有机化学人名反应51-100

合集下载

100种有机化学人名反应

100种有机化学人名反应

100种有机化学人名反应1. Arndt-Eistert反应醛、酮与重氮甲烷反应,失去氮并重排成多一个CH2基的相应羰基化合物,这个反应对于环酮的扩环反应很重要。

O+CH2N22. Baeyer-Villiger氧化由樟脑生成内酯:-OO+-N2CH2NN重排应用过氧酸使酮氧化成酯。

反应中在酮的羰基和相邻的碳原子之间引人一个氧原子。

如OCH3CH3CH3 OOCH3CH3H2SO5有时反应能生成二或多过氧化物,但环状酮转变为内酯能得到单一的预期产物。

合适的酸为过硫酸(Caro’s 酸)、过氧苯甲酸、三氟过氧乙酸。

除环酮外,无环的脂肪、芳香酮也可发生此反应。

二酮生成酸酐类、α、β-不饱和酮得到烯醇酯类。

3.Bechamp还原(可用于工业制备)在铁、亚铁盐和稀酸的作用下,芳香族硝基化合物能还原成相应的芳香胺。

C6H5-NO2 + 2Fe + 6HClC6H5-NH2 + 2FeCl3 + 2H2O。

当某些盐(FeCl2、FeCl3、FeSO4、CaCl2等)存在时,所用酸无论是过量还是少量,甚至在中性溶液中都能够进行这种还原。

此方法适用于绝大部分各种不同结构的芳香族化合物,有时也用来还原脂肪族硝基化合物。

4.Beckmann重排醛肟、酮肟用酸或路易斯酸处理后,最终产物得酰胺类。

单酮肟重排仅得一种酰胺,混酮肟重排得两种混合酰胺。

但一般质子化羟基的裂解和基团R的转移是从相反的位置同OR OH ORR'NRN时进行的。

R'NHR' R' OH NHR无论酯酮肟和芳酮肟都会发生此反应。

环酮肟重排得内酰胺,这在工业生产上很重要,利用此反应可帮助决定异构酮肟的结构。

5.Beyer喹啉类合成法芳香伯胺与一分子醛及一分子甲基酮在浓盐酸或ZnCl2存在下,反应生成喹啉类化合物。

HHNN R'HClNH2R'-H2+ R'CHO+RCOCH3RR这是对Doebner-Miller喹啉合成法的改进。

有机化学中的人名反应

有机化学中的人名反应

感谢您的聆听
Diels-Alder反应
含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双
烯体)发生1,4-加成,生成六员环状化合物:
R1 R3
R1 R3
+
R4 R2
R4 R2
Diels-Alder 反应
这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状 化合物的一个非常重要的方法。
+ RNH2 CO2H
Gabriel合成法
有些情况下水解很困难,可以用肼解来代替:
O N R H2NNH2
EtOH O
O
C NH
NH C
O
+ RNH2
GO
Kobl碳在加压下于125-150 ºC反应,生成邻羟基苯甲酸,同时有少量对羟基苯甲酸生
成:
ONa + CO2
芳烃不酰基化试剂如酰卤酸酐羧酸烯酮等在lewis酸催化下収生酰基化反应得到芳香酮人名反应gabriel合成法邻苯二甲酰亚胺不氢氧化钾的乙醇溶液作用转发为邻苯二甲酰亚胺盐此盐和卤代烷反应生成n烷基邻苯二甲酰亚胺然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸这是制备纯净的一级胺的一种斱法kobleschmitt反应酚钠和二氧化碳在加压下于125150c反应生成邻羟基苯甲酸同时有少量对羟基苯甲酸生成人名反应有机化学中的诺贝尔奖有机镁试剂金属催化氢化反应1912年双烯合成法1950年维生素c的全合成1937年聚合物的大分子理论1953年有机化学中的诺贝尔奖烯烃的聚合反应乙烯丙烯聚合的新型催化剂奠定了定向聚合的理论基础改迚了高压聚合工艺使聚乙烯聚丙烯等工业得到巨青霉素和b12等晶体结构的测定用x射线技术测定青霉素和维生素bn的分子结构为日后人工合成创造了条件立体化学中的构象理论及其应用胆甾醇b12等复杂分子的全合成方法1963196419651969有机化学中的诺贝尔奖现代有机合成之父罗伯特伯恩烯烃复分解反应研究1984年2005年2001年1990年有机化学中的诺贝尔奖基于构想多肽合成的关键在于将第一个氨基酸固定在丌溶性固体上其他氨基酸随后便可一个接一个地连于固定端顺序完成后所形成的链即可轻易地不固体分离逆合成分析原理将目标化合物倒退一步寻找上一步反应的中间体而这个中间体又可由上一步的中间体得到以此类推最后确定最适合的基础原料和最终的合成路线开収出可以催化重要反应的分子从而能保证只获得手性分子的一种镜像形态

有机化学人名反应

有机化学人名反应

有机化学人名反应
1. Friedel-Crafts反应:由Charles Friedel和James Crafts于1877年首次报道的一种重要的有机化学反应。

2. Grignard反应:法国化学家Victor Grignard于1900年发现的一种有机合成反应。

3. Wolff-Kishner还原反应:德国化学家Kurt Heinrich Wolff和美国化学家Morris Kishner于1913年和1919年分别发现的一种有机还原反应。

4. Birch还原反应:澳大利亚化学家Arthur John Birch于1944年发现的一种有机化学反应。

5. Cannizzaro反应:意大利化学家Stanislao Cannizzaro于1853年发现的一种有机化学反应。

6. Gabriel重氮化反应:德国化学家Siegmund Gabriel于1887年发现的一种有机化学反应。

7. Wurtz反应:法国化学家Charles Adolphe Wurtz于1855年发现的一种有机化学反应。

8. Fries重排反应:德国化学家Karl Fries于1887年发现的一种有机化学反应。

9. Hofmann消去反应:德国化学家August Wilhelm von
Hofmann于1865年发现的一种有机化学反应。

10. Robinson环加成反应:英国化学家Robert Robinson于1925年发现的一种有机化学反应。

有机化学人名反应大全

有机化学人名反应大全

一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯与一个新得卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br 〉R′Cl.除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a—或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总就是先脱除含碳原子数最少得基团。

本反应就是由醇制备卤代烷得很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用得卤代烷R’X得烷基与亚磷酸三烷基酯(RO)3P得烷基相同(即R'=R),则Arbuzov反应如下:这就是制备烷基膦酸酯得常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2与次亚膦酸酯R2POR'也能发生该类反应,例如:反应机理一般认为就是按SN2 进行得分子内重排反应:反应实例二、Arndt—Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer——--Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上得一个烃基带着一对电子迁移到—O-O-基团中与羰基碳原子直接相连得氧原子上,同时发生O-O键异裂.因此,这就是一个重排反应具有光学活性得3-—-苯基丁酮与过酸反应,重排产物手性碳原子得枸型保持不变,说明反应属于分子内重排:不对称得酮氧化时,在重排步骤中,两个基团均可迁移,但就是还就是有一定得选择性,按迁移能力其顺序为:醛氧化得机理与此相似,但迁移得就是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应得酯,其中三氟过氧乙酸就是最好得氧化剂。

这类氧化剂得特点就是反应速率快,反应温度一般在10~40℃之间,产率高。

有机化学人名反应大全

有机化学人名反应大全

一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

有机化学中国人名反应

有机化学中国人名反应

有机化学中国人名反应中国人名反应是指以中国有机化学家的名字命名的有机化学反应。

这些反应通常是由这些化学家发现或发展,并且对有机化学领域的发展做出了重要贡献。

以下将介绍几个著名的中国人名反应。

1. 曾光明反应曾光明反应是由中国有机化学家曾光明教授于1981年首次报道的一种重要的合成方法。

该反应以金属有机化合物为催化剂,能够将酮类化合物与硅醚反应,形成相应的醇类化合物。

曾光明反应在有机合成中具有广泛的应用,可以高效地构建C-O键,是合成醇类化合物的重要工具。

2. 毛宗回反应毛宗回反应是由中国有机化学家毛宗回教授于1978年首次报道的一种重要的合成方法。

该反应以金属有机化合物为催化剂,能够将酮类化合物与有机硅化合物反应,生成相应的醇类化合物。

毛宗回反应在有机合成中广泛应用,具有高效、高选择性和环境友好等优点,被广泛用于合成复杂有机分子。

3. 李盛骏反应李盛骏反应是由中国有机化学家李盛骏教授于20世纪80年代中期首次报道的一种重要的合成方法。

该反应以金属有机化合物为催化剂,能够将炔烃与醛类化合物反应,形成相应的α,β-不饱和醛类化合物。

李盛骏反应在有机合成中具有重要的应用价值,可以高效地构建C-C键和C=O键,是合成复杂有机分子的重要工具。

4. 王立群反应王立群反应是由中国有机化学家王立群教授于1992年首次报道的一种重要的合成方法。

该反应以过渡金属催化剂为催化剂,能够将酮类化合物与炔烃反应,形成相应的烯醇类化合物。

王立群反应在有机合成中具有广泛的应用,可以高效地构建C-C键和C-O键,是合成天然产物和药物分子的重要工具。

5. 陈茵反应陈茵反应是由中国有机化学家陈茵教授于20世纪70年代末首次报道的一种重要的合成方法。

该反应以金属有机化合物为催化剂,能够将酮类化合物与酸类化合物反应,形成相应的酯类化合物。

陈茵反应在有机合成中具有重要的应用价值,可以高效地构建C-C键和C-O键,是合成酯类化合物的重要工具。

《有机化学人名反应》课件

《有机化学人名反应》课件

人名反应的定义与重要性
定义
人名反应是指以科学家或化学家的名字命名的有机化学反应。这些反应通常具 有独特性、重要性或实用性。
重要性
人名反应是化学领域中的重要知识,掌握这些反应有助于理解有机化学的基本 原理,提高解决实际问题的能力。同时,人名反应也是化学领域中科学研究的 成果,体现了人类对化学反应的深入认识和探索。
一种重要的烷基化反应
详细描述
Friedel-Crafts反应是一种在芳香化合 物中引入烷基的亲电取代反应。通常 在路易斯酸(如AlCl3)催化下进行, 该反应广泛应用于有机合成中。
Wittig 反应
总结词
制备烯烃的经典方法
详细描述
Wittig反应是一种通过磷酸酯和醛之间的反应制备烯烃的方法。该反应涉及一个五元环 过渡态,生成具有特定立体化学特征的烯烃。
ቤተ መጻሕፍቲ ባይዱ
在材料科学中的应用
材料科学是一个跨学科的领域,涉及材料的设计、制备、性 能和应用。人名反应在材料科学中的应用主要涉及新型材料 的合成和改性。
通过人名反应,可以合成出具有优异性能和功能的新型材料 ,如高分子材料、陶瓷材料、复合材料等。这些材料在能源 、环境、信息等领域具有广泛的应用前景,为科技进步和社 会发展提供重要支持。
亲电取代反应
总结词
亲电取代反应是一种有机化学反应,其中亲电试剂进攻并取代反应物分子中的某 个基团。
详细描述
这类反应通常发生在苯环、芳香烃和杂环化合物的反应中,其中亲电试剂具有正 电性,能够进攻富电子的碳原子。常见的亲电取代反应包括:EAS reaction、 Elimination reaction等。
详细描述
这类反应通常发生在烯烃、炔烃和芳香烃的反应中,其中加成试剂能够与不饱和键结合形成新的键。 常见的加成反应包括:Diels-Alder reaction、Addition reaction等。

有机化学人名反应大全

有机化学人名反应大全

一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理2 进行的分子内重排反应:一般认为是按 SN反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

有机人名反应、试剂

有机人名反应、试剂
20
颠茄酮
NH2OH Na/EtOH N OH NH2 (1) CH3I (2) AgOH O (1) Br2 (2) (CH3)2NH
N(CH3 )2
(1) CH3 I (2) AgOH
(1) Br2 (2) 喹啉
(1) HBr (2) (CH3)2NH
N(CH3)2
N(CH3)2 Na/EtOH N(CH3)2 Br2
Br (1) NaOH N(CH3)2 (2) Cl
Br Br
Br
Br Cl N(CH3)2 130 ℃ HBr NCH3 NCH3 H2SO4 NCH3
OH
O CrO3 NCH3
产率 0.75%
1896 Willstatter (1915 Nobel Prize)
21
Mannich反应-脱羧
CHO + CHO COOH COOH O NCH3 - 2CO2 NCH3 NH2CH3 + COOH O - 2H2O
芳醛与含有α–H的酮之间的交叉缩合生成α,β-不饱 和酮的反应成为克莱森–施密特反应。
O H + CH3COCH3 OH O C H O C H CH3
- H2O
100
OC
H C
例 如:
O
O H + CH3 OH
- H2O
100 C
O
H C
17
3.珀金(Perkin)反应
芳醛与含α-H的酸酐在碱催化下发生亲核加成反应,然后脱 去一分子羧酸,生成,-不饱合芳香酸的反应。
烯丙基芳基醚 克莱森 重排
CH3 O CH2 CH CH3 CH2 200 ° C HO H3C CH2 CH CH2 O CH2 CH CH2 200 ° C OH CH2 CH CH3 CH2

有机化学人名反应1-50

有机化学人名反应1-50

1. Arndt-Eistert 反应醛、酮与重氮甲烷反应,失去氮并重排成多一个CH2 基的相应羰基化合物,这个反应对于环酮的扩环反应很重要。

2. Baeyer-Villiger 氧化应用过氧酸使酮氧化成酯。

反应中在酮的羰基和相邻的碳原子之间引人一个氧原子。

如由樟脑生成内酯:有时反应能生成二或多过氧化物,但环状酮转变为内酯能得到单一的预期产物。

合适的酸为过硫酸(Caro’s 酸)、过氧苯甲酸、三氟过氧乙酸。

除环酮外,无环的脂肪、芳香酮也可发生此反应。

二酮生成酸酐类、α、β-不饱和酮得到烯醇酯类。

3. Bechamp 还原(可用于工业制备)在铁、亚铁盐和稀酸的作用下,芳香族硝基化合物能还原成相应的芳香胺。

当某些盐(FeCl2、FeCl3、FeSO4、CaCl2 等)存在时,所用酸无论是过量还是少量,甚至在中性溶液中都能够进行这种还原。

此方法适用于绝大部分各种不同结构的芳香族化合物,有时也用来还原脂肪族硝基化合物。

4. Beckmann 重排醛肟、酮肟用酸或路易斯酸处理后,最终产物得酰胺类。

单酮肟重排仅得一种酰胺,混酮肟重排得两种混合酰胺。

但一般质子化羟基的裂解和基团R 的转移是从相反的位置同时进行的。

无论酯酮肟和芳酮肟都会发生此反应。

环酮肟重排得内酰胺,这在工业生产上很重要,利用此反应可帮助决定异构酮肟的结构。

5. Beyer 喹啉类合成法芳香伯胺与一分子醛及一分子甲基酮在浓盐酸或ZnCl2 存在下,反应生成喹啉类化合物。

这是对Doebner-Miller 喹啉合成法的改进。

Doebner-Miller 合成法由芳胺和不饱和醛或酮反应得到喹啉衍生物。

6. Blanc 氯甲基化反应芳香族化合物苯、萘、蒽、菲、联苯及衍生物,在ZnCl2(或NH4Cl、AlCl3、SnCl4、H2SO4、H3PO4 )存在下,用甲醛和极浓盐酸处理,发生芳香化合物的氯甲基化反应。

对于取代烃类,取代基的性质对反应能力影响很亲电取代,烷基,烷氧基一般使反应速度增加,而卤素、羧基特别是硝基用乙醛得到氯乙基化。

100种有机化学人名反应(有机化学)

100种有机化学人名反应(有机化学)

1. ArndtEistert反应醛、酮与重氮甲烷反应失去氮并重排成多一个CH2基的相应羰基化合物这个反应对于环酮的扩环反应很重要。

OCH2N2O-CH2NNN2重排O2. BaeyerVilliger氧化应用过氧酸使酮氧化成酯。

反应中在酮的羰基和相邻的碳原子之间引人一个氧原子。

如由樟脑生成内酯OCH3CH3CH3OOCH3CH3H2SO5有时反应能生成二或多过氧化物但环状酮转变为内酯能得到单一的预期产物。

合适的酸为过硫酸Caro’s 酸、过氧苯甲酸、三氟过氧乙酸。

除环酮外无环的脂肪、芳香酮也可发生此反应。

二酮生成酸酐类、α、β不饱和酮得到烯醇酯类。

3. Bechamp还原可用于工业制备在铁、亚铁盐和稀酸的作用下芳香族硝基化合物能还原成相应的芳香胺。

C6H5-NO2 2Fe 6HCl C6H5-NH2 2FeCl3 2H2O。

当某些盐FeCl2、FeCl3、FeSO4、CaCl2等存在时所用酸无论是过量还是少量甚至在中性溶液中都能够进行这种还原。

此方法适用于绝大部分各种不同结构的芳香族化合物有时也用来还原脂肪族硝基化合物。

4. Beckmann重排醛肟、酮肟用酸或路易斯酸处理后最终产物得酰胺类。

单酮肟重排仅得一种酰胺混酮肟重排得两种混合酰胺。

但一般质子化羟基的裂解和基团R的转移是从相反的位置同时进行的。

NOHRRRNHRONRROHRNHRO 无论酯酮肟和芳酮肟都会发生此反应。

环酮肟重排得内酰胺这在工业生产上很重要利用此反应可帮助决定异构酮肟的结构。

5. Beyer喹啉类合成法芳香伯胺与一分子醛及一分子甲基酮在浓盐酸或ZnCl2存在下反应生成喹啉类化合物。

NH2NHRRHNRRRCHORCOCH3HCl H2这是对Doebner-Miller喹啉合成法的改进。

Doebner-Miller合成法由芳胺和不饱和醛或酮反应得到喹啉衍生物。

NH2NHCH3HNCH3 H2CH3O2CH3CHO 6. Blanc氯甲基化反应芳香族化合物苯、萘、蒽、菲、联苯及衍生物在ZnCl2或NH4Cl、AlCl3、SnCl4、H2SO4、H3PO4 存在下用甲醛和极浓盐酸处理发生芳香化合物的氯甲基化反应。

有机化学人名反应

有机化学人名反应

有机化学人名反应取代反应:1,加特曼反应:加特曼(GattermannL)发现:用催化量的金属铜代替氯化亚铜或溴化亚铜作催化剂,也可使重氮盐与盐酸或氢溴酸反应制得芳香氯化物或溴化物。

这样进行的反应叫做加特曼反应。

2,加特曼-科赫反应:苯、一氧化碳和氯化氢反应生成苯甲醛,此反应称为加特曼-科赫反应。

3,傅-克反应:芳香化合物芳环上的氢被烷基取代的反应称为傅-克烷基化反应;芳香化合物芳环上的氢被酰基取代的反应称为傅-克酰基化反应;统称傅-克反应。

4,布赫尔反应:萘酚在亚硫酸氢钠存在下与氨作用,转变成相应萘胺的反应称为布赫尔反应。

5,齐齐巴宾反应:吡啶与氨基钠反应,生成-氨基吡啶,如果位已被占据,则得-氨基吡啶,但产率很低。

这个反应称为齐齐巴宾(Chichibabin)反应。

6,刚穆伯—巴赫曼反应:芳香重氮盐中的芳基在碱性条件下与其它芳香族化合物偶联成联苯或联苯衍生物的反应称为刚穆伯(Gomberg)—巴赫曼(Bachmann)反应。

7,柯尔伯—施密特反应:干燥的酚钠或酚钾与二氧化碳在加温加压下生成羟基苯甲酸的反应称为柯尔伯—施密特(Kolbe-Schmitt)反应。

8,威廉森合成法:在无水条件下,醇钠和卤代烷作用生成醚的反应称为威廉森(WilliamonAW)合成法。

9,席曼反应:芳香重氮盐和氟硼酸反应,生成溶解度较小的氟硼酸盐,后者加热分解产生氟苯,这称为席曼(Schiemann)反应。

10,桑德迈耳反应:1884年,桑德迈耳(SandmeyerT)发现:在氯化亚铜或溴化亚铜的催化下,重氮盐在氢卤酸溶液中加热,重氮基可分别被氯或溴原子取代,生成芳香氯化物或溴化物。

这一反应称为桑德迈耳反应。

11,普塑尔反应:一些重氮盐在碱性条件下或稀酸的条件下可以发生分子内的偶联反应。

这个反应是普塑尔(PchorrR)在寻找合成菲环的新方法中首先发现的,故称为普塑尔反应。

12,瑞穆尔—悌曼反应:酚与氯仿在碱性溶液中加热生成邻位及对位羟基醛的反应称为瑞穆尔—悌曼(Reimer—Tiemann)反应。

有机化学重要人名反应

有机化学重要人名反应

索弓Arbuzov 反应Gabriel合成法Paal-Knorr 反应Arndt-Eister 反应Gatterma nn 反应Pictet-Spe ngler 合成法Baeyer-Villiger 氧化Gatterma nn-Koch 反应Pschorr 反应Beckmann 重排Gomberg-Bachmann 反Reformatsky 反应Birch还原应Reimer-Tiema nn 反应Bischler-Napieralski 合Han tzsch合成法Reppe合成法成法Haworth 反应Robinson缩环反应Bouveault-Bla nc 还原Hell-Volhard-Zel in ski 反Rose nmund 还原Bucherer 反应应Ruff递降反应Canni zzaro 反应Hin sberg 反应San dmeyer 反应Chichibab in 反应Hofma nn烷基化Schiema nn 反应Claise n酯缩合反应Hofma nn消除反应Schmidt 反应Claise n-Schmidt 反应Hofma nn重排(降解)Skraup合成法Clemme nsen 还原Hoube n-H oesch 反应Sommelet-Hauser 反应Combes合成法Hun sdiecker 反应Stephe n 还原Cope重排Kiliani氰化增碳法Steve ns 重排Cope消除反应Kno eve nagel 反应Strecker氨基酸合成法Curtius 反应Knorr反应Tiffeneau-Demjanov 重Dakin反应Koble反应排Darze ns 反应Koble-Schmitt 反应Ullmann 反应Demja nov 重排Leuckart 反应Vilsmeier 反应Dieckma nn缩合反应Losse n反应Wagn er-Meerwe in 重排Elbs反应Mannich 反应Wacker反应Eschweiler-Clarke 反应Meerwe in-Ponndorf 反Williamson 合成法Favorskii 反应应Wittig反应Favorskii 重排Meerwe in-Ponndorf 反Wittig-Horner 反应Friedel —Crafts 烷基化应Wohl递降反应反应Michael加成反应Wolff-Kishner-黄鸣龙Friedel —Crafts 酰基化Norrish I和II型裂解反反应反应应Yur <v反应Fries重排Oppe nauer 氧化Zeisel甲氧基测定法Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:(RO)gP + R'X -------------- * (R0)2P-0 + BX亚精醸三烷基酣烷基瞬酸二烧基酣卤代烷反应时,其活性次序为:R'I >R'Br >R'CI。

(完整版)经典有机人名反应

(完整版)经典有机人名反应

有机化学人名反应1.拜耳维利格Baeyer----Villiger 反应(p317)反应机理(不要求)过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例2.康尼查罗Cannizzaro 反应(p321)凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。

此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。

具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。

反应实例3.克莱森许密特Claisen—Schmidt 反应(交叉羟醛缩合)(p314)一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到不饱和醛或酮:反应机理反应实例3.Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。

当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。

大学有机化学人名反应总结

大学有机化学人名反应总结

大学有机化学人名反应总结第一篇:大学有机化学人名反应总结F.L Tan有机化学一、烯烃1、卤化氢加成(1)HXRCHCH2RXCHCH3【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。

【机理】H3C快H3CCH2+X+H3CCH3X主CHCH3+H+慢H3C+CH2X+H3CX次【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。

【注】碳正离子的重排(2)HBrRCHCH2ROORRCH2CH2Br【特点】反马氏规则【机理】自由基机理(略)【注】过氧化物效应仅限于HBr、对HCl、HI无效。

【本质】不对称烯烃加成时生成稳定的自由基中间体。

【例】BrH3CCHCH2BrH3CCH2HBrH+HBrCH3CH2CH2BrH3CCHCH 3+BrH3CCHCH3Br2、硼氢化—氧化RCHCH21)B2H62)H2O2/OH-RCH2CH2OH【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。

【机理】F.L Tan H3CCHHH3CCHCH2HBH2CH2BH2H3CCHHCH3BH2H3CCHHCH3BH2CH2CH2CH3H3CH2CH2CB-CH3CH=CH2(CH3CH2CH2)3BOOH-OOHCH2CH2CH3CH2CH2CH3CH2CH2CH3H3CH2CH2CB-H3CH2CH2CHOO-BO+HO-OCH2CH2CH3OHCH2CH2CH3OCH2CH2CH3BOCH2CH2CH3HO O-B(OCH2CH2CH3)3OCH2CH2CH3B(OCH2CH2CH3)3+3NaOH3Na OH3HOCH2CH2CH33+Na3BO3【例】1)BH32)H2O2/OH-CH3OHHHCH33、X2加成Br2/CCl4BrCCBrCC【机理】BrBrCCBrC+BrC+CBr-BrCCBrCBrC+CH2OBrCCH2O+-H+BrCCHOF.L Tan 【注】通过机理可以看出,反应先形成三元环的溴鎓正离子,然后亲和试剂进攻从背面进攻,不难看出是反式加成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51. Kucherov 反应乙炔在Hg2+盐和稀硫酸存在下直接水合生成乙醛,单取代乙炔可生成甲基酮。

52. Lebedeff 合成法在高温下(400~500℃)乙醇与特种催化剂硅酸盐、Al2O3、ZnO 混合物作用,脱氢脱水得1,3-丁二烯。

丁二烯的产率大约为20%,其他副产物如戊烷、己烷、己烯、己二烯、丁醇、醛、酮都有,所以此反应制备意义不大。

53. Leuckart 反应在甲酸(甲酰胺、甲酸铵)作还原剂的情况下,加热胺和羰基化合物,就发生胺的烷基化反应。

通过这种反应可使伯胺、仲胺及氨发生烷基化反应,但以叔胺为最妥。

因为伯胺、仲胺总是有多烷基化副产物形成。

特别是很活泼的甲醛,同时总是生成完全甲基化的胺。

高沸点芳香醛和酮产物为40~90%,低分子量脂肪醛和酮不能得到满意大结果。

反应中由少量MgSO4 或MgCl2 催化,起还原作用的甲酸经常是过量,每摩尔羰基化合物需2~4mol 甲酸。

54. Lieben 碘仿试验P28955. Lossen 降解氧肟酸或其酰基衍生物,在惰性溶剂或最好在亚硫酰氯、乙酸酐、P2O5 存在下加热分解而得到异氰酸酯。

56. Mannich 反应这是具有α-活泼氢化合物的胺甲基化反应。

一般是甲醛与胺及具有α-活泼氢化合物同时反应,胺甲基取代一个α-活泼氢:反应一般在水、醇或醋酸溶液中进行。

甲醛可以是甲醛溶液、三聚或多聚甲醛,胺一般是仲胺盐酸盐,如二甲胺、六氢吡啶等等盐酸盐,反应中生成单一产物。

伯胺或氨副产物多不常使用。

此反应合成范围广,不但醛和酮的活泼氢可以进行反应,其他化合物如羧酸、酯、酚或其他杂环化合物(如噻吩、吡咯、吲哚等)的活泼氢也都可以,特别值得注意的是在合成体系及氨基酸方面的应用。

57. Meerwein-Ponndorf-Veriey 还原醛、酮与醇镁或醇铝反应,醛酮被还原成醇,而醇盐则被氧化成相应的羰基化合物。

反应中,醇盐与加入的醇处于平衡状态,当催化量的醇盐存在时,用醇作还原剂也可发生反应,醇铝溶于有机溶剂,在蒸馏时不被分解。

它的螯合倾向较大,所以醇铝特别适合Meerwein-Ponndorf-Veriey 还原。

仲醇盐比伯醇盐更好,产生的副反应当可能性更小。

上式为平衡反应,要得到好的收率必须不断从平衡中出去由醇铝所生成的羰基化合物。

丙酮易挥发,可以蒸出,使平衡破坏,促使反应向右移动,所以用异丙醇作还原剂。

如果用乙醇作还原剂,最好用氮气流把生成的乙醛从反应混合物中带走。

此反应特点:(1)双键(即使是与羰基共轭的双键)能够保留而不被还原;(2)硝基与卤素不被还原;(3)β-二羰基化合物通常不能进行此反应,因为会生成酸性较强的铝化物沉淀。

58. Meyer 合成法卤代烷与金属亚硝酸盐反应,合成硝基烷。

亚硝酸酯为副产物。

用碘代甲烷、乙烷、正丙烷、异丙烷反应很顺利。

但用高分子量卤代物容易发生副反应。

伯、仲、叔烷基不同,得到不同的主要产物:(主要产物硝基烷)59. Meyer-Schuster 重排在酸性催化剂存在下,乙炔甲醇类重排成α、β-不饱和酮类。

芳基取代的乙炔甲醇最易重排:60. Michael 加成在碱性催化剂(哌啶、二乙胺、NaOR 等)存在下,活泼酸性CH2 基与活泼碳碳双键(α、β-不饱和羰基化合物、酯、腈)发生亲核加成。

活泼CH2 基化合物可用通式来表示。

其中A,B 可以是-COOR、-COR、-CN、-CONH2、―NO2、―SO2R、―CHO 等。

亚甲基越容易放出质子,就越容易发生加成反应。

活泼碳碳双键化合物可用通式-RC=CH-来表示。

R 为-COOR、-COR、-CN、-CONH2、―NO2、―SO2R。

乙炔类和醌类也可以发生这种反应。

反应活性随双键极性增加而增大,在反应中常发生醇醛缩合和Claisen 缩合,使反应复杂。

若使用相应的烯胺作为酸性亚甲基部分,反应中由碱性引起的副反应便可预先避免。

61. Nef 合成法乙炔钠与羰基双键加成,水解即得乙炔醇类:苯乙酮和苯基乙炔钠在醚溶液中作用能发生相似的反应。

62. Oppenauer 氧化P274在叔丁醇铝存在下,伯、仲醇用过量的酮或醌类使之氧化成相应的醛或酮。

常用的酮为丙酮、2-丁酮、环己酮。

在特殊情况下可同时加入适量的苯、甲苯或1,4-二氧六环作为稀释剂,以减少生成物发生缩合反应的机会。

本法也适用于氧化不饱和甾族醇类及由不饱和醇制备不饱和酮。

63. Pechmann 反应在浓硫酸、AlCl3、P2O5 等脱水剂存在下,酚类与β-酮酸酯类进行缩合反应,产生香豆素类。

改变酚为酮酯的结构可以合成具有各种取代基地香豆素类。

取代基可以在苯环上、杂环上,也可同时在二者之上。

酚间位有给电子基团能加速缩合,相反,吸电子基团则减缓反应进行。

64. Perkin 脂环化合物合成法在乙醇钠存在下,含有活泼亚甲基化合物与二卤代物反应,生成环状羧酸酯,再经水解、加热、脱羧即得环烷烃及其衍生物。

除三元环外,也可制得四、五、六、七元环,产率高低取决于环的大小。

65. Perkin 反应芳香醛和酸酐,在此酸的碱性盐存在下,发生醇醛缩合反应,生成α、β-不饱和羧酸。

除简单芳香醛外,某些取代芳香杂环醛也可用作羰基组分。

甚至二芳基、芳基烷基酮与强活性亚甲基化合物也能够反应。

脂肪醛反应产率很低。

酸酐的α-碳原子上有两个氢原子方可作为亚甲基组分。

高分子量比低分子量酸酐好。

66. Prileschajew 反应烯烃与有机过氧酸作用,发生双键的过氧化作用。

最常用的氧化剂为过氧苯甲酸,过氧苯乙酸。

通常反应在丙酮、乙醚。

氯仿中进行。

反应条件温和,对于制备很有用。

反应活性:R2C=CR2>RHC=CR2>R2C=CH2≈RCH=CHR>RCH=CH2>H2C=CH2.羧基和羰基起相反作用。

反应如在水溶液中进行,环氧化物将进一步水解成1,2-二醇类。

67. Prins 反应在酸催化下,甲醛与烯烃加成,生成m-二噁烷类和1,3-二醇类。

反应中也可生成不饱和醇。

稀硫酸是最好的催化剂。

磷酸、BF3 也可用。

叔基取代烯烃和不对称烯烃,如丙烯或1-丁烯最容易反应,m-二噁烷通过酸解可以转变成1,3-二醇类,再经脱水即可形成共轭二烯类。

68. Reformatsky 合成法P32269. Reimer-Tiemann 合成法在碱性水溶液中,苯酚与氯仿作用,产生邻、对位取代醛类。

两种产物的比例取决于取代基和溶剂,如果在吡啶中进行,仅产生邻位醛,产率20~30%,很少超过50%。

酚本68. Reformatsky 合成法P32269. Reimer-Tiemann 合成法在碱性水溶液中,苯酚与氯仿作用,产生邻、对位取代醛类。

两种产物的比例取决于取代基和溶剂,如果在吡啶中进行,仅产生邻位醛,产率20~30%,很少超过50%。

酚本身可得到60%水杨醛。

苯环上有吸电子取代基,如-SO3H、-CN、-COOH、-NO2 能使苯环钝化,产率大约降为25%。

只有含有游离酚式羟基的化合物,才能转变成醛。

溴仿、碘仿及三氯乙酸同氯仿一样,容易进行反应。

此法产率虽低,但操作简单,仍为合成酚醛的重要方法。

70. Riley 氧化法活泼甲基或亚甲基化合物用二氧化硒氧化,甲基或亚甲基被氧化成羰基。

羧酸为进一步氧化副产物。

溶剂为乙醇、冰醋酸、乙酸酐、苯、二甲苯等,活泼甲基、亚甲基化合物除一般醛、酮(R(H)COCH3)外,酯环酮、杂环重键结构及稠环体系也可以。

本氧化剂具有选择性,广泛用于有机合成和有机物结构研究方面。

71. Rosenmund 还原纯的芳香或脂肪类酰氯在Pa-BaSO4 催化剂存在下,常压氢化得到相应醛类。

本法主要缺点是生成的醛类易进一步被还原成醇或烃类。

为了防止这个副反应的发生,在反应体系中可加入适量“抑制剂”,硫脲、异氰酸苯酯、喹啉-硫等最为适用。

它既能防止副反应发生,又使酰氯的氢化不受到阻抑。

本法广泛用于制备醛类,收率可达50~80%,有时达90%以上,但还原二酰氯制二元醛结果不好。

在还原的化合物中,如有双键结构、硝基、卤素及酯基存在时不发生影响。

但若有羟基存在,应预先酰化加以保护。

72. Rosenmund-Braun 芳腈合成法芳香族溴化物和CuCN 在高温下反应,溴原子被氰基取代,生成芳腈类化合物。

用稍过量的氰化物可获得极高产率的芳腈。

加入少量的苄腈或CuSO4 能增进反应速度,对苯二酚能抑制反应。

73. Sandmeyer 反应芳香族重氮盐在亚铜盐催化剂存在下,重氮基(-N2X)被-Br、-Cl、-CN 等置换,生成芳香族取代物。

反应副产物为二苯基衍生物。

由于铜阳离子只起给予或接受电子的作用,所以当用容易氧化或还原的取代基时便不需要使用亚铜盐作催化剂。

如用碘化物阴离子时,碘离子本身即成为催化剂。

此反应产率高,范围广。

其重要性在于可以通过硝基使不能直接引入或不能引入预期位置的取代基到苯环上。

74. Saytzeff 消除反应就仲烷基和叔烷基而言,消除反应可能按两种方向进行,导致双键位置不同的烯烃。

双键上具有最多数目烷基的烯烃称为Saytzeff 烯烃。

在Saytzeff 消除时,也有Hofmann 消除产物。

一般来说,单分子消除反应主要产生Saytzeff 产物,如仲卤代烷和叔卤代烷甲苯磺酸酯作溶剂脱卤化氢,以及仲醇和叔醇的脱水反应。

在双分子消除反应中,反应取向主要取决于α位和β-位上取代基地性质以及脱去基团X 的性质。

一般规则是:容易消去的基团有利于Saytzeff 倾向。

75. Schiemann 反应Schiemann 反应是芳环上导入氟原子的反应。

反应分两步进行,首先,芳香伯胺制成氟硼酸重氮盐,然后将其干燥后在适当条件下加热分解,生成芳香族氟化物。

氟硼酸重氮盐极为安定,在大量制备时无危险。

它大都具有一定的分解温度,分解速度很容易控制。

氟化物收率一般为65%,有时达80~90%。

76. Schmidt 反应在苯中,含羰基的化合物能被叠氮酸降解。

一元羧基降解为胺,在两个羧基之间具有一个以上亚甲基的二元酸得到二元胺,醛类产生腈和胺的甲酰基衍生物,酮产生酰胺。

77. Schotten-Baumann 反应在碱性化合物存在下,酰氯类使醇、酚等活泼氢化合物的酰化作用称为Schotten-Baumann 反应。

芳香酰氯一般不如脂肪酰氯活泼,不易发生反应,对于易水解的酰氯类不适用于此法。

上述反应中,生成的苯甲酸酯(分子量较高者)一般稍溶于水,结晶良好,具有固定熔点,所以Schotten-Baumann 反应常用来分离、鉴定醇和酚。

78. Skraup 反应在浓硫酸和氧化剂(硝基苯、As2O5、Fe2O3、苦味酸等)的存在下,苯胺和甘油反应合成喹啉。

式中丙烯醛是甘油由硫酸脱水而形成的,所用苯胺只要邻位无取代基者均可进行此反应。

相关文档
最新文档