2017初高中数学衔接教材(已整理)-

合集下载

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初下中数教贯串课本之阳早格格创做咱们正在初中已经教习过了下列一些乘法公式:(1)仄圆好公式 22()()a b a b a b +-=-;(2)真足仄圆公式222()2a b a ab b ±=±+.咱们还不妨通过道明得到下列一些乘法公式:(1)坐圆战公式2233()()a b a ab b a b +-+=+;(2)坐圆好公式2233()()a b a ab b a b -++=-;(3)三数战仄圆公式2222()2()a b c a b c ab bc ac ++=+++++;(4)二数战坐圆公式 33223()33a b a a b ab b +=+++;(5)二数好坐圆公式 33223()33a b a a b ab b -=-+-.对于上头列出的五个公式,有兴趣的共教不妨自己去道明.例1 估计:22(1)(1)(1)(1)x x x x x x +--+++.解法一:本式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:本式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,供222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.挖空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++).2.采用题:(1)假如212x mx k ++一个真足仄办法,则k 等于( ) (A )2m (B )214m (C )213m (D )2116m (2)没有管a ,b 为何真数,22248a b a b +--+的值( )(A )经常正数 (B )经常背数(C )不妨是整 (D )不妨是正数也不妨是背数2.果式领会果式领会的主要要领有:十字相乘法、提与公果式法、公式法、分组领会法,其余还应相识供根法及待定系数法.1.十字相乘法例1 领会果式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2领会成图中的二个x 的积,再将常数项2领会成-1与-2的乘积,而图中的对于角线上的二个数乘积的战为-3x ,便是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).道明:以后正在领会与本例类似的二次三项式时,不妨间接将图1.1-1中的二个x 用1去表示(如图1.1-2所示). (2)由图1.1-3,得x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y)-1=(x -1) (y+1) (如图1.1-5所示).课堂训练一、挖空题:1、把下列各式领会果式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay-by x x 图1.1-4 -1 1 x y 图1.1-5=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)=+-91242m m __________________________________________________.(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________.2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、采用题:(每小题四个问案中惟有一个是精确的)1、正在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相共果式的是( )A 、惟有(1)(2)B 、惟有(3)(4)C 、惟有(3)(5)D 、(1)战(2);(3)战(4);(3)战(5)2、领会果式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+-3、()()2082-+++b a b a 领会果式得( )A 、()()2 10-+++b a b a B 、()()4 5-+++b a b a C 、()()10 2-+++b a b a D 、()()5 4-+++b a b a 4、若多项式a x x +-32可领会为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或者9B 、3±C 、9±D 、3±或者9±三、把下列各式领会果式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提与公果式法例2 领会果式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或者32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++课堂训练:一、挖空题:1、多项式xyz xy y x 42622+-中各项的公果式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --领会果式得_____________________.7.估计99992+=二、推断题:(精确的挨上“√”,过失的挨上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3领会果式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂训练一、222b ab a +-,22b a -,33b a -的公果式是______________________________.二、推断题:(精确的挨上“√”,过失的挨上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( )2、()()()()b a b a b a b a 43 4343892222-+=-=-………………………………… ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式领会1、()()229n m n m ++--2、3132-x 3、()22244+--x x 4、1224+-x x4.分组领会法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或者222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.课堂训练:用分组领会法领会多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.闭于x 的二次三项式ax2+bx+c(a≠0)的果式领会.若闭于x 的圆程20(0)ax bx c a ++=≠的二个真数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠便可领会为12()()a x x x x --.例5 把下列闭于x 的二次多项式领会果式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-, ∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.采用题:多项式22215x xy y --的一个果式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.领会果式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.领会果式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.正在真数范畴内果式领会:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 谦脚222a b c ab bc ca ++=++,试判决ABC ∆的形状.4.领会果式:x2+x -(a2-a).5. (测验考查题)已知abc=1,a+b+c=2,a²+b²+c²=,供1-c ab 1++1-a bc 1++1-b ca 1+的值. 1、一元二次圆程、一元二次没有等式与二次函数的闭系2、一元二次没有等式的解法步调一元二次没有等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相映的一元二次圆程()002≠=++a c bx ax 的二根为2121x x x x ≤且、,ac b 42-=∆,则没有等式的解的百般情况如下表:0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次圆程()的根002>=++a c bx ax 有二相同真根)(,2121x x x x < 有二相等真根 a b x x 221-== 无真根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅例1解没有等式:(1)x2+2x -3≤0; (2)x -x2+6<0;(3)4x2+4x +1≥0; (4)x2-6x +9≤0;(5)-4+x -x2<0.例2 解闭于x 的没有等式0)1(2>---a a x x解:本没有等式不妨化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或者a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或者a x ->1 例3已知没有等式20(0)ax bx c a ++<≠的解是2,3x x <>或供没有等式20bx ax c ++>的解.解:由没有等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且圆程20ax bx c ++=的二根分别为2战3,∴5,6b c a a-==, 即 5,6b c a a=-=. 由于0a <,所以没有等式20bx ax c ++>可形成20b c x x a a ++< , 即 -2560,x x ++<整治,得所以,没有等式20bx ax c +->的解是x <-1,或者x >65. 道明:本例利用了圆程与没有等式之间的相互闭系去办理问题.练 习1.解下列没有等式:(1)3x2-x -4>0; (2)x2-x -12≤0;(3)x2+3x -4>0; (4)16-8x +x2≤0.2.解闭于x 的没有等式x2+2x +1-a2≤0(a 为常数).做业:1.若0<a<1,则没有等式(x -a)(x -a1)<0的解是 ( )A.a<x<a1 B.a 1<x<a C.x>a 1或者x<a D.x<a1或者x>a 2.如果圆程ax2+bx +b =0中,a <0,它的二根x1,x2谦脚x1<x2,那么没有等式ax2+bx +b <0的解是______.3.解下列没有等式:(1)3x2-2x +1<0; (2)3x2-4<0;(3)2x -x2≥-1; (4)4-x2≤0.(5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解闭于x 的没有等式x2-(1+a)x +a <0(a 为常数).5.闭于x 的没有等式02<++c bx ax 的解为122x x <->-或 供闭于x 的没有等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的观念及本量内心:本量:中心:本量:沉心:本量:垂心:例1 供证:三角形的三条中线接于一面,且被该接面分成的二段少度之比为2:1.已知D 、E 、F 分别为△ABC 三边BC 、CA 、AB 的中面, 供证AD 、BE 、CF 接于一面,且皆被该面分成2:1.道明 连结DE ,设AD 、BE 接于面G ,D 、E 分别为BC 、AE 的中面,则DE//AB ,且12DE AB , GDE ∽GAB ,且相似比为1:2,2,2AGGD BG GE . 设AD 、CF 接于面'G ,共理可得,'2','2'.AG G D CG G F则G 与'G 沉合, AD 、BE 、CF 接于一面,且皆被该面分成2:1.例 2 已知ABC 的三边少分别为,,BC a AC b AB c ,I 为ABC 的内心,且I 正在ABC 的边BC AC AB 、、上的射影分别为D E F 、、,供证:2b c a AE AF . 道明 做ABC 的内切圆,则D E F 、、分别为内切圆正在三边上的切面,,AE AF 为圆的从共一面做的二条切线,AE AF ,共理,BD=BF ,CD=CE. 即2b c a AE AF . 例3 若三角形的内心与沉心为共一面,供证:那个三角形为正三角形. 已知O 为三角形ABC 的沉心战内心.供证 三角形ABC 为等边三角形.道明 如图,连AO 并延少接BC 于 D.O 为三角形的内心,故AD 仄分BAC ,AB BD AC DC (角仄分线本量定理)O 为三角形的沉心,D 为BC 的中面,即BD=DC. 1AB AC ,即AB AC . 共理可得,AB=BC. ABC 为等边三角形.例4 供证:三角形的三条下接于一面.已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 接于H 面. 供证CH AB .道明 以CH 为曲径做圆,D E 、正在以CH 为曲径的圆上,FCB DEH .共理,E 、D 正在以AB 为曲径的圆上,可得BED BAD .BCH BAD , 又ABD 与CBF 有大众角B ,90o CFB ADB。

高数2017新高一数学衔接教材

高数2017新高一数学衔接教材

暑期衔接班新高一数学目录第一讲:代数式及恒等变形第二讲:方程与方程组第三讲:不等式与不等式组第四讲:函数及其表示第五讲:二次函数的图像与性质第六讲:二次函数在给定区间上的最值第七讲:二次方程根的分布问题第八讲:常见函数图像与性质第九讲:函数图像变换第十讲:方法篇第十一讲:思想篇第十二讲:集合附件:两套衔接教材测试卷第一讲 代数式及恒等变形 1、乘法公式:(1)平方差公式 ;(2)完全平方公式 。

(3)立方和公式 ;(4)立方差公式 ;(5)三数和平方公式 ;(6)两数和立方公式 ;(7)两数差立方公式 。

2、二次根式:的代数式叫做二次根式,化简后被开方数相同的二次根式叫做同类二次根式。

3、指数运算法则及推广①规定:1)N *)个 2);3)) ②性质:1)、);2)、 );3) )。

4、次根式:若存在实数,使得,则称为的次方根。

在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数,零的奇次方根是零,负数没有偶次方根。

5、分数指数幂:6、因式分解(1)提取公因式法; (2)运用公式法; (3)分组分解法;22()()a b a b a b +-=-222()2a b a ab b ±=±+2233()()a b a ab b a b +-+=+2233()()a b a ab b a b -++=-2222()2()a b c a b c ab bc ac ++=+++++33223()33a b a a b ab b +=+++33223()33a b a a b ab b -=-+-0)a ≥∈⋅⋅⋅=n a a a a n( n )0(10≠=a a 11(pp p ap a a -⎛⎫==∈ ⎪⎝⎭R (0,rsr sa a a a r +⋅=>∈s R r a aa sr sr ,0()(>=⋅∈s R ∈>>⋅=⋅r b a b a b a rrr ,0,0()(R n x a x n =n a x =a n nma =(4)十字相乘法; (5)求根公式法; (6)换元法、待定系数法典型例题讲解1、乘法公式的应用例1:已知,计算的值。

17年高中数学初升高课程衔接第三章对数函数、指数函数、幂函数3.2.1对数教案苏教版必修1

17年高中数学初升高课程衔接第三章对数函数、指数函数、幂函数3.2.1对数教案苏教版必修1

3.2.1 对数课标知识与能力目标1.掌握对数的概念和运算性质,理解对数运算与指数运算互为逆运算.2.能运用对数的概念及其与指数的关系推导几个常见的公式和运算性质,并能熟练运用.3.掌握换底公式,了解用换底公式可以讲给对数式转换成自然对数或常用对数.知识点1 对数1.对数的概念:一般地,如果a(a>0,a≠1)的b 次幂等于N ,即N a b =,那么就称b 是以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数.2.常用对数:通常以10为底的对数称为常用对数,为了方便起见,对数N 10log ,简记为N lg .3.自然对数:以e 为底的对数称为自然对数.其中e =2.718 28…是一个无理数,正数N 的自然对数N e log 一般简记为N ln .4.换底公式:一般地有aN N c c a log log log =,其中a>0,a≠1,N>0,c>0,c≠1,这个公式称为对数的换底公式.典型例题考点1:指数式与对数式的互化1.并非所有指数式都可以直接化为对数式,如(-3)2=9就不能直接写成log (-3)9=2,只有a>0,a≠1,N>0时,才有a x =N ⇔x =log a N .2.对数式log a N =b 是由指数式a b =N 变化得来的,两式底数相同,对数式中的真数N 就是指数式中的幂的值,而对数值b 是指数式中的幂指数,对数式与指数式的关系如图:例1 (1)将下列指数式化为对数式:①3-3=127;②348=16;③a 5=15.(2)将下列对数式化为指数式:①5243log 3=;②3271log 31=;③1-1.0lg =.例2 log (0,1,0)b N a b b N =>≠>对应的指数式是____________.考点2:求对数的值例1 计算下列各式的值:(1)001.0lg ;(2)8log 4;(3)e ln .例2 求下列各式的值:(1)3log 9;(2)25.0log 2;(3)393log ;(4)35.02log .考点3:对数的基本性质及对数恒等式例1 计算:(1))5(log log 52; (2)2231log12+-; (3)c b b a b a log log ⋅(a ,b >1,c>0).考点4:对数运算中的转化思想例1 求下列各式中的x :(1)27log x =32; (2)x 2log =-23; (3))223(log +x =-2; (4))(log log 25x =0.例2 求下列各式中x 的取值范围:(1))10lg(-x ; (2))2(lg )1(+-x x ; (3)2)1()1(lg -+x x .考点5:对数运算性质的应用1.基本性质:(10≠a a ,且>)(1)1log =a a ; (2)01log =a ; (3)N a Na =log ; (4)N a Na =log .2.运算性质:(10≠a a ,且>)(1)N M MN a a a log log )(log +=; (2)N M N Ma a log log log a -=;(3)M n M a n a log log =.例1 求下列各式的值: (1)245lg 8lg 344932lg 21+-; (2)22)2(lg 2lg 2)5(lg -+.例2 计算下列各式的值:(1)lg 3+2lg 2-1lg 1.2; (2)log 28+43+log 28-43.考点6:换底公式的应用例1 (1)计算6log 16log 194+=________;(2)已知log 23=a,3b=7,则log 1256=________.(用a ,b 表示).例2 (1)化简:532111log 7log 7log 7++;(2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.例3 (1)已知18log 9a =,185b=,试用a 、b 表示18log 45的值;(2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.考点7:对数的应用题步骤:1.依据题意建立等量关系;2.利用对数的定义及运算性质对上述等量关系变形;3.借助已知数据(或计算器)估值;4.下结论.例1 某化工厂生产化工产品,去年生产成本50元/桶,现使生产成本平均每年降低28%,那么几年后每桶生产成本为20元?(lg 2≈0.301,lg 3≈0.477 1,精确到1年).例2 光线每通过一块玻璃板,其强度要损失10%,把几块这样的玻璃板重叠起来,设光线原来的强度为a,通过x块玻璃板以后的强度值为y.(1)试写出y关于x的函数关系式;(2)通过多少块玻璃板以后,光线强度减弱到原来强度的一半以下?(根据需要取用数据lg 3≈0.477 1,lg 2≈0.301 0)能力提优题型1:指数与对数的互化例1 把x x xx e e e e y --+-=转化为用含y 的式子表示x 的形式.题型2:相等幂指数式问题例1 设3643=+b a ,求b a 12+的值.例2 设),0(,,+∞∈z y x ,且z y x 643==.(1)比较z y x 6,4,3的大小;(2)求证:y x z 2111=-.。

(完整版)初高中数学衔接教材(已整理)

(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。

初高中数学衔接教材(共28页)

初高中数学衔接教材(共28页)

创作编号:BG7531400019813488897SX创作者:别如克*初高中数学衔接教材目录引入乘法公式第一讲因式分解1.1 提取公因式1.2. 公式法(平方差,完全平方,立方和,立方差)1.3分组分解法1.4十字相乘法(重、难点)1.5关于x的二次三项式ax2+bx+c(a≠0)的因式分解.第二讲函数与方程2.1 一元二次方程2.1.1根的判别式2.1.2 根与系数的关系(韦达定理)2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图象和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用第三讲三角形的“四心”乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.创作编号:BG7531400019813488897SX 创作者: 别如克*练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题: (1)若212x mx k ++是一个完全平方式,则k 等于 ( )(A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by x x 图1.1-4x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:创作编号:BG7531400019813488897SX 创作者: 别如克*(1)=-+652x x __________________________________________________。

高中数学 初升高课程衔接 第三章 对数函数、指数函数、幂函数 3.1.2 指数函数教案 苏教版必修

高中数学 初升高课程衔接 第三章 对数函数、指数函数、幂函数 3.1.2 指数函数教案 苏教版必修

2017年高中数学初升高课程衔接第三章对数函数、指数函数、幂函数3.1.2 指数函数教案苏教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高中数学初升高课程衔接第三章对数函数、指数函数、幂函数3.1.2 指数函数教案苏教版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高中数学初升高课程衔接第三章对数函数、指数函数、幂函数3.1.2 指数函数教案苏教版必修1的全部内容。

3.1.2 指数函数课标知识与能力目标1.理解指数函数的概念.2.掌握指数函数的图像和性质.3.掌握函数图像之间的基本初等变换.知识点1 指数函数1. 指数函数的定义:x ay (a>0,a≠1).2. 指数函数的图象与性质:1>a10<<a 图象性质定义域R值域(0,+∞)定点图象过定点(0,1)单调性单调增函数单调减函数x〈0时,0<y<1;x=0时,y=1;x>0时,y>1.x<0时,y>1;x=0时,y=1;x〉0时,0〈y〈1。

典型例题考点1:指数函数的概念例1 下列函数中,哪些是指数函数?(1)x y 10=; (2)110+=x y ; (3)x y 4-=;(4)x x y =; (5)αx y =(α是常数); (6)x a y )12(-=(1,21≠a a >).例2 函数x a a a y )33(2+-=是指数函数,求a 的值.考点2:指数函数的定义域和值域例1 求下列函数的定义域与值域. (1)312-=x y ; (2)1241++=+x x y .例2 求函数y =考点3:利用指数函数的单调性比较大小比较幂的大小的常用方法:1。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1。

求不等式354x -<的解集例2.求不等式215x +>的解集例3.求不等式32x x ->+的解集例4。

求不等式|x +2|+|x -1|>3的解集.例5。

解不等式|x -1|+|2-x |>3-x .例6。

已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式:(1)13x x -+->4+x(2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x -<(5)578x +>3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+- 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x(10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.(2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学衔接教材之羊若含玉创作我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式 33223()33a b a a b ab b +=+++;(5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 盘算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++).2.选择题:(1)若212x mx k ++是一个完全平方法,则k 等于 ( )(A )2m (B )214m (C )213m (D )2116m (2)不管a ,b 为何实数,22248a b a b +--+的值( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分化因式分化的主要办法有:十字相乘法、提取公因式法、公式法、分组分化法,别的还应懂得求根法及待定系数法.1.十字相乘法例1 分化因式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分化成图中的两个x 的积,再将常数项2分化成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).说明:往后在分化与本例相似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示).(2)由图1.1-3,得x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.1-5所示). 教室演习一、填空题:1、把下列各式分化因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 11 图1.1-3 -ay -by x x 图1.1-4 -11x y 图1.1-5=+-91242m m __________________________________________________.(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________. 2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、选择题:(每小题四个答案中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相同因式的是( )A 、只有(1)(2)B 、只有(3)(4)C 、只有(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)2、分化因式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+- 3、()()2082-+++b a b a 分化因式得( )A 、()()2 10-+++b a b aB 、()()4 5-+++b a b aC 、()()10 2-+++b a b aD 、()()5 4-+++b a b a4、若多项式a x x +-32可分化为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或9B 、3±C 、9±D 、3±或9±三、把下列各式分化因式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分化因式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++教室演习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --分化因式得_____________________.7.盘算99992+=二、断定题:(正确的打上“√”,错误的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3分化因式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++ 教室演习一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、断定题:(正确的打上“√”,错误的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( )2、()()()()b a b a b a b a 43 4343892222-+=-=-………………………………… ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式分化1、()()229n m n m ++--2、3132-x3、()22244+--x x4、1224+-x x4.分组分化法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.教室演习:用分组分化法分化多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分化.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分化为12()()a x x x x --.例5 把下列关于x 的二次多项式分化因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤----⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--, ∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分化因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分化因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数规模内因式分化:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 知足222a b c ab bc ca ++=++,试剖断ABC ∆的形状.4.分化因式:x2+x -(a2-a).5. (测验测验题)已知abc=1,a+b+c=2,a²+b²+c²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值. 1、一元二次方程、一元二次不等式与二次函数的关系2、一元二次不等式的解法步调一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各类情况如下表: 0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅例1(1)x2+2x -3≤0; (2)x -x2+6<0;(3)4x2+4x +1≥0; (4)x2-6x +9≤0;(5)-4+x -x2<0.例2 解关于x 的不等式0)1(2>---a a x x解:原不等式可以化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或a x ->1 例3已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解.解:由不等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且方程20ax bx c ++=的两根分离为2和3, ∴5,6b c a a -==, 即 5,6b ca a =-=.由于0a <,所以不等式20bx ax c ++>可变成20b cx x a a ++< ,即 -2560,x x ++<整理,得所以,不等式20bx ax c +->的解是x <-1,或x >65 .说明:本例应用了方程与不等式之间的相互关系来解决问题. 练 习1.解下列不等式:(1)3x2-x -4>0; (2)x2-x -12≤0;(3)x2+3x -4>0; (4)16-8x +x2≤0.2.解关于x 的不等式x2+2x +1-a2≤0(a 为常数).作业:1.若0<a<1,则不等式(x -a)(x -a 1)<0的解是 ( )A.a<x<a 1B.a 1<x<aC.x>a 1或x<a D.x<a 1或x>a2.如果方程ax2+bx +b =0中,a <0,它的两根x1,x2知足x1<x2,那么不等式ax2+bx +b <0的解是______.3.解下列不等式:(1)3x2-2x +1<0; (2)3x2-4<0;(3)2x -x2≥-1; (4)4-x2≤0.(5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解关于x 的不等式x2-(1+a)x +a <0(a 为常数).5.关于x 的不等式02<++c bx ax 的解为122x x <->-或求关于x 的不等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的概念及性质心坎:性质:外心:性质:重心:性质:垂心:例1 求证:三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.已知D 、E 、F 分离为△ABC 三边BC 、CA 、AB 的中点,求证AD 、BE 、CF 交于一点,且都被该点分成2:1.证明 贯穿连接DE ,设AD 、BE 交于点G ,D 、E 分离为BC 、AE 的中点,则DE//AB ,且12DE AB , GDE ∽GAB ,且相似比为1:2,2,2AG GD BG GE . 设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F 则G 与'G 重合, AD 、BE 、CF 交于一点,且都被该点分成2:1.例 2 已知ABC 的三边长分离为,,BC a AC b AB c ,I 为ABC 的心坎,且I 在ABC 的边BC AC AB 、、上的射影分离为D E F 、、,求证:2bc a AE AF . 证明 作ABC 的内切圆,则D E F 、、分离为内切圆在三边上的切点,,AE AF 为圆的从同一点作的两条切线,AE AF ,同理,BD=BF ,CD=CE. 即2b c a AE AF . 例3 若三角形的心坎与重心为同一点,求证:这个三角形为正三角形. 已知O 为三角形ABC 的重心和心坎.求证 三角形ABC 为等边三角形.证明 如图,连AO 并延长交BC 于 D. O 为三角形的心坎,故AD 平分BAC , ABBD AC DC (角平分线性质定理)O 为三角形的重心,D 为BC 的中点,即BD=DC. 1AB AC ,即AB AC .同理可得,AB=BC. ABC 为等边三角形.例4 求证:三角形的三条高交于一点. 已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 交于H 点.求证CH AB .证明 以CH 为直径作圆, D E 、在以CH 为直径的圆上, FCB DEH .同理,E 、D 在以AB 为直径的圆上,可得BED BAD . BCH BAD , 又ABD 与CBF 有公共角B ,90o CFB ADB。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1. 求不等式354x -<的解集例2.求不等式215x +>的解集例3.求不等式32x x ->+的解集例4.求不等式|x +2|+|x -1|>3的解集.例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值围. 练习解下列含有绝对值的不等式:(1)13x x -+->4+x(2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x -<(5)578x +>3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+- 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x(10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.(2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,。

2017版步步高初高中数学衔接教材:第3课 因式分解(1)及答案

2017版步步高初高中数学衔接教材:第3课 因式分解(1)及答案

因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中它都有着重要的作用. 因式分解的方法较多,除了初中教材中涉及到的提取公因式法和运用公式法(只讲平方差公式和完全平方公式)外,还有运用公式法(立方和、立方差公式)、十字相乘法、分组分解法等.因式分解的问题形式多样,富有综合性与灵活性,因此,因式分解也是一种重要的基本技能.一、提取公因式法例1 3x 2-6x +3.二、公式法例2 例3 例4 (1)例5 (1)例6 (1)(1)x 2+(p (1)x 2+px +qx +pq 因此,x 2例7 (1)x 2+3x (3)x 2-52x +1;(4)x 2+11x +24. 八、ax 2+bx +c 型因式分解我们知道,(a 1x +c 1)(a 2x +c 2)=a 1a 2x 2+a 1c 2x +a 2c 1x +c 1c 2=a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2.反过来,就得到a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2=(a 1x +c 1)(a 2x +c 2).我们发现,二次项的系数a 分解成a 1×a 2,常数项c 分解成c 1×c 2,并且把a 1,a 2,c 1,c 2排列如图:,这里按斜线交叉相乘,再相加,就得到a 1c 2+a 2c 1,如果它正好等于ax 2+bx +c 的一次项系数b ,那么ax 2+bx +c 就可以分解成(a 1x +c 1)(a 2x +c 2),其中a 1,c 1位于上图上一行,a 2,c 2位于下一行.像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.例8 (1)6x 2+5x +1;(2)6x 2+11x -7;(3)42x 2-33x +6;(4)2x 4-5x 2+3;(5)2t 6-14t 3-16.1.把下列各式分解因式:(1)a 3+27;(2)8-m 3;(3)-27x 3+8;(4)-18p 3-164q 3;(5)8x 3y 3-1125;(6)1216x 3y 3+127c 3. 2.把下列各式分解因式:(1)xy 3+x 4n +3n 3232322323(1)x 2-3x (5)m 2-44(1)ax 5-10(4)x 4-7x 2 (7)7(a +b 5(1)3ax -3(4)4a 2-20(7)x 6-y 61(1)x 2+15x 2(1)6x 2+7x 3.x 2+(p (1)x 2(2)y 2(3)xy 的系数为这两个数之和(p +q )x 2+(p +q )xy +pqy 2=x 2+pxy +qxy +pqy 2=x (x +py )+qy (x +py )=(x +py )(x +qy ).例 x 2+(3+1)xy +1×3y 2=(x +y )(x +3y )对照 x 2+(p +q )x +pq =(x +p )(x +q )看它们有怎样的联系,又有怎样的区别?联系:分解的方式完全一样.区别:一元二次型是二个一元一次型的积,二元二次齐次型是二个二元一次齐次型的积例1把下列各式因式分解:(1)a2-2ab-8b2;(2)x+5xy-6y(x>0,y>0);(3)(x+y)2-z(x+y)-6z2;(4)m4+m2n2-6n4. 4.ax2+bxy+cy2型的因式分解与ax2+bx+c型的因式分解有怎样的联系,又有怎样的区别?例2把下列各式因式分解:(1)6m2-5mn-6n2;(2)20x2+7xy-6y2(3)2x4+x2y2-3y4;(4)6(x+y)+7z(x+y)+2z(x>0,y>0,z>0).5.Ax2+Bxy+Cy2+Dx+Ey+F型的因式分解.例3(1)x2-xy-2y2-2x+7y-3;(2)ab-2a-b+2.6例4x2例5例61(1)x2-6xy(4)7(a+b)22(1)x2-y23(1)x2-(a4.解方程5例1解例2解例3解(2)x2(x-1)+(x-1)=(x-1)(x2+1).例4解(1)(x+3)2-25=(x+8)(x-2).(2)(x+y)2-(2y)2=(x+3y)(x-y).例5解(1)x3-2x2-(x2-4)=x2(x-2)-(x-2)(x+2)=(x-2)2(x+1).(2)(x3-x)-(x-1)=(x-1)(x+1+52)(x--1+52).例6 解 (1)(x -1+52)(x -1-52). (2)(x -3+174)(x -3-174). 例7 解 (1)(x +1)(x +2);(2)(x +4)(x -5);(3)(x -2)(x -12);(4)(x +8)(x +3). 例8 解 (1)(2x +1)(3x +1);(2)(2x -1)(3x +7);(3)(6x -+6)(-6强化训练1.解 ;(5)(2xy -15)(4x 2y 22.解 (1)x 4-4x 3+3x 2+2x +3.解 a -b +7).4.解 1)(2x -3);(6)(t -(8)(2x +5.解 (3)(x -3)(5(5)(1+2x (8)x (x -y )(答案精析1.解 (1)(x +7)(x +8);(2)(x +6)(x -5);(3)(x +10)(x +15);(4)(x +3)(x -13). 2.解 (1)(2x +3)(3x -1);(2)(3x +4)(4x +3);(3)(6x +1)(7x -2);(4)(9x +2)(8x -1).例1解(1)(a+2b)(a-4b);(2)(x+6y)(x-y);(3)(x+y+2z)(x+y-3z);(4)(m+2n)(m-2n)·(m2+3n2).例2解(1)(3m+2n)(2m-3n)(2)(4x+3y)·(5x-2y)(3)(x+y)(x-y)(2x2+3y2)(4)(3x+y+2z)(2x+y+z).例3解(1)(x-2y)(x+y)-2x+7y-3=(x-2y+1)·(x+y-3);(2)(b-2)(a-1).例4解x2+(2m+1)x+m(m+1)=(x+m)·(x+m+1).例5解原方程的解为x=13或x=-m2.例6解强化训练1.解(3)(2x+5y b)(a+b)·(a2+2ab+4b2.解3.解4.解(x5.解(x∴a+1≤x。

初高中数学衔接教材(已整理)63054

初高中数学衔接教材(已整理)63054

目录第一章数与式1。

1 数与式的运算1.1。

1 绝对值1。

1。

2 乘法公式1。

1.3 二次根式1。

1.4 分式1.2 分解因式第二章二次方程与二次不等式2。

1 一元二次方程2.1.1 根的判别式2.1.2 根与系数的关系2。

2 二次函数2.2。

1 二次函数y=ax2+bx+c的图像和性质2。

2。

2 二次函数的三种表达方式2.2.3 二次函数的应用2。

3 方程与不等式2.3.1 二元二次方程组的解法第三章相似形、三角形、圆3.1 相似形3.1.1 平行线分线段成比例定理3。

1。

2 相似三角形形的性质与判定3.2 三角形3。

2。

1 三角形的五心3.2.2 解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3 圆3。

3。

1 直线与圆、圆与圆的位置关系:圆幂定理3.3。

2 点的轨迹3。

3.3 四点共圆的性质与判定3.3.4 直线和圆的方程(选学)1.1 数与式的运算1。

1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4.A B C P |x -1| |x -3|图1.1-1练 习 1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:下列叙述正确的是 ( )(A)若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).1。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学跟尾教材之杨若古兰创作我们在初中曾经进修过了以下一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完整平方公式222()2a b a ab b ±=±+.我们还可以通过证实得到以下一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式 33223()33a b a a b ab b +=+++;(5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有爱好的同学可以本人去证实.例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( );(2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++).2.选择题:(1)若212x mx k ++是一个完整平方式,则k等于 ( )(A )2m (B )214m (C )213m(D )2116m(2)不管a ,b 为什么实数,22248a b a b +--+的值( )(A )老是负数 (B )老是负数(C )可所以零 (D )可所以负数也能够是负数2.因式分解因式分解的次要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示). (2)由图1.1-3,得x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y)-1=(x -1) (y+1) (如图1.1-5所示). 课堂练习一、填空题:1、把以下各式分解因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by xx 图1.1-4 -1 1 x y 图1.1-5=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)=+-91242m m __________________________________________________.(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________.2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、选择题:(每小题四个答案中只要一个是准确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有不异因式的是( )A 、只要(1)(2)B 、只要(3)(4)C 、只要(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)2、分解因式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+-3、()()2082-+++b a b a 分解因式得( )A 、()()2 10-+++b a b aB 、()()4 5-+++b a b aC 、()()10 2-+++b a b a D 、()()5 4-+++b a b a 4、若多项式a x x +-32可分解为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或9B 、3±C 、9±D 、3±或9±三、把以下各式分解因式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分解因式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++课堂练习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --分解因式得_____________________.7.计算99992+=二、判断题:(准确的打上“√”,错误的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3分解因式: (1)164+-a (2)()()2223y x y x --+ 解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++ 课堂练习一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、判断题:(准确的打上“√”,错误的打上“×” ) 1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( )2、()()()()b a b a b a b a 43 4343892222-+=-=-………………………………… ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把以下各式分解1、()()229n m n m ++--2、3132-x 3、()22244+--x x 4、1224+-x x4.分组分解法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.课堂练习:用分组分解法分解多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5 把以下关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤-----⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--, ∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分解因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的外形.4.分解因式:x2+x -(a2-a).5. (测验考试题)已知abc=1,a+b+c=2,a²+b²+c²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值.1、一元二次方程、一元二次不等式与二次函数的关系2、一元二次不等式的解法步调 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设响应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅例1(1)x2+2x -3≤0; (2)x -x2+6<0;(3)4x2+4x +1≥0; (4)x2-6x +9≤0;(5)-4+x -x2<0.例2 解关于x 的不等式0)1(2>---a a x x解:原不等式可以化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或a x ->1 例3已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解.解:由不等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且方程20ax bx c ++=的两根分别为2和3,∴5,6b c a a -==, 即 5,6b c a a=-=. 因为0a <,所以不等式20bx ax c ++>可变成20b c x x a a ++< ,即 -2560,x x ++<清算,得所以,不等式20bx ax c +->的解是x <-1,或x >65. 说明:本例利用了方程与不等式之间的彼此关系来解决成绩. 练 习 1.解以下不等式:(1)3x2-x -4>0; (2)x2-x -12≤0;(3)x2+3x -4>0; (4)16-8x +x2≤0.2.解关于x 的不等式x2+2x +1-a2≤0(a 为常数).功课:1.若0<a<1,则不等式(x -a)(x -a 1)<0的解是( ) A.a<x<a1 B.a 1<x<a C.x>a 1或x<a D.x<a 1或x>a2.如果方程ax2+bx +b =0中,a <0,它的两根x1,x2满足x1<x2,那么不等式ax2+bx +b <0的解是______.3.解以下不等式:(1)3x2-2x +1<0; (2)3x2-4<0;(3)2x -x2≥-1; (4)4-x2≤0.(5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解关于x 的不等式x2-(1+a)x +a <0(a 为常数).5.关于x 的不等式02<++c bx ax 的解为122x x <->-或 求关于x 的不等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的概念及性质内心:性质:外心:性质:重心:性质:垂心:例1 求证:三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.已知D 、E 、F 分别为△ABC 三边BC 、CA 、AB 的中点, 求证AD 、BE 、CF 交于一点,且都被该点分成2:1.证实 连结DE ,设AD 、BE 交于点G ,D 、E 分别为BC 、AE 的中点,则DE//AB ,且12DE AB , GDE ∽GAB ,且类似比为1:2,2,2AG GD BG GE .设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F则G 与'G 重合, AD 、BE 、CF 交于一点,且都被该点分成2:1.例 2 已知ABC 的三边长分别为,,BC a AC b AB c ,I 为ABC 的内心,且I 在ABC 的边BC AC AB 、、上的射影分别为D E F 、、,求证:2b c a AE AF . 证实 作ABC 的内切圆,则D E F 、、分别为内切圆在三边上的切点,,AE AF 为圆的从同一点作的两条切线,AE AF ,同理,BD=BF ,CD=CE. 即2b c a AE AF . 例 3 若三角形的内心与重心为同一点,求证:这个三角形为正三角形.已知O 为三角形ABC 的重心和内心. 求证 三角形ABC 为等边三角形. 证实 如图,连AO 并耽误交BC 于D. O 为三角形的内心,故AD 平分BAC , AB BD AC DC (角平分线性质定理)O 为三角形的重心,D 为BC 的中点,即BD=DC. 1AB AC ,即AB AC . 同理可得,AB=BC. ABC 为等边三角形.例4 求证:三角形的三条高交于一点. 已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 交于H 点.求证CH AB .证实 以CH 为直径作圆,D E 、在以CH 为直径的圆上, FCB DEH .同理,E 、D 在以AB 为直径的圆上,可得BED BAD .BCH BAD , 又ABD 与CBF 有公共角B ,90o CFB ADB。

初高中数学衔接教材

初高中数学衔接教材

实用文档文案大全初高中数学衔接教材一、现有初高中数学知识存在以下“脱节”:1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。

配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。

5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。

方程、不等式、函数的综合考查常成为高考综合题。

8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。

另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。

二、初高中数学衔接目录:前言第一讲数与式的运算(两课时)第二讲因式分解(两课时)第三讲一元二次方程根与系数的关系(一课时)第四讲不等式(两课时)第五讲二次函数的最值问题(一课时)实用文档文案大全第六讲简单的二元二次方程组(一课时)第七讲分式方程和无理方程的解法(一课时)第八讲直线、平面与常见立体图形(一课时)第九讲直线与圆,圆与圆的位置关系(一课时)初高中数学衔接教材初高中衔接从观念开始----致即将毕业的初三同学一、初、高中的比较和初中数学相比,高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。

初高中数学衔接教材已整理精品

初高中数学衔接教材已整理精品

实用标准初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.初中升高中数学教材变化分析解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

2017初高中数学课程衔接教程【共十六讲专题】

2017初高中数学课程衔接教程【共十六讲专题】

2017年初高中数学课程衔接教程【共十六讲】目录初高中衔接教程第一讲因式分解练习初高中衔接教程第二讲分式练习初高中衔接教程第三讲图形变换练习初高中衔接教程第四讲三角形的“五心”练习初高中衔接教程第五讲几何中的著名定理练习初高中衔接教程第六讲圆练习初高中衔接教程第七讲一次函数和一次不等式练习初高中衔接教程第八讲均值不等式练习初高中衔接教程第九讲一次分式函数练习初高中衔接教程第十讲一元二次方程练习初高中衔接教程第十一讲一元二次函数(一)练习初高中衔接教程第十二讲一元二次函数(二)练习初高中衔接教程第十三讲一元二次不等式练习初高中衔接教程第十四讲绝对值不等式练习初高中衔接教程第十五讲根的分布(一)练习初高中衔接教程第十六讲根的分布(二)练习第一讲 因式分解一、知识归纳1、公式法分解因式:用公式法因式分解,要掌握如下公式:(1)))((22b a b a b a -+=-;(2)222)(2b a b ab a ±+±;(3)33223)(33b a b ab b a a ±=±+±;(4)2222)(222c b a ac bc ab c b a ++=+++++;(5)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++;(6)*1221);)((N ••n b ab b a ab a b a n n n n n n ∈++⋯+⋅+-=-----; (7)当n 为正奇数时))((1221----+-+-+=+n n n n n n b ab b a ab a b a 当n 为正偶数时))((1221-----++-+=-n n n n n n b ab b a ab a b a2、十字相乘法因式分解3、待定系数法因式分解4、添项与拆项法因式分解5、长除法二、例题讲解例1:因式分解:3762--x x例2:因式分解:2222224)()(2b a x b a x -++-例3:因式分解310434422-+---y x y xy x例4:利用待定系数法因式分解(1)2031493222+-+-+y x y xy x (2)310434422-+---y x y xy x例5:利用添项法、拆项法因式分解(1)763-+x x (2)15++x x例6:已知0132=--x x ,求198757623+-+x x x 的值。

2017初高中数学衔接教材(已整理)-

2017初高中数学衔接教材(已整理)-

实用文档2017初高中数学衔接教材现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

新的课程改革,难免会导致很多知识的脱节和漏洞。

本书当然也没有详尽列举出来。

我们会不断的研究新课程及其体系。

将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。

江苏省扬州市2017年初高中数学衔接教学材料

江苏省扬州市2017年初高中数学衔接教学材料

数 学第一讲 乘法公式一、知识要点1.平方差公式: 22()()a b a b a b +-=-﹒2.完全平方公式:222()2a b a ab b ±=±+; 2222()222a b c a b c ab bc ac ++=+++++﹒3.立方和公式: 2233()()a b a ab b a b +-+=+﹒4.立方差公式: 2233()()a b a ab b a b -++=-﹒5.完全立方公式:33223()33a b a a b ab b +=+++; 33223()33a b a a b ab b -=-+-﹒二、例题选讲例一、填空(1)=++-)9)(3)(3(2x x x _______________﹒解:原式=81)9)(9(422-=+-x x x ﹒(2)=+--22)2()12(x x ______________﹒解:原式=383)44(144222--=++-+-x x x x x x ﹒ 例二、已知31=+xx ,求以下各式的值: (1)221x x +;(2)331xx +﹒ 解:(1)21112)1(22222++=+⋅⋅+=+xx x x x x x x , 7292)1(1222=-=-+=+∴x x xx ﹒ (2) 18)17(3)11)(1(12233=-⨯=+-+=+x x x x x x ﹒ 例3、已知2x y +=,求代数式336x y xy ++的值.解:33226()()6x y xy x y x xy y xy ++=+-++2222(3)2()8x xy y xy x y =-++=+=﹒例4、 已知8,9,x y y z -=-=试求代数式222x y z xy yz xz ++---的值.解:8,9,17x y y z x z -=-=∴-=,2222221(222222)2x y z xy yz xz x y z xy yz xz ∴++---=++--- 22222211[()()()](8917)21722x y y z x z =-+-+-=++= 三、自我小结:__________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________四、巩固练习1.计算=+-++-++-))(())(())((a c a c c b c b b a b a _________.2.计算22()2()()()x y x y x y x y +-+-+-= .3.2200620082004-⨯= . 4.已知2510x x -+=,那么221x x += . 5.计算16842321)13)(13)(13)(13(⋅-++++= . 6.计算222222221234562009201012345620092010----+++++++++201220112012201122+-﹒7.已知2a c b +=+,那么222222a b c ab bc ac ++--+= .8.已知2x y -=,求代数式336x y xy --的值.9.已知1,3x y xy -==,试求以下各式的值:(1)22;x y +(2)33.x y -第二讲 因式分解一、知识要点1.因式分解:把一个整式化为几个整式的乘积形式.2.因式分解的大体方式:(1)提公因式法 )(c b a m mc mb ma ++=++(2)运用公式法 常见公式有:①22()()a b a b a b -=+-,②2222()a ab b a b ±+=±,③3322()()a b a b a ab b ±=±+,④3223333()a a b ab b a b ±+±=±,⑤2222222()a b c ab ac bc a b c +++++=++,(3)十字相乘法:2()()()x a b x ab x a x b +++=++(4)配方式、添项拆项法,分组分解法二、例题选讲例1、 因式分解:(1)244x x -+ ;(2)38x -;(3)33)2()2(a y a x ---﹒ 解:(1)244x x -+2(2)x =- (2)38x -3322(2)(24)x x x x =-=-++ (3)33)2()2(a y a x ---=)()2()2()2(333y x a a y a x +-=-+-例2 、因式分解(1)256x x -+;(2)2215x x --;(3)26136x x -+﹒解:(1)256x x -+(2)(3)x x =--;(2)2215x x --(25)(3)x x =+-;(3)26136x x -+(23)(32)x x =--﹒例3、 因式分解225636x xy y x y -+-+解:225636x xy y x y -+-+ (2)(3)3(2)x y x y x y =----(2)(33)x y x y =---例4、因式分解523325a ab a b b --+解:523325a a b a b b --+ 233233()()a a b b a b =---3322()()a b a b =--222()()()a b a b a ab b =-+++三、自我小结:__________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________四、巩固练习1.将以下各式分解因式:(1)32x x y -__________________________________________________________________(2)44-x__________________________________________________________________(3)33125x y -__________________________________________________________________(4)1322+-x x__________________________________________________________________(5)2(1)x a x a -++__________________________________________________________________(6)32331a a a +++__________________________________________________________________(7)222221a b ab a b ++--+__________________________________________________________________(8)22122512x xy y ++__________________________________________________________________(9)2226x xy y x y ++---__________________________________________________________________2.已知25a b -=,346a b +=,求多项式22328a ab b --的值.第三讲 因式定理一、知识要点定理1(因式定理):若a 是一元多项式)(0111是非负整数n a x a x a x a n n n n ++⋅⋅⋅++--的根,即00111=++⋅⋅⋅++--a a a a a a a n n n n ,那么多项式0111a x a x a x a n n n n ++⋅⋅⋅++--有一个因式a x -.依照因式定理,找出一元多项式的一次因式的关键是求出该多项式的一个根,关于任意的多项式,求出它的根是没有一样方式的,但是关于整系数多项式经常使用下面的定理来判定它是不是有有理根.定理2:假设既约分数pq 是整系数多项式0111a x a x a x a n n n n ++⋅⋅⋅++--的根,那么必有p 是n a 的约数,q 是0a 的约数,专门地,当1=n a 时,该多项式的整数根均为0a 的约数. 定理3:假设两个多项式相等,那么它们同类项的系数相等.二、例题选讲:例一、因式分解:69523-+-x x x ﹒分析:将6,3,2,1±±±±=x (常数6的约数)别离代入原式,适当2=x 时,代数式的值为0,故原式有一次因式2x -﹒法一:(分组分解法))693()2(69522323+---=-+-x x x x x x x)1)(2(3)2(2----=x x x x)33)(2(2+--=x x x ﹒法二:(待定系数法)设322596(2)()x x x x ax bx c -+-=-++, 3232596(2)(2)2x x x ax b a x c b x c -+-=+-+--,故⎧⎪⎪⎨⎪⎪⎩1,25,29,26,a b a c b c =-=--=-=- 得⎧⎪⎨⎪⎩1,3,3.a b c ==-= 因此32596x x x -+-)33)(2(2+--=x x x ﹒例二、因式分解:313223+-x x ﹒分析:2的约数是2,1±±,3的约数是3,1±±,因此将21,23,3,1±±±±=x 代入原式,适当12x =时,代数式的值为0,故原式有因式21-x ,也即原式有因式12-x ﹒ 解:法一:3122313222323+--=+-x x x x x)12)(12(3)12(2+---=x x x x)36)(12(2---=x x x ﹒法二:设3)6()12(2)3)(12(313223223++--+=-+-=+-x a x a x ax x x x x ,故6-=a ,因此322133x x -+)36)(12(2---=x x x ﹒ 例3、因式分解:23739234--+-x x x x ﹒分析:9的约数是2,9,3,1-±±±的约数是2,1±±,因此将91,92,31,32,2,1±±±±±±=x 代入原式,得32,31-是原式的根,故原式有因式32,31-+x x , 又)239(919231)32)(31(22--=--=-+x x x x x x , 故原式有因式2392--x x ﹒法1:432432293732(932)932x x x x x x x x x -+--=--+-- 22(1)(932)x x x =+--2(1)(31)(32)x x x =++-﹒法2:设))(239(2373922234c bx ax x x x x x x ++--=--+-,待定系数得1,0,1===c b a ﹒即4322293732(932)(1)x x x x x x x -+--=--+﹒说明:假设整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如此能够简化因式分解的进程﹒三、自我小结:__________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________四、巩固练习将以下各式分解因式:①233+-x x②107323+-x x③21311123-+-x x x④344+-x x⑤15223+-x x⑥61023--+x x x⑦41233234---+x x x x⑧2944234+--+x x x x数学巩固练习参考答案:一、代数部份第一讲 乘法公式一、=+-++-++-))(())(())((a c a c c b c b b a b a 0222222=-+-+-a c c b b a二、解:2222222()2()()()222()4x y x y x y x y x y x y y +-+-+-=+--=3、解:22222006200820042006(20062)(20062)2006200644-⨯=-+-=-+=4、解:21510,5x x x x -+=∴+=,222211()25223x x x x∴+=+-=-= 五、解:原式=21321)13(21321)13)(13)(13)(13)(13(21161616842-=⋅--=⋅-++++- 六、解:222222221234562009201012345620092010----+++++++++201220112012201122+- =10061006120122011654321-=⨯-=-++-+-+-7、解:22222222()24a b c ab bc ac a b c ++--+=-+==八、解:3322226()()62(3)x y xy x y x xy y xy x xy y xy --=-++-=++- 222()228x y =-=⨯=9.解:(1)222()2167x y x y xy +=-+=+=(2)3322()()1(73)10x y x y x xy y -=-++=⨯+= 第二讲 因式分解1.将以下各式分解因式:(1)2()x x y - 提取公因式(2))2)(2)(2(2++-x x x 公式法 (3)22(5)(255)x y x xy y -++ 公式法(4))12)(1(--x x 十字相乘法(5)()(1)x a x -- 十字相乘法(6)3(1)a + 公式法(7)2(1)a b +- 公式法(或分组后十字相乘法)(8)(34)(43)x y x y ++ 十字相乘法(9)(3)(2)x y x y +-++ 分组后十字相乘法2.22328(2)(34)30a ab b a b a b --=-+= 第三讲:因式定理①解:试根得1=x 是原式的根,那么原式有因式1-x ,故)2()1()1(2)1)(1(2223233+-=--+-=+--=+-x x x x x x x x x x x②解:试根得1-=x 是原式的根,那么原式有因式1+x ,故)10103)(1()1)(1(10)1(310103310732222323+-+=-+-+=+-+=+-x x x x x x x x x x x x ③解:试根得1=x 是原式的根,那么原式有因式1-x ,故21311021311122323-+--=-+-x x x x x x x)7)(3)(1()2110)(1()1(2---=----=x x x x x x x④解:试根得1=x 是原式的根,那么原式有因式1-x ,故 44)1)(1)(1(44134244+--++=+--=+-x x x x x x x x)32)(1()3)(1(22323-++--=-++-=x x x x x x x x x)32()1())32)(1()1()(1(222++-=+-+--=x x x x x x x x ⑤解:试根得21=x 是原式的根,那么原式有因式12-x ,故 )12)(12()12)(12()12(14)12(152222223---=+---=+--=+-x x x x x x x x x x x x ⑥解:试根得3=x 是原式的根,那么原式有因式3-x ,故)7)(3()93)(3(21102761022323--+++-=+-+-=--+x x x x x x x x x x x)24)(3(2++-=x x x⑦解:试根得2±=x 是原式的根,那么原式有因式4)2)(2(2-=-+x x x ,故设)1)(4(4123322234++-=---+ax x x x x x x 443234---+=ax x ax x ,故3=a因此原式)13)(2)(2()13)(4(222+++-=++-=x x x x x x x⑧解:试根得1=x ,2-=x 是原式的根,那么原式有因式2)2)(1(2-+=+-x x x x ,故 设2)1()9()4(4)14)(2(294423422234++--+++=-+-+=+--+x a x a x a x ax x x x x x x x 解得0=a ,故原式)12)(12)(2)(1()14)(2(22+-+-=--+=x x x x x x x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017初高中数学衔接教材现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要容;配方、作简图、求值域(取值围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

新的课程改革,难免会导致很多知识的脱节和漏洞。

本书当然也没有详尽列举出来。

我们会不断的研究新课程及其体系。

将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。

目录第一章数与式1.1 数与式的运算1.1.1 绝对值1.1.2 乘法公式1.1.3 二次根式1.1.4 分式1.2 分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1 根的判别式2.1.2 根与系数的关系2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质2.2.2 二次函数的三种表达方式2.2.3 二次函数的应用2.3 方程与不等式2.3.1 二元二次方程组的解法第三章相似形、三角形、圆3.1 相似形3.1.1 平行线分线段成比例定理3.1.2 相似三角形形的性质与判定3.2 三角形3.2.1 三角形的五心3.2.2 解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3 圆3.3.1 直线与圆、圆与圆的位置关系:圆幂定理3.3.2 点的轨迹3.3.3 四点共圆的性质与判定3.3.4 直线和圆的方程(选学)1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4.练 习 1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).A B C P |x -1||x -3|图1.1-11.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b ,等是无理式,而212x ++,22x y +1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如,等等. 一般地,,与,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2.二次根式a ==,0,,0.a a a a ≥⎧⎨-<⎩例1 将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <.解: (1=(20)a ==≥;(3220)x x x ==-<.例2 (3-.解法一: (3-=393-解法二: (3.例3 试比较下列各组数的大小:(1 (2.解: (1)∵===,===,又>∴.(2)∵=== 又 4>22,∴6+4>6+22,∴例4 化简:20042005+⋅.解:20042005⋅-=20042004⋅⋅=2004⎡⎤+⋅-⋅-⎣⎦=20041⋅例 5 化简:(1; (21)x <<.解:(1)原式===2=2=.(2)原式=1x x=-,∵01x <<,∴11x x >>,所以,原式=1x x-.例 6 已知x y ==22353x xy y -+的值 .解: ∵2210x y +==+=,1xy ==, ∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练 习 1.填空:(1=__ ___;(2(x =-x 的取值围是_ _ ___;(3)=__ ___;(4)若2x ==______ __. 2.选择题:=( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质:A A MB B M ⨯=⨯; A A MB B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式 像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩ 解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+. (1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=- =910. (3)证明:∵1112334(1)n n +++⨯⨯+=111111()()()23341n n -+-++-+=1121n -+, 又n ≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12 . 例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,∴e =12 <1,舍去;或e =2. ∴e =2.练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题: 若223x y x y -=+,则xy= ( )(A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x y x y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2+=________;(22=,则a 的取值围是________; (3=________.B 组1.填空:(1)12a =,13b =,则2223352a ab a ab b -=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y++=+__ __;2.已知:11,23x y ==的值. C 组1.选择题:(1= ( ) (A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算 ( )(A (B (C ) (D )2.解方程22112()3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-. 解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

相关文档
最新文档