离散数学 31集合概念表示法

合集下载

离散数学(chapter3集合的基本概念和运算)

离散数学(chapter3集合的基本概念和运算)

以上运算律的证明思路:欲证P=Q,即证 x P x Q。
2013-7-10 离散数学
20
Байду номын сангаас
三、集合算律
证明分配律:A∪(B∩C) = (A∪B)∩(A∪C) 对x, x A∪(B ∩C) (x A ) (x B∩C )
(x A) (x B x C )
Z: 整数集合
Q: 有理数集合
R: 实数集合 C: 复数集合
: 空集(不含任何元素) E: 全集 (在某一问题中,含有所涉及的全部集合的集合。)
2013-7-10 离散数学 6
三、集合的表示方法
列出集合的所有元素,元素之间用逗号 1、列举法: 隔开。如A = { a, b, c } , B = { 1,2,4,6,7,9 } 用谓词概括该集合中元素的属性。 2、描述法: 如:A = { x | xZ 3 < x 6 } A = { x | P (x) },其中P (x)表示x满足的性质。 即A是由所有使P (x)为真的全体x构成。
2013-7-10 离散数学 3
§3.1 集合的基本概念
内容:集合,元素,子集,幂集等。 重点:(1) 掌握集合的概念及两种表示法, (2) 常见的集合N , Z, Q, R, C 和特殊集合 ,E, (3) 掌握子集及两集合相等的概念, (4) 掌握幂集的概念及求法。
2013-7-10 离散数学 4
2013-7-10
离散数学
8
四、集合之间的关系
3、真子集: B A。
B A B A B A
BABA B=A
4、幂 集:集合A的全体子集构成的集合,记作P (A)。 符号化为 P (A) = { x | x A} n 元集A的幂集P (A)含有2n个元素。

离散数学---集合

离散数学---集合

3、 幂集: 、 幂集:
定义: 是一个集合, 定义:设A是一个集合,由A的所有子集 是一个集合 的所有子集 组成的集合称为A的幂集 , 组成的集合称为 的幂集, 记 作 P(A)或 的幂集 或
。 2A。 。
该定义可以写作P(A)={u| 该定义可以写作P(A)={u|u⊆ A} P(A)={u 例如, 例如,A = {0, 1},则 , P(A) = { {}, {0}, {1}, {0, 1} }
定义: 定义:若A⊆ B且A ≠ B ,则称 A为 ⊆ 且 为 B的真子集。记 作 A ⊂ B ,或 B ⊃ A 的真子集。 的真子集 对一切x如果x 必有x 对一切x如果x∈A必有x∈B,并且存在一个 x0∈B且x0∉A。
三、特殊的集合
1、 空集: 、 空集: 定义: 不含任何元素的集合称为空集, 定义 : 不含任何元素的集合称为空集 , 记 作∅。 例如: 例如:Z={xx2+1=0,x∈R},这是空集。 ∈ ,这是空集。 定理:空集是任何集合的子集。 定理:空集是任何集合的子集。 证明: 证明: ∅ ⊆ A ⇔ ∀ x(x∈∅ x∈A) ⇔1 ∈∅ ∈
特定的一些集合的表示符号
自然数集N={0,1,2,…} , , , 自然数集 整数集合Z={…-2,-1,0,1,2,…} 整数集合 , , , , , 有理数集合Q={xx=P⁄⁄q,p,q∈Z} 有理数集合 , ∈ 实数集合R={ x x是实数 是实数} 实数集合 是实数 复数集合C={x x=a+bi,a,b∈R,i=复数集合C={x x=a+bi,a,b∈R,i=-1}
第三章 集合的基本概念
集合(set):集合是数学中最基本的概念之一, :集合是数学中最基本的概念之一, 集合 不能以更简单的概念来定义(define),只能给 , 不能以更简单的概念来定义 出它的描述(description)。一些对象的整体就 。 出它的描述 称为一个集合, 称为一个集合,这个整体的每个对象称为该 集合的一个元素 集合的一个元素(member或element)。 元素 或 。

离散数学集合的表示方法

离散数学集合的表示方法

离散数学集合的表示方法离散数学是指以一定的符号系统来表示数学概念和数学运算的学科,其中最基本的概念是集合。

集合是一组独立的元素的有序集,也可以说是一类物体的总称,它可以用简单的符号表示。

这种表示方法在数学研究和计算上起着重要作用。

本文着重介绍离散数学集合的表示方法。

首先,在离散数学中,所有的集合都可以用符号表示,通常用大写字母代表集合,如A、B、C等。

确定集合的方法通常有三种:①通过给出其元素的方式,如表示集合A={1,3,5,7,9};②通过用公式表示法,如表示集合B={2n|n∈N,n≤5};③通过用符号表示,如表示集合C={x|x∈A,x>3}。

此外,在离散数学中,还有一些特殊的集合概念,包括空集、自身的集合、全集以及基本集合。

空集是指不包含元素的集合,它有一个特殊的符号,即;自身的集合,即一个集合的元素全部不在其他集合中,如集合A={1,2,3},则A∈A;全集是指包含所有元素的集合,标识符为G;基本集合是指包含元素的所有集合,标识符通常是N、Z、R等。

另外,集合运算也是离散数学中非常重要的概念,其中有一些重要的运算,如交集、并集、补集、差集等。

其定义和运算方法是:对于两个集合A={1,2,3}、B={2,4,6},交集A∩B={2},即A和B的交集,两个集合的公共元素;并集A∪B={1,2,3,4,6},即A和B的并集,包含A和B全部元素;补集A′={4,6},即在A中没有的元素;差集A-B={1,3},即A中有,而B中没有的元素。

总之,离散数学集合的表示方法有大写字母表示、公式表示法和符号表示,以及特殊的集合概念如空集、自身的集合、全集以及基本集合,以及交集、并集、补集、差集等重要的集合运算。

它们为离散数学的理解和应用提供了基础,同时也为计算机科学技术的发展提供了条件和依据。

离散数学-3-1集合的概念和表示法.ppt

离散数学-3-1集合的概念和表示法.ppt
一、集合的概念
集合是不能精确定义的数学基本概念, 当我 们讨论某一类对象时,就把这一类对象的 全体称为集合。这些对象称为集合中元素。 元素也是抽象的,无法精确定义,可以认 为是存在于世界上的一切客观物体。 例如:地球上的人。
公园里的花。 坐标平面上的点。
1
一、集合的概念
通常用大写字母表示一个集合,例A,B, 。 用小写字母表示一个集合的元素,例a, b, x, y, 。 若元素a属于集合A,记作aA, 否则记aA。 若一个集的元素个数是有限,称有限集, 否则称为无限集。 有限集合的元素个数称为该集合的基数, 集合A的基数记为|A|。
集合的元素又是无序的,即1,2,3和3,1,2是同一集合。
集合的元素还可以允许是一个集合,如S= 1,2, 3,
{a},a
4
二.集合之间的关系
集合之间有二种基本关系:
1)相等:两个集A,B称作相等,当且仅当A,B的元素完 全相同,记A=B,否则AB。(P82 外延性原理) 例 { {1, 2}, 4} {1, 2, 4} { 1, 3, 5 }={x x是正奇数} 2)子集(P83 定义3-1.1):A,B为两个集合,若A的每 个元素都是B的元素,称A为B的子集,或A包含在B内, 或B包含A,记AB或BA。 即 A B x(xAxB) 根据子集的定义,可立即有:对任意集合A,B,C: 1)AA; (自反性) 2)AB,BC则AC;(传递性)
但B中至少有一个元素不属于A,则称A为B的真子集,或A包含在B内, 记AB。
即A B x (xAxB)(x)(xBxA) ABABAB
例如:Z Q
又例如:设 A=a,B=a,b,C=a,b,c 则
AB,BC,AC,但 AA
6
三、空集

《离散数学》课件-第3章集合的基本概念

《离散数学》课件-第3章集合的基本概念
17
例题
计算以下幂集:
,{};{,{}}
解:
P()={} P({})={,{}} P({,{}})= {, {},{{}},{,{}}}
18
3.3 集合的运算
集合的运算 并,交,补(绝对补),差(相对补-),和对称差等。
19
集合的并运算
• 定义3.3.1 设A,B为集合,由A和B的所有元素组成的集 合称为A与B的并集, 可表示为: AB={x|xAxB} 其文氏图:
其文氏图如下:
~E = , ~ = E, ~(~A)= A A ~A = , A ~A = E
27
德.摩根定律
• 定理3.3.5 设A,B为任意二个集合,则有: • (1) (AB)= A B • (2) (A B)= A B • 证明 设E为全集,显然有AE=A,AE=E成立。 • (1) (AB)= {x | xEx(AB)}= {x |
据的增加、删除、修改、排序,以及数据间关系的描述。
集合论在计算机语言、数据结构、编译原理、数据库与
知识库、形式语言及人工智能等许多领域得到广泛的应
用。
2
3.1 集合及其表示
• 集合是由一些对象聚集在一起构成的。 例如,全体整数 全体中国人 26个英文字母
• 构成集合的对象可以是各种类型的事物。 • 定义3.1.1 集合中的对象叫集合的元素,或成员。
• 集合中的元素可以具有共同性质,也可以表面上看起来不相干。
• 如{2,Tom,计算机,广州}
• 在集合论中,规定元素之间是彼此相异的,并且是没有次序关 系的。
例如,{3,4,5},{3,4,4,5,5},{5,3,4}都是同一个集合。
• 例如,A={3,4,5},

离散数学 第七讲

离散数学 第七讲

康托尔(Cantor)9 3.1 集合的基本概念集合、元素、子集、包含、集合相等、真子集、空集、幂集、全集9 3.2 集合的基本运算并集、交集、相对补集、绝对补集、对称差、文氏图、算律、9 3.3 集合中元素的计数基数、有(无)穷集、包含排斥原理3.1 集合的基本概念9把具有共同性质的一些东西,汇集成一个整体,就形成一个集合。

9由确定的相互区别的一些对象组成的整体称为集合。

9可确定的可分辨的事物构成的整体。

例:教室内的桌椅、图书馆的藏书、全国的高等学校、自然数的全体、直线上的点、26个英文字母3.1 集合的基本概念集合的元素(member或element)9集合内的对象或单元称为元素。

9集合通常用大写英文字母标记。

例如,N代表自然数集合(包括0),Z代表整数集合,Q代表有理数集合,R代表实数集合,C代表复数集合。

趣味思考9任意自然数都可以表示为两个自然数的平方差吗?9请严谨、详细分析说明。

3.1 集合的基本概念集合的表示法列举法将集合中的元素一一列举,或列出足够多的元素以反映集合中元素的特征。

例如:V={a,e,i,o,u} 或B={1,4,9,16,25,36……}。

描述法通过描述集合中元素的共同特征来表示集合。

例如:V= {x| x是元音字母}B={x| x=a2, a是自然数}C= {x| x∈Z ∧3<x≤6},即C={4,5,6}3.1 集合的基本概念集合的表示9元素a属于集合A,记作a ∈A。

9元素a不属于集合A ,记作a ∉A3.1 集合的基本概念3.1 集合的基本概念集合的特征9确定性:任何一个对象,或者是这个集合的元素,或者不是,二者必居其一。

例如:A={x| x∈N ∧x<100},C={x| x是秃子}9互异性:集合中任何两个元素都是不同的,即集合中不允许出现重复的元素。

例如:集合A={a,b,c,c,b,d},应该是A={a,b,c,d}3.1 集合的基本概念集合的特征9无序性:集合与其中的元素的顺序无关。

《离散数学集合》课件

《离散数学集合》课件

满射。
双射
03
如果一个映射既是单射又是满射,则称该映射为双射。
函数的基本性质
确定性
对于任意一个输入,函数只能有一个输出。
互异性
函数的输出与输入一一对应,没有重复的输 出值。
可计算性
对于任意给定的输入,函数都能计算出唯一 的输出值。
域和陪域
函数的输入值的集合称为函数的定义域,函 数输出的集合称为函数的陪域。
04
集合的运算性质
并集运算性质
并集的交换律
对于任意集合A和B,有A∪B=B∪A。
并集的幂等律
对于任意集合A,有A∪A=A。
并集的结合律
对于任意集合A、B和C,有 A∪(B∪C)=(A∪B)∪C。
并集的零律
对于任意集合A和空集∅,有A∪∅=ቤተ መጻሕፍቲ ባይዱ。
交集运算性质
交集的交换律
对于任意集合A和B,有A∩B=B∩A。
在数学中的应用
集合论
集合论是数学的基础,它为数学提供了基本的逻辑和概念 框架。通过集合,可以定义和讨论概念、关系和性质等。
概率论
在概率论中,集合用来表示事件,事件发生的概率可以定 义为该事件所对应的集合的元素个数与样本空间所对应的 集合的元素个数之比。
拓扑学
拓扑学是研究几何形状在大范围内变化的学科。在拓扑学 中,集合用来表示空间中的点、线、面等元素,以及它们 之间的关系。
THANKS FOR WATCHING
感谢您的观看
03
集合的分类
有穷集和无穷集
有穷集
集合中元素的数量是有限的,可以明 确地列举出集合中的所有元素。例如 ,集合{1, 2, 3}是一个有穷集。
无穷集
集合中元素的数量是无限的,无法列 举出集合中的所有元素。例如,自然 数集N={1, 2, 3,...}是一个无穷集。

离散数学 31集合概念表示法54页PPT

离散数学 31集合概念表示法54页PPT
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
离散数学 31集合概念表示法
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
▪பைடு நூலகம்
28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
54
1
0
















26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

集合的概念和表示法-PPT课件

集合的概念和表示法-PPT课件
2019/3/28
首页
上页
返回
下页
结束

7
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 b、部分列举法:
列举集合的部分元素,其他元素可从列举的元
素 归纳出来 , 用省略号代替。 例如A表示“全体小写英文字母”的集合, 则 A={a, b, … , y, z} 注: 列举法仅适用于描述元素个数有限的集合 或 元素具有明显排列规律的集合。
2019/3/28
首页
上页
返回
下页
结束

6
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 a、全部列举法: 以任意顺序写出集合的所有元素, 元素间用逗号 并将其放在花括号内。 隔开, 例如“所有小于5的正整数”, 这个集合的元素为 1, 2, 3, 4, 再没有别的元素了。 如果把这个集合命名为A, 就可记为 A={1, 2, 3, 4}
2019/3/28
首页
上页
返回
下页
结束

3
离散数学 3.1 集合的概念及表示法
一、集合的基本概念
3、集合的分类
1) 有限集合 集合的元素个数是有限的。
2) 无限集合 集合的元素个数是无限的。
2019/3/28
首页
上页
返回
下页
结束

4
离散数学 3.1 集合的概念及表示法
二、集合的表示法
1、符号表示法
2019/3/28
首页
上页
返回
下页
结束

12

离散数学第三章集合的基本概念和运算知识点总结

离散数学第三章集合的基本概念和运算知识点总结

离散数学第三章集合的基本概念和运算知识点总结集合论部分第三章、集合的基本概念和运算3.1 集合的基本概念集合的定义与表⽰集合与元素集合没有精确的数学定义理解:⼀些离散个体组成的全体组成集合的个体称为它的元素或成员集合的表⽰列元素法A={ a, b, c, d }谓词表⽰法B={ x | P(x) }B 由使得P(x) 为真的x构成常⽤数集N, Z, Q, R, C 分别表⽰⾃然数、整数、有理数、实数和复数集合,注意0 是⾃然数.元素与集合的关系:⾪属关系属于∈,不属于?实例A={ x | x∈R∧x2-1=0 }, A={-1,1}1∈A, 2?A注意:对于任何集合A 和元素x (可以是集合),x∈A和x?A 两者成⽴其⼀,且仅成⽴其⼀.集合之间的关系包含(⼦集)A?B??x (x∈A→x∈B)不包含A?B??x (x∈A∧x?B)相等A = B?A?B∧B?A不相等A≠B真包含A?B?A?B∧A≠B不真包含A?B思考:≠和?的定义注意∈和?是不同层次的问题空集?不含任何元素的集合实例{x | x2+1=0∧x∈R} 就是空集定理空集是任何集合的⼦集Ax (x∈?→x∈A) ?T推论空集是惟⼀的.证假设存在?1和?2,则?1??2 且?1??2,因此?1=?2全集E 相对性在给定问题中,全集包含任何集合,即?A (A?E )幂集定义P(A) = { x | x?A }实例P(?) = {?},P({?}) = {?,{?}}P({1,{2,3}})={?,{1},{{2,3}},{1,{2,3}}}计数如果|A| = n,则|P(A)| = 2n3.2 集合的基本运算集合基本运算的定义??-~⊕并A?B = { x | x∈A∨x∈B }交A?B = { x | x∈A∧x∈B }相对补A-B = { x | x∈A∧x?B }对称差A⊕B = (A-B)?(B-A)= (A?B)-(A?B)绝对补~A = E-A⽂⽒图(John Venn)关于运算的说明运算顺序:~和幂集优先,其他由括号确定并和交运算可以推⼴到有穷个集合上,即A1?A2?…A n= {x | x∈A1∨x∈A2∨…∨x∈A n}A1?A2?…A n= {x | x∈A1∧x∈A2∧…∧x∈A n}某些重要结果A-B?AA?B ?A-B=?(后⾯证明)A?B=??A-B=A命题演算法证X?Y:任取x ,x∈X?… ?x∈Y 例3 证明A?B?P(A)?P(B)任取xx∈P(A) ?x?A?x?B ? x∈P(B)任取xx∈A ? {x}?A ? {x}∈P(A) ? {x}∈P(B){x}B x∈B包含传递法证X?Y:找到集合T 满⾜X?T 且T?Y,从⽽有X?Y例4 A-B ? A?B证A-B ? AA ? A?B所以A-B ? A?B利⽤包含的等价条件证X?Y:例5 A?C∧B?C ?A?B?C证A?C?A?C=CB?C?B?C=C(A?B)?C=A?(B?C)=A?C=C(A?B)?C=C ?A?B?C命题得证反证法证X?Y:欲证X?Y, 假设命题不成⽴,必存在x 使得x∈X 且x?Y. 然后推出⽭盾.例6 证明A?C ∧ B?C ? A?B?C证假设A?B ? C 不成⽴,则?x (x∈A?B∧x?C)因此x∈A 或x∈B,且x?C若x∈A, 则与A?C ⽭盾;若x∈B, 则与B?C ⽭盾.利⽤已知包含式并交运算:由已知包含式通过运算产⽣新的包含式X?Y ?X?Z?Y?Z, X?Z?Y?Z 例7 证明A?C?B?C ∧ A-C?B-C ? A?B证A?C?B?C,A-C ? B-C上式两边求并,得(A?C)?(A-C) ? (B?C)?(B-C)(AC)(A~C) (BC)(B~C)A(C~C) B(C~C)AE BEA B命题演算法证明X=Y:任取x ,x∈X ?… ?x∈Yx∈Y ?… ?x∈X或者x∈X ?… ? x∈Y例8 证明A?(A?B)=A (吸收律)证任取x,x∈A?(A?B) ? x∈A∨ x∈A?Bx∈A ∨ (x∈A ∧ x∈B) ? x∈A等式替换证明X=Y:不断进⾏代⼊化简,最终得到两边相等例9 证明A?(A?B)=A (吸收律)证(假设交换律、分配律、同⼀律、零律成⽴)A?(A?B)=(A?E)?(A?B) 同⼀律=A?(E?B) 分配律=A?(B?E) 交换律=A?E 零律=A 同⼀律反证法证明X=Y:假设X=Y 不成⽴,则存在x 使得x∈X且x?Y,或者存在x 使得x∈Y且x?X,然后推出⽭盾.例10 证明以下等价条件A?B ? A?B=B ? A?B=A ? A-B=?(1) (2) (3) (4)证明顺序:(1) ?(2), (2) ?(3), (3) ?(4), (4) ?(1)(1) ?(2)显然B?A?B,下⾯证明A?B?B.任取x,x∈A?B ? x∈A∨x∈B ? x∈B∨x∈B ? x∈B因此有A?B?B. 综合上述(2)得证.(2) ?(3)A=A?(A?B) ? A=A?B(将A?B⽤B代⼊)(3) ?(4)假设A-B≠?, 即?x∈A-B,那么x∈A且x?B. ⽽x?B ? x?A?B.从⽽与A?B=A⽭盾.(4) ?(1)假设A?B不成⽴,那么x (x∈A ∧ x?B) ? x∈A-B ? A-B≠?与条件(4)⽭盾.集合运算法证明X=Y:由已知等式通过运算产⽣新的等式X=Y ? X?Z=Y?Z, X?Z=Y?Z,X-Z=Y-Z 例11 证明A?C=B?C ∧ A?C=B?C ? A=B证由A?C=B?C 和A?C=B?C 得到(A?C)-(A?C)=(B?C)-(B?C)从⽽有A⊕C=B⊕C因此A⊕C=B⊕C ? (A⊕C)⊕C =(B⊕C)⊕CA⊕(C⊕C) =B⊕(C⊕C) ?A⊕?=B⊕?? A=B3.3 集合中元素的计数集合的基数与有穷集合集合A 的基数:集合A中的元素数,记作card A有穷集A:card A=|A|=n,n为⾃然数.有穷集的实例:A={ a,b,c}, card A=|A|=3;B={ x | x2+1=0, x∈R}, card B=|B|=0⽆穷集的实例:N, Z, Q, R, C 等包含排斥原理:定理设S 为有穷集,P1, P2, …, P m是m 种性质,A i 是S中具有性质P i的元素构成的⼦集,i=1, 2,…, m.则S中不具有性质P1, P2, …, P m 的元素数为证明要点:任何元素x,如果不具有任何性质,则对等式右边计数贡献为1,否则为0证设x不具有性质P1, P2, … , P m ,x?A i, i= 1, 2, … , mx?A i?A j, 1≤i < j ≤m…x?A1?A2?…?A m,x 对右边计数贡献为1 - 0 + 0 -0 + … + (-1)m· 0 = 1例1 求1到1000之间(包含1和1000在内)既不能被5 和6 整除,也不能被8 整除的数有多少个?解:S ={ x | x∈Z, 1≤x ≤1000 },如下定义S的3 个⼦集A, B, C:A={ x | x∈S, 5 | x },B={ x | x∈S, 6 | x },C={ x | x∈S, 8 | x }对上述⼦集计数:|S|=1000,|A|= ?1000/5? =200, |B|=?1000/6?=133,|C|= ?1000/8? =125,|A?B|= ?1000/30? =33, |B?C| = ?1000/40? =25,|B?C|= ?1000/24? =41,|A?B?C| = ?1000/120? =8,代⼊公式N = 1000-(200+133+125)+(33+25+41)-8=600例224名科技⼈员,每⼈⾄少会1门外语.英语:13;⽇语:5;德语:10;法语:9英⽇:2; 英德:4;英法:4;法德:4 会⽇语的不会法语、德语求:只会1 种语⾔⼈数,会3 种语⾔⼈数x+2(4-x)+y1+2=13x+2(4-x)+y2=10x+2(4-x)+y3=9x+3(4-x)+y1+y2+y3=19x=1, y1=4, y2=3, y3=2。

第一章 离散数学

第一章 离散数学

定义1-9 设有集合A、B,所有属于B而不属于
A的元素组成的集合,称为A相对于B的补集, 记作B-A。即
B A u | u B但u A
用文氏图表示为:(图中斜线部分即是)
B
B-A
例:A={2,5,6} B={3,4,2} B-A={3,4} 则 A-B={5,6}
A
定义1-10 集合A相对于全集合U的补集称为A的
{ }
定理1-2:设A是具有基数#A的有限集,则#(2A ) 2# A
分析:前面介绍了,A的子集是A的一部分,那么由 i A中i个元素组成的子集有C n个,若A有n个元素,于 是有:
C n 0 C n1 ... C n n 1 C n n 2n
(证明略)
例3、确定集合A={a,{a}}的幂集
A不够成一个集合,因为没有确定老的标准,50岁 以上的老,还是60岁以上的老呢?这需要一个确定的标 准,根据这个标准来判断一个55岁的中国人是否属于这 个集。
总之,任一个个体,对某一个集合而言, 或属于该集合,或不属于该集合。两者 必 居其一,不可兼得。
又如:
A={b,c} 是一个集合,但它是集合B 的元素,其中B={a,{b,c}}; A={b,c}是以一个整体作为B的元素。 另外,要将b,与{b} 区分开来,b∈{b}; b是一个个体,{b}是一个单元素的集合。
故 A C(由定义1-2)
综合(1)、(2)即知原结论成立。
1.3
一、幂集的定义
幂集
定义1-5:任给集合A,由A的所有子集组成的集合, 称为A的幂集。记作2A,即2A={s|s A}。 例1 A={1,2,3}
则 2A {,{1},{2},{3},{1, 2},{1,3},{2,3},{1, 2,3}} 例2 (1) A={a}

《离散数学》第3章集合

《离散数学》第3章集合

集合表示方法
列举法
列举法是将集合中的元素一一列举出来,写在大括号内表示集合的方法。例如,A={1,2,3}表示集合A 由元素1、2、3组成。
描述法
描述法是通过描述集合中元素的共同特性来表示集合的方法。例如,B={x|x>0}表示集合B由所有大于 0的实数组成。
常用集合类型介绍
有限集
有限集是指集合中的元素 个数是有限的。例如, C={1,2,3,4,5}是一个有限 集,它包含5个元素。
THANKS FOR WATCHING
感谢您的观看
特殊的集合。
集合论在数据库设计中应用
实体-关系模型
集合论中的集合和关系概念被用于描述实体-关系模 型,这是数据库设计中的重要方法。
数据完整性
集合论中的概念如唯一性、存在性等可以用于定义和 维护数据库的完整性约束。
查询优化
集合论中的运算和性质可以用于优化数据库查询,提 高查询效率。
集合论在其他领域应用
元素与集合关系
元素与集合的关系
元素与集合的关系只有两种,即属于和不属于。如果元素a是集合A的元素,就说a 属于A,记作a∈A;如果元素a不是集合A的元素,就说a不属于A,记作a∉A。
元素与集合的运算
元素与集合的运算主要有并集、交集和差集等。并集是指两个集合中所有元素的 集合;交集是指两个集合中共有元素的集合;差集是指属于第一个集合但不属于 第二个集合的元素的集合。幂集与笛卡尔积关来自探讨幂集与笛卡尔积的联系
幂集与笛卡尔积的区别
幂集与笛卡尔积的应用
幂集和笛卡尔积都是集合论中的重要概 念,它们之间有着密切的联系。例如, 对于任意集合A,其幂集P(A)可以看作 是A与其自身的笛卡尔积A×A的子集构 成的集合。

集合的基本概念(离散数学)

集合的基本概念(离散数学)

并集
01
并集是将两个或多个集合中的 所有元素合并到一个新集合中 。
02
并集运算可以用符号"∪"表示, 例如,A∪B表示集合A和集合B 的并集。
03
并集运算满足交换律和结合律, 即A∪B=B∪A, (A∪B)∪C=A∪(B∪C)。
交集
01
交集是两个或多个集合中共有的元素组成的集合。
02
交集运算可以用符号"∩"表示,例如,A∩B表示集合A和集合 B的交集。
集合的运算
并集
两个集合中所有元素的集合。
交集
两个集合中共有的元素组成的集合。
差集
从一个集合中去除另一个集合中的元素后得到的集合。
03
集合的性质
空集
定义
不含有任何元素的集合称为空集。记作∅。
性质
空集是任何集合的子集,即对于任意集合A,都有∅⊆A。
应用
在数学逻辑和集合论中,空集常用于作为其他集合的基底或参考点。
06
集合的应用
在数学中的应用
在概率论中的应用
集合是概率论的基本概念,用来 表示随机事件。概率论中的许多 概念,如事件的并、交、差等, 都是基于集合运算的。
在几何学中的应用
集合论为几何学提供了统一的数 学语言。在几何学中,点、线、 面等基本元素都可以被视为集合。
在逻辑学中的应用
集合论为逻辑学提供了形式化的 工具,使得逻辑推理更加严谨。 集合论中的集合关系和集合运算, 可以用来表示逻辑中的命题和推 理。
并集
两个或多个集合中所有元素的 集合。
集合
由确定的、不同的元素所组成 的总体。
子集
一个集合中的所有元素都属于 另一个集合,则称这个集合是 另一个集合的子集。

离散数学集合.ppt

离散数学集合.ppt
| U | 50, | A | 26, | B | 21, | A∩ B |17
首先由A∩ B A∪B 知 | A∪B ||U A∪B | | U A∩ B |=33 又因为 |A∪B| = |A| + |B| |A∩B| 所以 |A∩B| = |A| + |B| |A∪B|
= 26 + 21 33 = 14
即 |A∪B|=|B|+|A||A∩B|
推广
|A∪B∪C ||A||B||C||A∩B ||A∩C||B∩C||A∩B∩C |
n
n
∪i1 Ai
|Ai| |Ai∩ Aj|
i1
i j
n
| i jk
A∩i
Aj∩
Ak|
(1)n1|∩ i1
Ai|
二、实例
例3.3 某班有25个学生,其中14人会打篮球, 12人会打排球,6人会打篮球和排球, 5人会打篮球和网球,还有两人会打 这三种球,而6个会打网球的人都会 打另外一种球(指篮球和排球),求不 会打这三种球的人数?
(4) 幂 集:集合A的全体子集构成的集合, 记作P(A)。
符号化: P(A) = {B | B A },n 元集A的幂集P(A)中含2n个元素。
例3.1 计算以下幂集 (1) P() (2) P({,{}}) (3) P({1,{2,3}})
解: (1) P()={} ( 为什么不是 ? ) (2) P({,{}}) = {, {}, {{}}, {,{}}} (3) P({1,{2,3}}) = {,{1}, {2,3}, {1,{2,3}}}
=12+6+146 5+2|A∩B|=23|A∩B|
又因为6个会打网球的人都会打另外一种球, 所以:B (B∩ A∩ C )∪(B∩ C∩ A))∪(B∩ C∩ A)

离散数学知识点归纳

离散数学知识点归纳

离散数学知识点归纳一、集合论。

1. 集合的基本概念。

- 集合是由一些确定的、彼此不同的对象组成的整体。

这些对象称为集合的元素。

例如,A = {1,2,3},其中1、2、3是集合A的元素。

- 集合的表示方法有列举法(如上述A的表示)和描述法(如B={xx是偶数且x < 10})。

2. 集合间的关系。

- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。

例如,{1,2}⊆{1,2,3}。

- 相等:如果A⊆ B且B⊆ A,则A = B。

- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂ B。

3. 集合的运算。

- 并集:A∪ B={xx∈ A或x∈ B}。

例如,A = {1,2},B={2,3},则A∪B={1,2,3}。

- 交集:A∩ B = {xx∈ A且x∈ B}。

对于上述A和B,A∩ B={2}。

- 补集:设全集为U,集合A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。

二、关系。

1. 关系的定义。

- 设A、B是两个集合,A× B的子集R称为从A到B的关系。

当A = B时,R称为A上的关系。

例如,A={1,2},B = {3,4},R={(1,3),(2,4)}是从A到B的关系。

2. 关系的表示。

- 关系矩阵:设A={a_1,a_2,·s,a_m},B={b_1,b_2,·s,b_n},R是从A到B的关系,则R的关系矩阵M_R=(r_ij),其中r_ij=<=ft{begin{matrix}1,(a_i,b_j)∈ R0,(a_i,b_j)∉ Rend{matrix}right.。

- 关系图:对于集合A上的关系R,用节点表示A中的元素,若(a,b)∈ R,则用有向边从a指向b。

3. 关系的性质。

- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有(a,a)∈ R,则R 是自反的。

例如,A={1,2,3},R = {(1,1),(2,2),(3,3)}是自反关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当它们有相同的成员。
两个集合A和B相等,记作A=B,两个集合 不相等,记作AB。 {0,1}={x|x(x2-2x+1)=0,x I} {0,1}{1,2}
➢2.包含关系(子集) ➢定义3-1.1 设A、B是任意两个集合,如果A的每一 个元素都是B的元素,则称集合A是集合B的子集合( 或子集,subsets),或称A包含在B内,记为AB ; 或称B包含A,记为BA 。 ➢即
所以|A1|+|A2|=|A1~A2|+|A1A2|+
|~A1A2|+|A1A2|
=|A1~A2|+|~A1A2|+2|A1A2|
而|A1~A2|+|~A1A2|+|A1A2|=|A1A2|
故|A1A2|=|A1|+|A2|-|A1A2|
例1:求从1到500的整数中,能被3或5除尽的数的个数。
3、差集、补集
定义3-2.3:设A、B是任意两个集合,所有属 于A而不属于B的元素组成的集合称为B对A 的补集,或相对补,(或A和B差集)记作A-B 。
A-B={x|xA∧xB} 文氏图
定义3-2.4:设E为全集,任一集合A关于E的补 ,称为A的绝对补,记作A。 A=E-A={x|xE∧xA}
文氏图
属于S,同样根据定义,S就 可以属说于,S这。一无悖论论如就何象都在平是静矛的盾的 数学。水面上投下了一块巨石,而
它所引起的巨大反响则导致了第 三次数学危机。
危机产生后,数学家纷纷提出自己的
解决方案:
人们希望能够通过对康托尔的集合论进行改造,通过 对集合定义加以限制来排除悖论,这就需要建立新 的原则。“这些原则必须足够狭窄,以保证排除一 切矛盾;另一方面又必须充分广阔,使康托尔集合 论中一切有价值的内容得以保存下来。”
中成员的特征。如:B={2,4,8,……} 若x=2n,则
B={2,4,8,16,32,……} 若x=2+n(n-1),则
B={2,4,8,14,22,……} 2、描述法:A={x|P(x)}或A={x:P(x)} 例: C={x|1x5,x R},
D={(x,y)|x2+y21,x,y R} F={x|x是中国的一个省}

a)BA b)(B-A)A=B
4、对称差 定义3-2.5:设A、B是任意两个集合,集合A和
B的对称差,其元素或属于A,或属于B,但 不能既属于A又属于B,记作AB。
AB=(A-B)(B-A) 文氏图
性质: a)AB=BA b)A=A c)AA= d)AB=(AB)(AB) e)(AB)C=A(BC)
1908年,策梅罗在这一原则基础上提出第一个公理 化集合论体系,后来经其他数学家改进,称为ZF 系统。这一公理化集合系统很大程度上弥补了康托 尔朴素集合论的缺陷。
公理化集合系统的建立,成功排除了集合论中出现的 悖论,从而比较圆满地解决了第三次数学危机。
集合论
第3章 集合和关系 第4章 函数
第三章 集合与关系
因为有AB,若x A,则x B, 所以x B且x C,故x BC。 因此ACBC。
2、并集 定义3-2.2:设任意两个集合A和B,所有属于A
或属于B的元素组成的集合,称为A和B的并 集,记作A B。
A B={x|x A x B} 文氏图
举例
例1:A={1,2,3,4},B={2,4,5}, AB={1,2,3,4,5}
推论:空集是唯一的。
证明:设1,2是两个空集,则1 2,
,得
,所以空集是唯一的。
2、全集 定义3-1.4:在一定范围内,如果所有集合均是
某一集合的子集,则称该集合为全集。记作E 。
E={x|p(x) p(x)} 3、幂集 定义3-1.5:给定集合A,由A的所有子集为元
素组成的集合称为A的幂集,记作 (A)或2A 。
ቤተ መጻሕፍቲ ባይዱ
集合论
“一切数学成果可建立在集合论基础上” 这一发现使数学家们为之陶醉。
1900年,国际数学家大会上,法国著 名数学家庞加莱就曾兴高采烈地宣 称:“………借助集合论概念,我们 可以建造整个数学大厦……今天, 我了们…可…以”可 19说是03绝,年对好,的景一严不个格长震性。惊已数经学达界到的 消息传出:集合论是有漏洞 的!这就是英国数学家罗素 提出的著名的罗素悖论。
例2:设A是奇数集合,B是偶数集合,AB是 整数集合,AB=。
性质:
a)AA=A b)AE=E c)A=A d)AB=BA e)(AB)C=A(BC) f)AAB,BAB
举例
例题3:设AB,CD,求证ACBD。
证明:对任一x AC,则x A或x C, (1)若x A,则x B,故x B D ; (2)若x C,则x D,故x BD。
3-3 包含排斥原理 (容斥原理)
包含排斥原理
1、定理3-3.1:设A1,A2为有限集合,其元素个数分别 为|A1|,|A2|,则|A1A2|=|A1|+|A2|-|A1A2|,此定理被称 作包含排斥原理。
证明:a)当A1A2= ,则|A1A2|=|A1|+|A2|
b)若A1A2 ,则|A1|=|A1~A2|+|A1A2|,|A2|=|~ A1A2|+|A1A2|
如果a不是A的元素,记为: aA ,读作“a不属于A ”。
集合的分类
•空集和只含有有限多个元素的集合称为有限集( finite sets),否则称为无限集(infinite sets)。
•有限集合中元素的个数称为集合的基数(cardinality )。集合A的基数表示为 A。
二、集合的三种表示方式:
3-2 集合的运算及其性质
一、集合的运算
1、交 定义3-2.1:设任意两个集合A和B,由A和B的
所有共同元素组成的集合,称为A和B的交集 ,记为A B。
A B={x|xA xB}
文氏图
举例
例1:A={0,2,4,6,8,10,12},B={1,2 ,3,4,5,6},AB={2,4,6}
例2:设A是平面上所有矩形的集合,B是平面 上所有菱形的集合,AB是所有正方形的集 合。
定理3-2.2 设A,B为任意两个集合,则 下列吸收律成立。
a)A(AB)=A
b)A(AB)=A
证明:
a)A(AB)=(AE)(AB)
=A(EB)=AE=A
b)A(AB)=(AA)(AB)
=A(AB)=A
定理3-2.3 AB,当且仅当AB=B或 AB=A。
证明:若AB,对任意xA必有x B, (1)对任意x AB,则x A或x B,即x B, 所以AB B。 (2)又B AB ,因此得到AB=B 。 反之,若AB=B,因为A AB ,所以A B 。 同理可证得AB=A
AB x(xAxB)
设A,B,C为任意集合,根据定义,显然有: 包含关系具有自反性:A A 包含关系具有传递性:若A B且B C,则A C。
➢ 注:可能AB或BA ,也可能两者均不成立, 不是两者必居其一。
例:A={1,2,3},B={1,2},C={1,3}, D={3},F={1,4},
理发师悖论(罗素悖论)
20世纪英国著名哲学家、数学 家罗素提出一个著名的悖论 ——“理发师难题”,其内容如 下:
西班牙的塞维利亚有一个理发 师,这位理发师有一条极为 特殊的规定:他只给那些“不 给自己刮胡子”的人刮胡子。
罗素悖论
G的 到罗.弗信的切成素雷后最不。构格伤不在是心合造收地心自了到说意身一罗:的元个素事“一素集介莫个的合绍过科集这于S学:一是合家S悖在所所由论他遇组一 的罗工素作问即将:结S是束时否,属其于基S础呢崩?溃了 。如罗果素S先属生于的S一,封根信正据好S的把我定置义于,S 这个就境不地属。”于S;反之,如果S不
则BA, CA, DC, FA
四、特殊的集合
1、空集
定义3-1.3:不含任何元素的集合称为空集,记作 。
={x|p(x) p(x)} 例如:X={x|x2+1=0,x R}是空集。 注意: {}, {}
定理3-1.2:对于任意一个集合A, A。
证明:反证法,假设存在一个集合A,使得 A为 假。则存在x 且x A,这与空集的定义矛盾, 所以 A,空集是任意集合的子集。
(l)列举法 将集合的元素列举出来。
(2)描述法 利用一项规则(一个谓词公式),描述集合 中的元素的共同性质,以便决定某一物体是否 属于该集合。
(3)归纳法 用递归方法定义集合。
1、列举法:将集合的元素列举出来 例:A={a,b,c,d},A1={1,3,5,7,9
,……} 使用列举法,须列出足够多的元素以反映集合
一、集合的基本概念
集合是一些确定的、作为整体识别的、互相区别的 对象的总体。
组成集合的对象称为集合的成员(member)或元素 (element)。
一般用大写字母表示集合,用小写字母表示元素。 例如A表示一个集合,a表示元素,如果a是A的元素, 记为:aA,读作“a属于A”、“a是A的元素”、“a是A 的成员”、 “a在A之中”、“A 包含a”。
(A)={u|u A} 例:设A={1,2,3},写出A的幂集 (A)。 解: (A)={,{1},{2},{3},{1,2}, {1,3},{2,3},{1,2,3}}
一般地如果|A|=n,则: A的0元子集有Cn0=1个,即空集, 1元子集有Cn1个, 2元子集有Cn2个, …, n-1元子集有Cnn-1个, n元子集有Cnn个。 所以A的子集个数为:
例3:设A是所有能被K整除的整数的集合,B是 所有能被L整除的整数的集合,AB是所有能 被K与L最小公倍数整除的整数的集合。
性质:
a)AA=A b)A= c)AE=A d)AB=BA e)(AB)C=A(BC) f)ABA,ABB
举例
例题4:设AB,求证ACBC。 证明:对任一个x AC,则x A且x C,
相关文档
最新文档