关系的性质-集合与关系-离散数学共32页文档

合集下载

离散数学第二章关系

离散数学第二章关系

例9 .设A={1,2,3,4} ,B={2,4,6,8,10} 。 R={(1,2),(2,4),(3,6)}。
则 (R) = {1,2,3}A , (R) = {2,4,6}B 。
二.关系的一些关联性质 17
离散数学
定理1. 设R1,R2 A×B是两个关系。若 R1 R2 ,则
(1)保序性: (R1) (R2) ; (2)保序性: (R1) (R2) ;
注:笛卡尔(1596-1650 ),法国数学家, 1637年发表《方法论》之 一《几何学》,首次提出坐标及变量概念。这里是其概念的推广。
定义2. • 二个集合A,B的(二维或二重)叉积定义为 A×B ={(a, b): a A bB} ; •其元素——二元组(a, b)通常称为序偶或偶对(ordered
故 (R1)∩ (R2) = {1,2 }
21
离散数学
所以 (R1)∩ (R2) (R1 ∩ R2) 。
元素aA和集合A1A在关系R A×B下的关联集 (1)a的R-关联集(R-relative set of a):
R(a)={b : bBaRb }B ;
(2) A1的R-关联集(R-relative set of A1): R(A1)={b : bB (aA1)(aRb) }B 。
•当A=B时,即RA×A,则称R是A上的一个二元关 系。
例1 . 设A是西安交通大学全体同学组成的集合。 11
离散数学
R={(a,b) : aAbAa与b是同乡}A×A 于是,R是西安交通大学同学之间的同乡关系。
例2 . 设A是某一大家庭。
R1 = {(a,b) : aAbAa是b的父亲或母亲}A×A R2 = {(a,b) : aAbAa是b的哥哥或姐姐}A×A R3 = {(a,b) : aAbAa是b的丈夫或妻子}A×A 于是,

离散数学关系的性质

离散数学关系的性质

任取<x, y>
<x, y>R<y, x>R ………..………. x=y
前提
推理过程
结论
例6 证明若 R∩R1IA , 则 R 在 A 上反对称. 证 任取<x, y>
<x, y>R <y, x>R <x, y>R <x, y>R 1
<x, y>R∩R 1 <x, y>IA x=y 因此 R 在 A 上是反对称的.
有 R)
例(18) 不判自断反下也图不中反关自系反的;性对质称, 并, 不说反明对理称由;不传递. 注任因注<和只注列任证M对因f于反<W(于W对例例考当 R证考对其o3xx1r)aat意取此意证意的取于此等对等于23察检明察于中,,[M<rrj自和iyyss,x: <有 : : 元 <k于 称 于 k设 G查模 GkE>>hht(任R设RRj,反==RRR=aa]xx1,R1y是31的的ll在在M在素关:关A完 式000,,)则在123ll取A>y3,= =tR算算y,,,RR和====o>111和r= 每 每上上上记系恒系所>是M∪<,,,和A不{{=n证法法………,{{{{xR<<({一一述述述作,等,有MtAM<<<Rad3<<上[,<是aaa小小明∩:的,,,<,iaaao)上ynnnyy0,,,y+,条条等等等关的Mbbb,,,ayR,,同>是,,,,=abc反jE于于依,z>,,>]Rxx的MMM>>,ckI>边边式式式系顶>zc,A,阶反+>>}[,}<自<,关关据>}<在kkk<i传,<b,,中中中点I,a,M1[[[b的jb对ARy反,,如如系系iii]Rc,b,递,,,,RRA.Rbt1矩矩矩后c,jjj>>1单[称]]]z;>>果 果,,,i===},}上关>,R阵阵阵就整整}}空<,R111,位的k有有(2x当当当自系R]2的的的得除除1……关,,矩.,一一Ry且且且)R反,RR元元元到关关……系>M阵R32条条34仅仅仅和=2素素素图系系……是是t=,[不xxk当当当MIR{相相相,,G..AAA{ii,<是包包4<’jt在上在到到在上是a]加加加都a.,A含含,a的的b时时时是xx>上Mx>关关jj,反关=<,使使使A的的<的的ya系系上b对系,用用用单单b传,转a,,>的称,>逻逻逻真真向向递,其置<,关<关辑辑辑包包边 边b关中a矩,系,系ac加加加含含,,系>阵>ii,}≠≠}...关关.其jj.,, 系系则则中在在GG中中加加(2一一)条条

最新离散数学课件第三章集合与关系-2精品文档

最新离散数学课件第三章集合与关系-2精品文档

逆关系
定义3-7.2 设R是A到B的二元关系,则R的逆是B到A 的二元关系,记为Rc,其中Rc ={<y,x>|<x,y>R}。
注 :(1)xRyyRcx (2)互换R的关系矩阵的行和列,即得Rc的
关系矩阵。 即 MRc=MRT
(3)颠倒R的关系图中每条弧线的箭头方向, 即得Rc的关系图。
逆关系举例
发用一条规则推出一串字符,使其第一个字符恰为 xj 。说明每个字母连续应用上述规则可能推出的 头字符。
闭包运算的性质
设R为集合X上的任一二元关系,那么 a)rs(R)=sr(R) 自反对称闭包等于对称自反闭包 b)tr(R)=rt(R) 传递自反闭包等于自反传递闭包 c)ts(R)st(R) 传递对称闭包包含对称传递闭包
证明 rs(R)=sr(R)
证:
rs(R)= r(s(R))
= r(R∪Rc)
= Ix∪R∪Rc = Ix∪R∪Rc∪Ix = (Ix∪R)∪(Rc∪Ixc) = (Ix∪R)∪(R∪Ix)c = s(Ix∪R) = sr(R)
证明 rt(R)=tr(R)
证:rt(R) = r(R∪R2∪…) = IX∪R∪R2∪…
对最小元素极小元素和最大下界也存在类似的关系来说它的逆p也是一个偏序集的p中的最大元素极大元素上界最小上界是p中的最小元素极小元素下界最大下界反之亦然
离散数学课件第三章集合与关 系-2
复合关系举例
例:A={1,2,3,4},B={3,5,7},C={1,2,3} R={<2,7>,<3,5>,<4,3>},S={<3,3>,<7,2>} 则 R◦S={<2,2>,<4,3>} 如图所示:

离散数学第3章 集合

离散数学第3章 集合
命题演算证明法的书写规范 (以下的X和Y代表集合公式) (1) 证XY
任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二 任取x,xX … xY
注意:在使用方法二的格式时,必须保证每步推理都是充分 必要的
27
第三章 集合
命题演算法
例3-3.2 证明A(AB) = A (吸收律)
元素a属于A,记作aA; 或者a不属于A,记作aA,也可以记作┓(aA)。
(4)任意性:集合的元素也可以是集合。 例:A={1,{2},2,{3,4},{6}} A=5,2A,{2}A,6A,{6}A
6
第三章 集合 例如:A={{a,b},d,{{b}}}。可以用一种树形图来表示这种
隶属关系,该图分层构成,每一层上的结点都表示一个集 合,它的儿子就是它的元素。 集合的树型层次结构
32
第三章 集合
§3-3-3 笛卡儿积
定义3-3.2 两个元素a,b组成二元组,若它们有次序 之别,称为二元有序组,或称为有序对或序偶,记为<a, b>,称a为第一分量,b为第二分量;若它们无次序区分, 称为二元无序组,或称为无序对,记为(a,b)。
有序对具有如下性质。 (1)有序性:当x≠y时<x,y>≠<y,x>。 (2)<x,y>与<u,v>相等的充分必要条件是
A
B
11
第三章 集合
§3-2 集合之间的关系
§3-2-1 集合之间的关系 (1)相等关系: • 两集合A和B相等,当且仅当它们有相同的元素。 • 若A与B相等,记为A=B;否则,记为A≠B。 • 可形式化为:A=B(x)(xAxB)。
12
第三章 集合

关系的性质-集合与关系-离散数学

关系的性质-集合与关系-离散数学
例如:朋友关系,同学关系,同乡关系,不相等关系() 是对称关系,相等关系(=)??? 。



非(不是)对称的 (x) (y) (xA∧yA∧<x,y> R ∧ <y,x> R )
第8 页
对称性的关系矩阵和关系图的特点

定义:R是集合A上的关系,若对任何x, y∈A,若有 <x,y>R,必有<y,x>R ,则称R为A中的对称关系。 R是A上对称的 (x)(y)((xA∧yA∧<x,y>R) <y,x>R) 从关系矩阵看对称性: 以主对角线为对称的矩阵。 从关系有向图看对称性: 在两个不同的结点之间,若 有边的话,则有方向相反的 ? 1 0 两条边。
第2 页
一、自反性

定义:设R是集合A上的关系,若对于任意x∈A都 有<x,x>∈R (xRx),则称R是A中的自反关系。即 R是A中自反的(x)(xA<x,x>∈R ) 该定义表明在自反关系 R中,除其他序偶外,必 须包括有全部由每个x ∈A所组成的相同元素的 序偶。 例如:设X={a,b,c}, R1={<a,a>,<b,b>,<c,c>,<a,b>} 是自反关系。 R2={<a,a>,<b,b>,<a,b>} 不是自反关系。 例如:相等关系(=),小于等于关系(),包含关系() 等是自反关系。 非(不是)自反的 (x)(xA∧<x,x> R )
第7 页
三、对称性

定义:R是集合A上的关系,若对任何x, y∈A,若有 <x,y>R,必有<y,x>R ,则称R为A中的对称关系。 R是A上对称的 (x)(y)((xA∧yA∧<x,y>R) <y,x>R)

离散数学课件第四章 关系

离散数学课件第四章  关系
Discrete Mathematics
关系的性质
例 2 (1) A上的全域关系EA,恒等关系IA及空关系都是A 上的对称关系;IA和 同时也是A上的反对称关系. (2)设A={1,2,3},则 R1={<1,1>,<2,2>}既是A上的对称关系,也是A上 的反对称关系; R2= {<1,1>,<1,2>,<2,1>}是对称的,但不是反对 称的; R3 ={<1,2>,<1,3>}是反对称的,但不是对称的; R4= {<1,2>,<2,1>,<1,3>}既不是对称的也不是 反对称的.
❖ 二、关系的表达方式 1. 集合表达式:列出关系中的所有有序对。 例 1 设A={1,2,3,4},试列出下列关系R的元素。 (1) R={<x,y> | x是y的倍数} (2) R={<x,y> | (x-y)2 A } (3) R={<x,y> | x/y是素数}
Discrete Mathematics
关系
第四章 二元关系
第一节 有序对与笛卡尔积
❖ 定义 1 由两个元素x和y(允许x=y)按顺序排列成 的二元组叫做一个有序对,记为<x, y>。
❖ 有序对的性质: 1.当 x ≠ y时,<x, y> ≠ <y, x>。 2.<x, y>=<u, v>的充分必要条件是 x=u且y=v。
Discrete Mathematics
笛卡尔积
❖ 定义 2 设A, B是集合。由A中元素作为第一元素,B 中元素作为第二元素组成的所有有序对的集合,称 为集合A与B的笛卡尔积(或直积),记为A×B。 即 A×B={<x,y>|x A y B}

离散数学_集合与关系_关系

离散数学_集合与关系_关系
则ρ 的关系图如下 A B
13
例如 例3中的 A {1,2,3,4} ,
{(1,1), (1,2 ), (1,3 ), (1,4 ), ( 2,2 ), ( 2,4 ), ( 3,3 ), ( 4,4 )}
的关系图如下:
14
练习3-6
1. 设A
{0,1,2},B {0,2,4} ,A到B的关系
B {1,2}
。 }
A B {
(0,1), (0,2), (1,1), (1,2) (1,1), (1,2 ), ( 2,1), ( 2, 2)
B B {
}
8
关系的表示
一、集合表示法
用表示集合的列举法或描述法来表示关系。
例1 设A { 2,3,4,8},B {1,5,7 } , 用描述 } 法定义由A到B的关系 {( a, b ) | a b,试
用列举法将
表示出来。

{( 2,5 ), ( 2,7 ),( 3,5 ), ( 3,7 ) ( 4,5 ), ( 4,7 )}
9
例2 有王、张、李、何是某校的老师,该校有
三门课程:语文、数学和英语,已知王可以教语文 和数学,张可以教语文和英语,李可以教数学,何 可以教英语,若记A={王,张,李,何},B={语文, 数学,英语}。那么这些老师与课程之间的对应关系 就可以用由A到B的一个关系
3利用关系图求复合关系是有限集a上的关系则复合关系也是a上的关系由复合关系的定义对于任意的反映在关系图上这意味着当且仅当在的关系图中有某一结点存在使得有边由指向且有边由指向的关系图中有边从指向理同志关系上搞庸俗关系学热衷于迎来送往
1Байду номын сангаас

离散数学第3章-集合与关系

离散数学第3章-集合与关系
(1) 任一对象a,对某一集合A来说,a属于A或a不属于A, 两者必居其一,且仅居其一。并且当a属于A时,称a是A的成
员,或A包含a,a在A之中,a属于A。即 a A a A
(2)集合中元素具有互异性和无序性。如{a,b,c,d}={a,b,b,c,d}
3-1 集合的概念和表示法
(3) 集合的元素个数可以是有限个也可以是无限个,具有有限个元素的集 合的为有限集,否则称为无限集。 (4) 集合中的元素也可以是集合,如
称为A和B的笛卡尔积,记作:A B
例:A {、、 、、
则:
3-4 序偶和笛卡尔积
5、多重直积:
A1 A2 A3是集合,A1 A2是笛卡尔集,也是集合仍可再作笛卡尔积
A A A A A A ( ) { , , | , , }
1
2
3
1
2
3
1
1
2
2
3
3
A A A { , , | , , }
E AB
S={x∣(x∈A)∧(xB)}
={x∣(x∈A)∧ (x∈B)}
3-2 集合的运算
b)集合A关于全集E的补。 E-A称为A的绝对补,记作~A。
E A
~A={x∣(x∈E)∧(x A)}
~ A有下列性质: ⑴ ~( ~A)=A
⑵ ~E=
⑶~ =E
⑷A∪~A=E
⑸A∩~A=
3-2 集合的运算
* 以后判断两集合相等就主要用这一重要定理。
定理:对任一Set A, A
3-1 集合的概念和表示法
例:若A={a,b,c},写出其所有子集。 解:Ø 、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c}均是A的子 集

离散数学关系的运算

离散数学关系的运算

离散数学关系的运算离散数学是研究离散结构和离散对象的数学分支。

其中,关系是离散数学中一个重要的概念。

关系的运算是指对不同关系进行操作,从而得到新的关系。

在离散数学中,常见的关系运算包括并集、交集、差集、补集和复合运算。

1. 并集:对于两个关系R和S,它们的并集R∪S是包含了两个关系的所有元素的集合。

即R∪S={x | x∈R 或 x∈S}。

并集运算可以合并两个关系中的元素,得到新的关系。

2. 交集:对于两个关系R和S,它们的交集R∩S是同时属于R和S的元素的集合。

即R∩S={x | x∈R 且 x∈S}。

交集运算可以得到两个关系中共同拥有的元素。

3. 差集:对于两个关系R和S,它们的差集R-S是属于R但不属于S的元素的集合。

即R-S={x | x∈R 且 xS}。

差集运算可以得到在R中存在但不在S 中的元素。

4. 补集:对于一个关系R,它的补集R'是所有不属于R的元素的集合。

即R'={x | x不属于R}。

补集运算可以得到关系R的补集。

5. 复合运算:对于两个关系R和S,它们的复合运算RS是通过将R的元素的后继者与S的元素的后继者进行连接得到的新关系。

即RS={(a,c) | 对于某个b∈B, (a,b)∈R 且 (b,c)∈S}。

复合运算可以通过连接两个关系的元素来构建新的关系。

这些关系运算在离散数学中具有重要的应用,常用于描述集合、图、逻辑等离散结构之间的关系。

对于每种关系运算,都有相应的运算规则和性质。

熟练掌握关系运算可以帮助我们更好地理解和分析离散结构中的关系。

离散数学中的集合与关系理论

离散数学中的集合与关系理论

离散数学中的集合与关系理论离散数学是数学中的一门重要分支,主要研究离散的数值和结构。

在离散数学中,集合与关系理论是两个基础且关键的概念。

本文将对离散数学中的集合与关系理论进行探讨。

一、集合在离散数学中,集合是由元素组成的整体。

集合的表示可以使用不同的方式,如枚举法、描述法和扩展法。

其中,枚举法通过罗列元素的方式来表示集合。

例如,集合A = {1, 2, 3, 4}就是使用了枚举法表示的集合。

集合的运算是集合理论中的重要内容。

常见的集合运算有并集、交集、差集和补集。

并集表示两个集合中的所有元素的组合,交集表示两个集合中共有的元素,差集表示一个集合减去另一个集合中的元素,补集表示一个集合相对于全集中没有的元素。

集合的关系也是集合理论中的重要内容。

常见的集合关系有相等关系、包含关系和子集关系。

相等关系指的是两个集合具有相同的元素,包含关系指的是一个集合包含另一个集合中的所有元素,子集关系指的是一个集合包含于另一个集合。

二、关系关系是研究离散数学中元素之间联系的一种数学工具。

在离散数学中,关系可以用一个有序对的集合表示。

例如,关系R = {(1, 2), (2, 3),(3, 4)}表示了元素1与2之间、元素2与3之间、元素3与4之间的联系。

关系可以是自反的、对称的、传递的等。

自反关系指的是每个元素与自己之间有联系,对称关系指的是如果元素a与元素b之间有联系,则元素b与元素a之间也有联系,传递关系指的是如果元素a与元素b 之间有联系,元素b与元素c之间有联系,则元素a与元素c之间也有联系。

离散数学中的关系还可以进行合成和关系的闭包运算。

关系的合成指的是将两个关系进行组合,得到一个新的关系。

关系的闭包指的是将一个关系进行扩展,使得它满足某些性质。

集合和关系是离散数学中的两个重要概念,它们在离散数学中起着重要的作用。

集合可以用来整理和分类元素,关系可以用来描述元素之间的联系。

它们的研究对于理解和解决实际问题具有重要意义。

离散数学中的集合论与函数关系

离散数学中的集合论与函数关系

离散数学中的集合论与函数关系离散数学是数学中的一个重要分支,它研究的是离散的、不连续的数学结构。

集合论与函数关系是离散数学中的两个基本概念和重要内容。

本文将着重介绍离散数学中的集合论和函数关系,并探讨它们之间的联系和应用。

一、集合论集合是离散数学中的基本概念之一,它指的是一个由确定元素组成的整体。

集合的元素可以是任何事物,可以是数字、字母、词语等等。

在集合论中,常用大写字母表示集合,例如A、B、C等。

一个集合可以通过列举其元素的方式来描述,也可以通过描述它们的性质来定义。

集合之间的关系有包含关系、相等关系、互斥关系等等。

通过这些关系,可以进行集合的运算,如并集、交集、补集等。

集合论在数学和计算机科学中都有广泛的应用。

二、函数关系函数关系是离散数学中的另一个重要概念,它描述了两个集合之间的对应关系。

一个函数关系可以将一个集合中的元素映射到另一个集合中的元素。

具体来说,如果集合A中的每个元素都与集合B中的唯一元素对应,那么我们称这个对应关系为函数。

函数关系可以用不同的表示方法来描述,最常见的是函数表达式、函数图像和函数关系图。

在离散数学中,函数关系有不同的分类,如单射函数、满射函数、双射函数等。

函数关系的性质和运算也是离散数学中的重要内容。

三、集合论与函数关系的联系和应用集合论和函数关系密切相关,它们之间存在着紧密的联系和应用。

首先,一个函数可以看作是两个集合之间的关系,其中定义域是函数关系的输入集合,值域是函数关系的输出集合。

函数的定义域和值域可以看作是集合论中的集合。

其次,集合论中的运算对函数关系也有应用。

例如,两个函数的复合可以看作是两个集合的运算。

另外,函数的像和原像可以看作是集合论中的集合运算,它们描述了函数关系中元素的映射关系。

最后,集合论和函数关系在计算机科学中有广泛的应用。

在数据库、编程语言、算法设计等领域,集合论和函数关系是不可或缺的工具。

它们用于描述数据结构、算法复杂度、程序设计等,对于计算机科学的发展起到了重要的推动作用。

等价关系与等价类集合与关系离散数学-文档资料

等价关系与等价类集合与关系离散数学-文档资料

[3]R={3,7}
=[7]R
余数为3的等价类
[4]R={4}
余数为0的等价类
总结:
(1)集合中的10个元素都有一个等价类。
(2)各等价类之间或者完全相等或者不相交。
(3)所有等价类的并集就是A。
第12页
2
6
1
59
10 14
37
4
[1]R=[5]R=[9]R={1,5,9} [2]R=[6]R=[10]R=[14]R={2,6,10,14} [3]R=[7]R={3,7} [4]R={4}
整数集合上的“小于”关系 不是等价关系。
第4页
例3-10.2 集合A={1,2,3,4,5,6,7,9,10,14},R是A上的模4同 余关系,试通过关系图说明R是等价关系。
分析:R={<x,y>|x除以4与y除以4的余数相同}
<x,y>∈R x(mod 4)=y(mod 4)或x≡y(mod 4)
每个关系子图即为一个等价类,位于此子图中的元 素的等价类相同,等于该子图中的所有元素构成的 集合。
第13页
2、等价类性质
R是A上等价关系,任意x,y,z∈A
⑴同一个等价类中的元素,彼此有等价关系R。
第9页

元 关
性 质

自反 对称 传递 反对称 反自反
等价关系
有 向 图
等 价 类
商 集
划 分
第10页
二、 等价类
1、定义3-10.2 : x的等价类 R是A上的等价关系,对任何x∈A,集合[x]R称为 由x生成的R等价类,简称x的等价类: [x]R={y|y∈A∧xRy} 简化写法:y∈[x]R xRy 讨论: (1)等价类[x]R是一个集合,且[x]R A。 (2)[x]R中的元素是在等价关系R中,与x有 等价关系R的所有元素组成的集合。 (3)[x]R Φ, x∈[x]R。

相容关系-集合与关系-离散数学

相容关系-集合与关系-离散数学

第11页
练习:
给定X上相容关系r’ ,如图所示, r’所有的最大相容类: x 2 {x1,x2,x5}, {x2, x3, x5}, x1 {x3, x4,x5}, {x1,x4 ,x5},

x3 x4


x5
第12页
x 。 x2。 3 x。
2
四、完全覆盖
定义3-11.5
x1。 。 x 1 x7。
第4 页
(2)R的有向图: 每个结点自回路,两个节点间有边则双向。自反、对称
any y y able
(3)R的关系矩阵:
fly
fit
f
l y
1111001 1111000 b MR = 1 1 1 1 1 0 0 k key 1111100 book pump 0011100 0000010 1000001 R主对角线全1,关于主对角线对称。
第8 页
定义3-11.3

设r是集合A上的相容关系,C是r的一个相容类, 若C不能真包含于任何其它相容类中,则称C是一 个最大相容类,记作:Cr。

也可以说,C是一个相容类,若C中加入任意一 个新元素,就不再是相容类,C就是一个最大相 容类。 x2。 {x1,x2,x3,x4} , {x3, x4, x5}, {x 1,x7} , {x6}都是最大相容类。 x1。 。 x3 x4。 x7。 x5。 x6。
R1=R2,不同覆盖产生相同的相容关系
定理:集合A上相容关系 r 与完全覆盖Cr(A)存在一一 对应。
第14页


本节要求:相容关系、相容类概念,画图,求完全覆 盖。 作业 第139页 (2)
第15页
也可以说c是一个相容类若c中加入任意一个新元素就不再是相容类c就是一个最大相x3x4x5x1x72最大完全多边形的顶点集合构成最大相容类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档