,循环冷却水温是在一定的范围内变化的,因此汽轮机的排汽参数下降的幅度是有限的。
最后,降低锅炉烟气的排放热损失。
排烟热损失是锅炉各项热损失中最大的一项,电站锅炉的排烟温度通常为120~150℃,相应的热损失相当于燃料热量的5%~12%。
3 低温省煤器设置方案3.1 方案分析烟气系统加装低温省煤器吸收排烟余热,可以提高机组的经济性,节约能源。
浅谈金属低温省煤器防腐蚀原理及利弊
浅谈金属低温省煤器防腐蚀原理及利弊【摘要】介绍燃煤低温省煤器酸腐蚀形成的原理,以及国内解决低温省煤器酸腐蚀的措施。
【关键词】燃煤锅炉;低温省煤器;酸腐蚀;一、概述燃煤锅炉排烟热损失是电站锅炉各项热损失中最大的一项,一般在5%~8%,占锅炉总热损失的80%或更高。
电站锅炉排烟余热深度回收利用系统安装在除尘器之后、脱硫塔之前的烟道中,可以最大程度地降低烟气温度,使烟气温度再降低40~50℃。
在一些采用湿烟囱或烟塔合一等最新烟气排放技术的电厂,脱硫塔入口烟温可降低到85℃左右,使烟温达到最佳脱硫效率状态,大大减少脱硫塔的冷却水耗。
排烟余热回收系统所吸收的能量可以用来加热凝结水,或通过暖风器加热空气提高送风温度,从而减少低压加热器或者暖风器的抽汽量,增加汽轮机做功,提高机组效率。
二、酸腐蚀原理锅炉的寿命影响因素主要有腐蚀、磨损、结垢等,对于余热利用的锅炉来说,锅炉的寿命受到烟气的成份影响很大,烟气中SO2含量高,则锅炉容易受到低温腐蚀,如果烟气中灰分含量大,并且灰分颗粒硬度大,则锅炉受磨损较大,如果锅炉给水中盐份含量高,受热面管道内易结垢,造成传热不良,影响锅炉的使用寿命,如果锅炉给水中含氧量控制不好,则很容易造成锅炉管道氧腐蚀。
低温酸腐蚀主要机理是烟气中存在较多的SO2时,其中一部分SO2与O2结合转化为SO3,进而与H2O结合生产H2SO4,高温时,烟气中的H2SO4是蒸汽形式存在,当锅炉管道壁温低于硫酸露点温度时,就会在管壁上凝结而产生腐蚀。
另外烟气中的SO2,Cl2也会对造成低温腐蚀,这两种气体的低温腐蚀只存在H2O露点以下,因此在常规的锅炉中这两种气体造成的低温腐蚀很少。
三、金属低温省煤器防腐原理当受热面管壁温度低于酸腐蚀温度时,硫酸必定会在管壁上凝结,这时普通的管子材料会出现酸腐蚀,但并不是所有的硫酸凝结后都会很快腐蚀,酸腐蚀速度是随着外界条件而变化。
研究表明,硫酸浓度在56%时,腐蚀速度最大,浓度高于以及低于这个数值,腐蚀速度都大幅度下降;管壁温度对腐蚀也有影响,管壁温度升高,腐蚀速度加快,到达一定温度时,腐蚀速度达到最大(比酸露点温度低20~45℃),过了这个点后,腐蚀速度大幅度下降,这是因为壁温的变化使得凝结的硫酸浓度也是一个变化的曲线。
低温省煤器技术简介及应用分析
低温省煤器技术简介及应用分析-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII低温省煤器LTE 技术介绍及应用分析福建紫荆环境工程技术有限公司2014年目录1.低温省煤器系统概述 (1)2.国内外低温省煤器目前的应用情况及安装位置 (1)3.低压省煤器节能理论及计算 (3)4.某工程低温省煤器的初步方案 (6)5.加装低温省煤器需要考虑的问题 (8)6 低温省煤器的特点分析 (9)1.低温省煤器系统概述排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤 1.2%--2.4%。
若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃。
所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多。
但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况。
为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器。
低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。
在发电量不变的情况下,可节约机组的能耗。
同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量。
2.国内外低温省煤器目前的应用情况及安装位置2.1低温省煤器目前在国内外的应用情况低温省煤器能提高机组效率、节约能源。
目前在国内也已有电厂进行了低温省煤器的安装和改造工作。
山东某发电厂,两台容量100MW发电机组所配锅炉是武汉锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器。
0低温省煤器介绍
低温省煤器泄漏:检查并修复泄漏 点,确保密封良好
低温省煤器温度异常:检查热源和 冷源,调整温度控制系统
添加标题
添加标题
添加标题
添加标题
低温省煤器堵塞:定期清理或更换 滤网,保持畅通
低温省煤器振动:检查安装基础和 支撑结构,确保稳定
PART SIX
高效传热技术:提高低温省煤器的传热效率,降低能耗。 耐腐蚀材料:研发更耐腐蚀的材料,延长设备使用寿命。 智能化控制:实现低温省煤器的智能控制,提高运行稳定性。 多功能集成:将低温省煤器与其他节能设备集成,实现系统节能。
技术创新:随着科技的不断进步,低温省煤器技术将得到进一步优化和提升。
环保需求:随着全球对环保问题的重视,低温省煤器将在减少碳排放方面发挥重要作用。
市场需求:随着工业领域的发展,低温省煤器的市场需求将不断增长。
竞争格局:未来低温省煤器市场竞争将更加激烈,品牌和服务将成为企业竞争的关键因 素。
添加标题
选择材料:根据设计温度、压力、 腐蚀性等条件,选择合适的材料, 如不锈钢、碳钢等。
确定工艺流程:根据设计结构和制 造要求,确定低温省煤器的工艺流 程,如焊接、防腐处理等。
PART FOUR
制造材料:低温省煤器主要采用耐腐蚀、耐磨损的材料,如不锈钢、合金钢等。
制造过程:低温省煤器的制造过程包括焊接、热处理、表面处理等环节,以确保其质量和性 能。
减少温室气体排放,缓解全球气候变暖 降低污染物排放,改善空气质量 提高能源利用效率,减少资源消耗 促进可再生能源的开发利用,减少对化石燃料的依赖
汇报人:
高效节能:通过优化设计,降 低能耗,提高能源利用效率
环保减排:降低污染物排放, 符合环保要求,推动绿色发展
经济实用:在满足性能要求的 前提下,合理控制设备成本,
低温省煤器介绍(LQ)AAA(1)
4. 现场安装
• 对除尘器的影响
1. 除尘器入口烟气温度降低,增加了粉尘在除尘器中的停留时间,
提高了除尘效率 2. 电除尘器入口烟气温度的降低幅减少 SO3 和 PM2.5 排放
• 对脱硫系统的影响
1. 减少入口喷水
2. 降低脱硫塔入口烟气流速,有利于提高脱硫效率 3. 可以避免脱硫塔内防腐内衬过热
• 设备本体 • 除盐水系统 • 电气系统
• 控制系统
• 吹灰系统 • 烟道平台扶梯钢 架等辅助系统
•主要性能参数 (各项目需按照机组参数作具体设计)
序号
1 2
名
称
单位
℃ ℃
取值范围
100-180 90-120
备注
因煤种而异
烟气入口温度 烟气出口温度
3
4 5
水入口温度
水出口温度 烟气阻力
℃
℃ kPa
4. 利于提高除雾效率
5. 可以缩小新建脱硫塔的直径
•对整个热系统的影响
•
•
烟气余热输入回热系统中会排挤部分抽汽,导致循环热效率降低
没有增加锅炉燃料量的前提下,大量烟气余热进入回热系统,
•
•
大大增加了电厂循环的吸热量
有利作用要远大于不利影响.所以机组的经济性仍是显著改善的
• 经济效益分析
• • 收益部分:回收余热,减少汽机抽汽量 支出部分
60-85
80-120 <0.5
6
水流动阻力
MPa
<0.25
换热器部分
• 设备布置方案
1. 全部布置在空预器-电除尘间 推荐方案
2. 全部布置在脱硫塔前,只加热冷凝水
3. 两级布置 一级在前电除尘前,第二级在脱硫塔前
低温省煤器系统控制要点综述
锅 炉 制 造
BOILER MANUFACTURING
No.2 M al".2018
低 温 省 煤 器 系统 控 制 要 点 综 述
张钰 良 ,马孝纯 ,刘 洋
(1.哈 尔滨锅炉厂有限责任公 司,黑龙 江 哈 尔滨 150046; 2.高效清洁燃煤 电站 国家重点 实验 室(哈 尔滨锅 炉厂有限责任公 司),黑龙 江 哈 尔滨 150046)
Control key points sum m ary of low-tem perature econom izer system
Zhang Yuliang ,M a Xiaochun ,Liu rang
(1.Harbin Boiler Co.,Ltd.,Harbin 150046,China;2.The State Key Laboratory of Ef icient and Clean Coa1.fired Utility Boilers(Harbin Boiler Company Limited),Harbin 1 50046,China)
张钰 良,等 :低温省煤器系统控制要点综 述
·15 ·
1 低 温 省 煤 器 系统 简 介
低 温省 煤器 系统 布 置 于 电除尘 器 入 口烟道 , 利用 热媒 水 降低 烟 气 温 度 ,将 电除 尘 人 口的 烟气 温度 降低 到 约 90 ̄C(BMCR 工况 );然 后 热 媒 水作 为 暖风 器或 者 汽轮 机 低 加 系 统 给 水 的加 热介 质 , 以提 高锅 炉一 、二 次 风 风 温 或 者 低 加 系 统 给水 温 度 ,从而 提高 机组 运行 的经 济性 。
表 1 大气 污 染 物 特 别 排 放 限值 单 位 :mg/J(烟 气 黑 度 除 外 )
锅炉低温省煤器余热回收
锅炉低温省煤器余热回收火力发电是我国电力企业的主要发电形式,在火力发电过程中,烟气的余热回收是一项重要的技术。
基于此,本文进行锅炉低温省煤器概述的基础上,从常规低温省煤器、分段低温省煤器、实例分析三个方面对锅炉低温省煤器的余热回收系统进行了深入的研究和分析。
标签:锅炉余热回收;经济性分析;常规低温省煤器目前,国内的火力发电存在两种类型的大量热损失,而影响火力发电厂的重要因素就是烟气的余热。
国内大多数燃煤电站的锅炉排烟温度在130℃左右,其效率保持在92%左右。
其中,排烟的热损失占到锅炉总体热损失的50%以上,如果可以把燃煤电站的排烟温度降低至80℃左右,锅炉的整体效率就会提高3%左右,其供电煤耗也会下降4g/kWh,CO2的排放量也会大幅减少。
因此,随着能源价格节节攀升、国家对于节能减排标准的日益严格,锅炉烟气余热的回收利用已经成为火力发电厂需要着重解决的技术问题。
1 锅炉低温省煤器的概述在锅炉的尾部烟道处安装低温省煤器,其原理是利用凝结水以及其他的介质来吸收烟气中的余热,从而达到降低烟气余热的目的。
利用低温省煤器可以有效的进行烟气的余热回收,极大的提高了高温烟气的热利用率,同时降低了烟气的排放损失。
低温省煤器综合的利用烟气热量,同时有效的提高烟气的余热回收品质,提高其利用价值,降低了机组供电的煤耗。
低温省煤器的主要优点有:①其吸收余热的功能,可以把余热应用于供暖热网水的加热、生活用水的加热以及凝结水等,极大的提高了锅炉的工作效率,同时为企业增加了一定经济效益;②降低了排放烟气的温度,使得烟气在进到脱硫塔时已经达到了最佳的脱硫状态,极大的减少了脱硫塔中冷却水的消耗,达到了节约水资源的目的;③低温省煤器设置在除尘器前还可以达到减小烟气体积流的目的,提高了其电除尘的效率,实现了粉尘排放的降低。
2 锅炉低温省煤器的余热回收分析2.1 常规低温省煤器燃煤机组的实际排放烟气温度是130℃左右,同时需要考虑到低温腐蚀、换热器的成本和材料、经济性等因素,设计流经低温省煤器而冷却后的排放烟气温度应该降低到90℃左右。
对低温省煤器在火力发电厂中的运用分析 张阳
对低温省煤器在火力发电厂中的运用分析张阳摘要:通常情况下,火力发电厂的锅炉排烟温度都比较高,大致在一百四十到一百五十度之间,如果这部分热量利用得当的话将会为火力发电厂节省大量燃料,从而既降低了燃料的成本费用,也间接地保护了生态环境。
低温省煤器的主要作用就是降低电站锅炉排烟温度的热损失,从而提升火力发电站的经济效益。
关键词:低温省煤器;泄露原因;预防措施1 系统概述1.1 技术原理烟气余热回收系统采用卧式相变烟气余热回收系统,该系统主要包含两大部分,一部分为蒸发换热器,布置在烟道内;另一部分为相变换热汽包,布置在烟道外部的蒸发换热器上方某处。
蒸发换热器与相变换热汽包的壳程相连接,即为内循环。
内循环以水为换热媒介,热媒介质水并依靠水蒸气及水之间的重力差在内循环内形成闭式循环。
相变换热汽包的管程与低加回热系统的凝结水管道并联,即外循环。
外循环的凝结水吸收相变换热汽包壳程内水蒸汽的汽化潜热,被加热后回到低加回热系统。
1.2 系统运行状况该烟气余热回收装置投入运行后,累计运行约420 d后,发现泄漏情况,详细情况如下:根据运行值班人员反映,一段时间后开始必须向烟气余热回收装置内循环系统注水,才能保证烟温降低至预期值。
此外,炉后尾部烟道出现了渗水等一系列问题。
2 低温省煤器泄漏原因2.1 疲劳损坏低温省煤器的疲劳损坏主要是由于在实际生产中,生产工艺的实际值低于设计值,使余热锅炉的蒸发量减少,这就直接导致低温省煤器的给水速度和给水量的降低,使低温省煤器的出水温度几乎达到沸腾状态,产生的气水混合物较多。
这种气水混合物在竖直管道中分布较为均匀,但在水平管道中则会出现分层。
由于水的密度大,一般在管道的下层,而蒸气密度小,则分布在管道的上层。
在这种状态下,只有加速搅动才能使气、液两态的水分呈均匀分布状态,而降低搅拌速度则会加速管道的疲劳泄漏。
2.2 管道质量管道质量方面主要表现为蛇形管道质量不高和管道焊接质量不好两方面,首先,中低压锅炉用钢管自身质量不稳定,可能会在使用过程中出现孔洞,造成管道损坏;另一方面管道的焊接质量不合格,一旦出现泄漏,就会使烟气从焊口处逸出,腐蚀焊口附近的管道外表面,加快管道的泄漏。
低温省煤器技术简介和应用分析报告
低温省煤器LTE 技术介绍及应用分析福建紫荆环境工程技术有限公司2014年目录1.低温省煤器系统概述 (1)2.国内外低温省煤器目前的应用情况及安装位置 (1)3.低压省煤器节能理论及计算 (3)4.某工程低温省煤器的初步方案 (5)5.加装低温省煤器需要考虑的问题 (8)6 低温省煤器的特点分析 (8)1.低温省煤器系统概述排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤1.2%--2.4%。
若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃。
所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多。
但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况。
为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器。
低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。
在发电量不变的情况下,可节约机组的能耗。
同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量。
2.国内外低温省煤器目前的应用情况及安装位置2.1低温省煤器目前在国内外的应用情况低温省煤器能提高机组效率、节约能源。
目前在国内也已有电厂进行了低温省煤器的安装和改造工作。
山东某发电厂,两台容量100MW发电机组所配锅炉是武汉锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器。
低温省煤器技术简介及应用分析报告
低温省煤器LTE 技术介绍及应用分析**紫荆环境工程技术**2014年目录1.低温省煤器系统概述12.国内外低温省煤器目前的应用情况及安装位置13.低压省煤器节能理论及计算34.某工程低温省煤器的初步方案55.加装低温省煤器需要考虑的问题56 低温省煤器的特点分析61.低温省煤器系统概述排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤1.2%--2.4%.若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃.所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多.但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况.为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器.低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用.在发电量不变的情况下,可节约机组的能耗.同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量.2.国内外低温省煤器目前的应用情况及安装位置2.1低温省煤器目前在国内外的应用情况低温省煤器能提高机组效率、节约能源.目前在国内也已有电厂进行了低温省煤器的安装和改造工作.**某发电厂,两台容量100MW发电机组所配锅炉是**锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器.低温省煤器系统布置图如下:**某电厂低温省煤器系统连接图国外低温省煤器技术较早就得到了应用.在苏联为了减少排烟损失而改装锅炉机组时,在锅炉对流竖井的下部装设低温省煤器供加热热网水之用.德国Schwarze Pumpe电厂2×800MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水,其原理同低温省煤器一致.德国科隆Nideraussem1000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水.日本的常陆那珂电厂采用了水媒方式的管式GGH.烟气放热段的GGH布置在电气除尘器上游,烟气被循环水冷却后进入低温除尘器<烟气温度在90~100℃左右>,烟气加热段的GGH布置在烟囱入口,由循环水加热烟气.烟气放热段的GGH的原理和低温省煤器一样.低温省煤器尽管在国内和国外已经有运用业绩,但上述的例子中我们发现,在德国锅炉排烟温度较高,均达到170℃左右<这些锅炉燃用的是褐煤>,而加装低温省煤器后排烟温度下降到100℃左右.日本的情况是锅炉设计排烟温度不高<125℃左右>,经过低温省煤器后烟气温度可降低到85℃左右.2.2低温省煤器安装位置由于低温省煤器的传热温差低,因此换热面积大,占地空间也较大,所以在加装低温省煤器时,需合理考虑其在锅炉现场的布置位置.低温省煤器布置在除尘器的进口日本的不少大型火电厂,如常陆那珂电厂<1000MW>和Tomato-Atsuma电厂<700MW>等都有类似的布置.管式的GGH烟气放热段布置在空预器和除尘器之间.管式GGH将烟气温度降低到90℃左右,除尘器的飞灰比电阻可从1012Ω-cm下降到1010Ω-cm,这样可提高电气除尘器的运行收尘效率.低温省煤器布置在除尘器的进口,除尘器下游的烟气体积流量降低了约5%,因此其烟道、引风机、增压风机等的容量也可相应减少,降低了运行厂用电.据计算,每台机组节约引风机和增压风机厂用电共约500kW.需要指出的是除尘器和风机的选型仍应该考虑125℃低温省煤器未投运时的情况,这种布置方式最大的风险是腐蚀.因为经过低温烟气换热器后的烟气温度已经在酸露点以下,除尘器、烟道、引风机、增压风机均存在腐蚀的风险.根据日本的有关技术资料,未经除尘器收尘的烟气中含有较多的碱性颗粒,可中和烟气中凝结的硫酸微滴,低温除尘器及其下游的设备并"不需要进行特别的防腐考虑",而且日本的不少大机组运行低温除尘器也有良好的业绩,因此,这种布置方式应该是可行的.但是,对所谓的"不需要进行特别的防腐考虑"还有一些疑虑:<1>是不是仅仅依靠烟气中的碱性灰颗粒就能中和大部分SO,而大大降低温烟气的腐2蚀性?中和反应的彻底程度肯定与燃煤的特性有关<如含硫量,含灰量,灰分中碱性物质如CaO.K2O的数量等>,是不是还与别的因素有关?<2>对于低温电气除尘器与常规除尘器的区别还需要进一步研究.根据我们目前掌握的资料,为了防止低温除尘器灰斗中的灰板结,其灰斗的加热面积要大于普通除尘器.由于缺乏更多的资料,如果采用这种布置方式需要进行大量资料的收集研究工作.<3>对于除尘器下游的烟道和风机设备,由于烟气中的灰已经基本被除去,此时还应该充分考虑相应的防腐措施.<4>随着烟气温度的降低,烟灰的电气抗阻值下降.此时ESP 的除尘性能上升,但是在捶打集尘极板时,附在电极处的烟尘会飞散,使ESP出口粉尘浓度短时上升<比通常的出口浓度要高约50mg/m3左右>.低温省煤器布置在脱硫吸收塔的进口德国一些燃烧褐煤的锅炉将低温省煤器布置在吸收塔入口.低温省煤器将烟气温度从160℃降低到100℃后进入吸收塔,被烟气加热的凝结水再加热冷二次风.这种方式的低温省煤器实际上起到管式GGH加热器中烟气冷却的作用.烟气经过除尘器后,低温省煤器处于低尘区工作,因此飞灰对管壁的磨损程度将大大减轻.由于烟气中的碱性颗粒几乎被除尘器捕捉,其出口烟气带有酸腐蚀性.但是由于其布置位置在除尘器、引风机、增压风机之后,烟气并不会对这些设备造成腐蚀,因而避免了腐蚀的危险.因为吸收塔内本来就是个酸性环境,烟气离开吸收塔时温度约为45℃.塔内进行了防腐处理.这种布置方式只要考虑对低温省煤器的低温段材料和低温省煤器与吸收塔之间的烟道进行防腐.采用这种布置方式的缺点是无法利用烟气温度降低带来的提高电气除尘器运行效率、减少引风机和增压风机功率的好处;其次,其布置位置远离主机,用于降低烟气温度的凝结水管道也较长,凝结水泵需克服的管道阻力及电耗也更高.3.低压省煤器节能理论及计算一般认为,把烟气余热输入回热系统中会排挤部分抽汽,导致热力循环效率降低;并且,排挤的部分抽汽会增加凝汽器的排汽使汽轮机真空有所降低.这两点对于低压省煤器节能的疑问必须加以澄清.理论上,增设低压省煤器后,大量烟气余热进入回热系统,这是在没有增加锅炉燃料量的前提下,获得的额外热量,它以一定的效率转变为电功.这个新增功量要远大于排挤抽汽和汽机真空微降所引起的功量损失,所以机组经济性无例外都是提高的.3.1 发电煤耗节省量计算采用等效热降法进行热经济性分析.将低压省煤器回收的排烟余热作为纯热量输入系统,而锅炉产生1kg新汽的能耗不变.在这个前提下,热系统所有排挤抽汽所增发的功率,都将使汽轮机的效率提高.相应1kg汽轮机新汽,其全部做功量称新汽等效焓降<记为H>,所有排挤抽汽所增发的功量<记为ΔH>称等效焓降增量,计算如下:H = 3600/<ηjd×d> 〕kJ/kg〔ΔH=β[<hd2-h4>η5+∑〕τj·ηj〔] 〕kJ/kg〔式中 d—机组汽耗率,kg/kwh;ηjd—汽轮机机电效率;β—低省流量系数;hd2—低压省煤器出水比焓,kJ/kg;h4—除氧器进水比焓,kJ/kg;τj—所绕过的各低加工质焓升,kJ/kg;ηj—所绕过的各低加抽汽效率.热耗率降低δq按下式计算:δq=ΔH·q/〕H+ΔH〔〕kJ/kwh〔式中 q—机组热耗率,kJ/kwh;发电标煤耗节省量δbs按下式计算:δbs=δq/〕ηp·ηb·29300〔〕kg/kwh〔式中ηp、ηb——锅炉效率、管道效率;以已投运的某200MW火电机组低压省煤器系统为例进行节能量计算,结果列于表1.由表1可见,低压省煤器降低排烟温度28℃,可节省标准煤3.05g/kwh.表1低压省煤器主要指标计算结果〕某国产200MW机组〔这里指出,低压省煤器尽管降低了排烟温度,但并未改变锅炉效率.锅炉的排烟温度仍然定义于空气预热器出口.3.2 汽轮机真空影响计算对于湿冷机组,汽轮机背压增量dpc与冷凝量增量dDc关系借助凝汽器的变工况计算,亦可按下式估算:dpc=2.059×dDc/Dc 〕kPa〔dDc=∑Dj- dD0 <t/h>式中 Dc—凝汽器冷凝量,t/h,dD0—由增设低省引起的汽轮机新汽量减少值,t/h,可由δbs计算得到.∑Dj—低省各排挤抽抵达凝汽器的总量,t/h.其中第J级的排挤量按下式计算:Dj=3.6·γj·G·τj/qj 〕 t/h〔式中 G—低省的过水流量,kg/sγj—排挤系数,指第J级排挤抽汽抵凝汽器的份额,按文献[1]计算.其余符号,意义同前.表2列出了汽轮机真空计算主要结果.表2汽轮机真空影响计算结果<某国产200MW级组>由表可知,各排挤抽抵达凝汽器的总量14.12t/h,低省节省新汽量5.64t/h,冷凝量净增量8.48t/h,由此引起汽轮机背压升高0.0404kPa.此时汽轮机排汽比焓升高值为0.457kJ/kg,仅占新汽等效焓降的0.037%.根据以上分析,排挤抽汽对汽轮机真空以及对汽轮机做功的影响完全可以忽略.4.某工程低温省煤器的初步方案低温省煤器的结构形式如下省煤器结构设计中需考虑的问题 :1、管径的选择2、纵向节距和横向节距<烟气流速>的确定3、管组高度的限制,检修用空间高度的预留4、省煤器中的凝结水流速4.1机组主要设备参数4.2低温省煤器主要设备参数4.3低温省煤器调试运行参数由以上实例可以看出,投资回收期为1.41年,可使用寿命为10年,则低温省煤器具有非常积极的意义.5.加装低温省煤器需要考虑的问题5.1 烟道省煤器的低温腐蚀选用合适的耐腐蚀材料.针对工程的应用情况,选择合适的、性价比比较高的材料是非常重要的.目前可供考虑采用的材料主要有:不锈钢材料、耐腐蚀的低合金碳钢、复合钢管及碳钢表面搪瓷处理等.5.2 换热面管的积灰低温省煤器的换热面管采用高频焊翅片管,与普通光管相比,翅片管传热性好,因此可减小低温省煤器的外形尺寸和管排数,减少烟气流动阻力.但是高频焊翅片管易于积灰.其积灰的程度与煤灰特性及烟气流速有关.因此在设计时可适当提高烟速〕对于除尘器前布置的低温省煤器,烟气流速推荐10 m/s左右,对于除尘器后布置的低温省煤器,烟气流速推荐15 m/s左右〔.选择合适间距的翅片管以减少省煤器管壁积灰.在低温省煤器管排间将设置蒸汽吹灰器.对于低温省煤器在布置上必须考虑可拆卸的形式,并在低温省煤器上设置水清洗系统,利用机组停运期间进行水清洗.5.3 烟道的防腐由于烟气运行温度较低,需要对低温省煤器后的烟道考虑防腐措施,初步考虑采用耐硫酸碳钢,对烟道的造价会提高约20%.6 低温省煤器的特点分析6.1排烟温度方案比较主要比较了传统的高压省煤器改造和增设低压省煤器的两种技术方案.与高压省煤器改造相比,低压省煤器在电厂节能减排方面有其独到的优点:<1>可以实现排烟温度的大幅度降低.按照电厂的不同需求,可降低排烟温度30℃~35℃,甚至更多.而改造高压省煤器,则根本无法做到这一点.这个优点对于需上脱硫系统的锅炉<排烟温度有最高限制>,是十分珍贵的.<2>对于锅炉燃烧和传热不会产生任何不利影响.由于低压省煤器布置于锅炉的最后一级受热面<下级空预器>的后面,因此,它的传热行为对于锅炉的一切受热面的传热均不发生影响.因此既不会降低入炉热风温度而影响锅炉燃烧,也不会使空气预热器的传热量减少,从而反弹排烟温度的降低效果.<3>具有独特的煤种和季节适应性.锅炉的低压省煤器出口烟温可以根据不同季节和煤质<主要是含硫量>进行调节,以实现节能和防腐蚀的综合要求.这也是高压省煤器改造所不具备的.例如为**QG电厂670t/h锅炉设计的低压省煤器,设计将排烟温度从160℃降低到135℃.后运行中排烟温不正常升高到180℃,低压省煤器靠自身的烟温调节功能,仍然将排烟温度轻松降低到135℃.<4>设计低压省煤器也可以同时解决汽轮机热力系统的某些缺陷.例如**ST电厂#4机<200MW>,大修前除氧器的主凝结水进水温度高出设计值很多,造成了除氧器的排挤抽汽.为此,只得部分开启#4低加旁路,使汽轮机热耗增加.加装低压省煤器后,低省出口的水温为120℃,低于主凝结水温度34℃,与主凝结水汇合后,使除氧器进水温度基本恢复设计值,从而消除了回热系统的缺陷,保证了除氧效果.<5>采用低压省煤器系统,可以充分利用锅炉本体以外的场地空间布置受热面,因而空间宽绰、便于检修.当然,由于低压省煤器所吸收余热的利用能级相对较低,因此其单位排烟温降的节能量不及高压省煤器改造.如果电厂只需少量降低排烟温度、而锅炉又无燃烧稳定性的担忧或其它限制时,改造高压省煤器也不失为较好的方案.6.2低温省煤器的优点:1、可降低排烟温度30~70℃.可获得显著的节能经济效益.2、大大降低脱硫系统的水耗.加装低压省煤器后,可取消脱硫系统的喷水降温装置或事故<喷淋>降温装置,实现脱硫系统的深度节能.3、增设低压省煤器,可减少抽汽量,降低煤耗.4、具有良好的煤种和季节适应性.5、具有良好的负荷适应性.6、可以充分利用锅炉本体以外的场地空间,布置所需要的受热面,并留有足够的检修空间,检修方便.7、本技术把锅炉的余热利用与汽轮机的低加系统巧妙地结合起来,对于锅炉燃烧和传热不会产生任何不利影响.8、对于拆除GGH的脱硫改造工程,在吸收塔入口处加装低温省煤<GGH的阻力比低温省煤器高300-400Pa>,不仅解决了去掉GGH后烟气对脱硫系统的不利影响,而且降低排烟温度,提高锅炉效率.9、由于本系统属静态设备,无动力装置,所以系统本身能耗极低.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海电气电站集团 上海锅炉厂有限公司
•控制方式
•
• •
纯低温省煤器模式
采用和相近温度的低加并联 控制换热器出口的排烟温度,手段是控制进入 换热器的水量
•
•
同时投用暖风器模式
低温省煤器的第1,2级供加热冷凝水,第3级供加热暖风 器内水;如设计需要暖风器出力较大时,可以用第1级 作为暖风器热源,2,3级加热凝结水 控制方式为切换第3级换热器的进出水阀,暖风器回路 吸热量通过调节其循环泵的转速或管道阀门开度控制; 依靠调节流入的凝结水量来控制最终排烟温度
低温省煤器-暖风器锅炉预热器回收系统:
1. 2. 3. 4. 5. 可以解决大幅度降低排烟温度的需要 为预热器暖风器提供循环热量 可以明显提高电厂的热经济性 可以部分替代GGH设备,回收的热能直接为发电工质利用 完全符合国家发展绿色煤电的要求
上海电气电站集团 上海锅炉厂有限公司
• 设备应用情况
1. 从1990年代起,欧洲的褐煤锅炉系统,普遍安装低温预热回收系统,将排烟温 度从160~170℃,降低到120℃左右,提高电厂热效率2.5% 2. 日本近十年内新建的1000MW以上机组,和脱硫脱硝装置同步配备低温余热回收 系统,节约水耗和电耗 3. 日本新一代电除尘系统,依靠在空气预热器和电除尘之间加装烟温调节系统,将 除尘器入口烟温低到80℃,改变烟气比电阻,将除尘效果控制到30mg/Nm3 4. 美国各锅炉公司的新设计目标是将锅炉排烟温度控制到100℃以下,主要依靠提 高空气预热器效率和加装尾部换热器 5. 国内的工业炉,普遍配置铸铁省煤器回收余热
•布置位置
•脱硫塔
上海电气电站集团 上海锅炉厂有限公司
•主要性能参数 (各项目需按照机组参数作具体设计)
序号
1 2 3 4 5
名
称
单位
℃ ℃ ℃ ℃ kPa
取值范围
100-180 80-100 45-80 60-120 <1.0
备注
烟气入口温度 烟气出口温度 水入口温度 水出口温度 烟气阻力
因煤种而异
上海电气电站集团 上海锅炉厂有限公司
ห้องสมุดไป่ตู้
•低温省煤器-暖风器系统
上海电气电站集团 上海锅炉厂有限公司
•汽机热平衡图--引入引出点的选择
上海电气电站集团 上海锅炉厂有限公司
•取水和回水方式 (参数为某电厂100万机组TMCR时数据)
上海电气电站集团 上海锅炉厂有限公司
•结构布置图
上海电气电站集团 上海锅炉厂有限公司
•
•
•
被并联的低加
通过控制进入低加的蒸汽进气门,加热未经过低温省煤 器的剩余凝结水,以低加出口水温为控制参数
上海电气电站集团 上海锅炉厂有限公司
•运行
•
• • •
堵灰风险
布置在电除尘以后,灰来源少,没有粘度很强的 物质(如石膏浆液) 布置采用H型或方形肋片,顺列排放,吹灰通透性 良好 一般不出现堵灰现象
上海电气电站集团 上海锅炉厂有限公司
• 设备布置方案
1. 全部布置在空预器-电除尘间 2. 全部布置在脱硫塔前,只加热冷凝水 3. 两级布置 一级在前电除尘前,第二级在脱硫塔前 4. 脱硫塔前分2-3级布置,分别加热冷凝水和暖风器水 易堵灰 调节性差 系统复杂 推荐方案
• 和低加系统的连接
• • 串联 并联 串于两级低加之间, 易出现因低温省煤器故障停机 和某级低加并联,不存在低温省煤器故障停机风险 推荐方案
低温省煤器-暖风器余热回收系统
上海锅炉厂有限公司
2019年3月28日
2019年3月28日 上海电气电站集团 上海锅炉厂有限公司
• 前言
1. 2. 3. 4. 5. 降低锅炉排烟温度,减小锅炉 q2 损失是提高发电效率的重要途径 依靠传统的空气预热器无法将锅炉烟气温度有较大幅度的下降 不设置GGH导致脱硫系统为控制入塔烟气温度,需要耗去大量的冷却水 预热器在锅炉采用各种节能手段后,面临排烟温度过低、低温腐蚀加剧的风险,需长期采用暖风器工作 暖风器耗用部分蒸汽热量,影响了电厂的经济性
(设计值<0.8)
6
7
水流动阻力
暖风器工质阻力
MPa
MPa
<0.25
<0.25
换热器部分
上海电气电站集团 上海锅炉厂有限公司
•换热元件形式
上海电气电站集团 上海锅炉厂有限公司
•换热元件材质
• 露点上方10℃以上 • 露点±10℃ • 露点下方10-20℃ • 露点下方20-30℃ • 露点下方 30℃以上 • 更低温度 Q235A 09CuP (ND钢管+Corten翅片) 钛合金,涂搪瓷翅片管,302等级不锈钢 304等级不锈钢 316L 等级不锈钢 904,926等级不锈钢或非金属材料
1. 回收余热,减少汽机抽汽量 2. 更换暖风器热源,有利于提高热经济性 3. 减少脱硫系统水耗 4. 如取代GGH,可以降低运行耗功 • 支出部分 1 增加了冷凝水的输送功 2 低温省煤器烟气阻力耗功
Fcw *ΔPcw /(ηp*ρcw) (电耗) Fgas*ΔPgas/(ηf*ρgas) (电耗)
•
•
腐蚀风险
末级换热器在露点下方工作,腐蚀危害较大
•
• • • •
抗腐蚀对策
提高材料等级 采用较厚的管子,留有不低于3mm的腐蚀余量 采用肋化比较高的管束,提高换热表面壁温,光管区域尽 量不接触烟气 设计寿命按照一个大修期考虑
上海电气电站集团 上海锅炉厂有限公司
•经济收益数据
• 收益部分:
(1-q5) *(I”-I’)*Fcw (1/ηb -q5ah)*Fair*ΔTa*Cpa Fgas*ΔTg*Cpg/(4.187*Δtw+0.3*2260) ΣW / 0.42 (热耗)
3 暖风器内循环水输送功
Fw *ΔPw / (ηp*ρw)
(电耗)
上海电气电站集团 上海锅炉厂有限公司
•经济收益计算基本数据
序号 1 2 名 TMCR输出功率 通过烟气量 称 单位 MW kg/s 330MW 367 405.48 660MW 726 750.6 1000MW 1100 1115 备注
• Tld= TH2O+125*SZS0.333/ 1.05afh*Azs
• Tld= 20*lg(VSO3) + a
对有灰烟气
对无灰烟气 a=184~201 上海电气电站集团 上海锅炉厂有限公司
•吹灰方式
•蒸汽吹灰器(伸缩-旋转式) •(1.2-1.8MPa,300-350℃,4.8t/h)
• 气脉冲吹灰器