第6章数模和模数的转换
合集下载
数模和模数转换器PPT课件
行A/D转换,适用于分辨率较高而转换速度适中的场合。
知识点精讲
【知识点1】DAC的分析与计算
【例1】有一个5位T型电阻DAC,已知 =10V, f =3R,输入的数字信号 4 3 2 1 0 =11010,
试求输出电压0 和最大输出电压 。
【分析】T型电阻DAC只用R和2R两种电阻,电路有两个特点:
≈ 0.001 × 50 = 0.05
知识点精讲
【例5】(2014年对口招生考试题)一个8位D/A转换器的最小电压增量为0.01V,当输入代码
为10011010时,输出电压是
A.1.28V
B.1.54V
(
C.1.45V
)
D.1.56V
【分析】最小输出电压增量是指对应于输入最小数字量的输出模拟电压值,也就是指数字量每增加一个
0 = −
=−
4
(2 4 + 23 3 + 21 1 + 20 0 )
5
2
10
(16
32
+ 8 + 0 + 2 + 0)
= −8.125
显然,当5 、4 、3 、2 、1 、0 全为1时输出电压0 最大,为
= −
10
(16 + 8 + 4 + 2 + 1)
转换器或DAC。
1.DAC的类型
(1)T型电阻DAC
电路如图10-1所示:
特点:只用R和2R两种电阻,精度容易保证,各模拟开关的电流大小相同,但在开关状态切换时
容易出现尖峰脉冲。
知识清单
(2)倒T型电阻DAC
电路如图10-2所示:
特点:各模拟开关的电流与开关状态无关,可进一步提高转换速度。
知识点精讲
【知识点1】DAC的分析与计算
【例1】有一个5位T型电阻DAC,已知 =10V, f =3R,输入的数字信号 4 3 2 1 0 =11010,
试求输出电压0 和最大输出电压 。
【分析】T型电阻DAC只用R和2R两种电阻,电路有两个特点:
≈ 0.001 × 50 = 0.05
知识点精讲
【例5】(2014年对口招生考试题)一个8位D/A转换器的最小电压增量为0.01V,当输入代码
为10011010时,输出电压是
A.1.28V
B.1.54V
(
C.1.45V
)
D.1.56V
【分析】最小输出电压增量是指对应于输入最小数字量的输出模拟电压值,也就是指数字量每增加一个
0 = −
=−
4
(2 4 + 23 3 + 21 1 + 20 0 )
5
2
10
(16
32
+ 8 + 0 + 2 + 0)
= −8.125
显然,当5 、4 、3 、2 、1 、0 全为1时输出电压0 最大,为
= −
10
(16 + 8 + 4 + 2 + 1)
转换器或DAC。
1.DAC的类型
(1)T型电阻DAC
电路如图10-1所示:
特点:只用R和2R两种电阻,精度容易保证,各模拟开关的电流大小相同,但在开关状态切换时
容易出现尖峰脉冲。
知识清单
(2)倒T型电阻DAC
电路如图10-2所示:
特点:各模拟开关的电流与开关状态无关,可进一步提高转换速度。
数模和模数转换
通过模数转换,将模拟信号转换为数字信号, 实现过程控制和反馈控制。
自动控制系统
通过模数转换,实现模拟信号与数字信号之 间的转换,构建自动控制系统。
05
数模和模数转换的挑战与未 来发展
精度和分辨率的提高
总结词
随着技术的发展,对数模和模数转换 的精度和分辨率的要求越来越高。
详细描述
为了满足高精度和分辨率的需求,需 要采用先进的工艺、算法和校准技术, 以提高转换器的性能。这涉及到对噪 声抑制、非线性校正等方面的深入研 究和技术创新。
重要性
实现数字信号和模拟信号之间的相互转换,使得数字系统和模拟系统能够进行有效 的信息交互。
在信号处理中,数模和模数转换是实现信号滤波、放大、调制解调等操作的基础。
在通信中,数模和模数转换是实现信号传输、编解码、调制解调等操作的关键环节。
历史背景
早期的数模和模数转换器主要依 赖于机械和电子元件,精度和稳
于长距离传输和低功耗应用。
Σ-Δ DAC
03
Σ-Δ DAC采用过采样和噪声整形技术,具有高分辨率和低噪声
的特点,适用于音频和其他高精度应用。
DAC的应用
音频处理
DAC可将数字音频信号转换为模拟音频信号,用 于音频播放和处理。
仪器仪表
DAC可用于将数字信号转换为模拟信号,实现各 种物理量的测量和输出。
测量仪器
ADC在测量仪器中应用广泛,如电压表、电 流表、温度计等。
控制系统
ADC在控制系统中用于实时监测和调节系统 参数,如工业控制、汽车电子等。
音频处理
ADC在音频处理中用于将模拟音频信号转换 为数字信号,便于存储、传输和处理。
04
数模和模数转换的应用场景
音频处理
自动控制系统
通过模数转换,实现模拟信号与数字信号之 间的转换,构建自动控制系统。
05
数模和模数转换的挑战与未 来发展
精度和分辨率的提高
总结词
随着技术的发展,对数模和模数转换 的精度和分辨率的要求越来越高。
详细描述
为了满足高精度和分辨率的需求,需 要采用先进的工艺、算法和校准技术, 以提高转换器的性能。这涉及到对噪 声抑制、非线性校正等方面的深入研 究和技术创新。
重要性
实现数字信号和模拟信号之间的相互转换,使得数字系统和模拟系统能够进行有效 的信息交互。
在信号处理中,数模和模数转换是实现信号滤波、放大、调制解调等操作的基础。
在通信中,数模和模数转换是实现信号传输、编解码、调制解调等操作的关键环节。
历史背景
早期的数模和模数转换器主要依 赖于机械和电子元件,精度和稳
于长距离传输和低功耗应用。
Σ-Δ DAC
03
Σ-Δ DAC采用过采样和噪声整形技术,具有高分辨率和低噪声
的特点,适用于音频和其他高精度应用。
DAC的应用
音频处理
DAC可将数字音频信号转换为模拟音频信号,用 于音频播放和处理。
仪器仪表
DAC可用于将数字信号转换为模拟信号,实现各 种物理量的测量和输出。
测量仪器
ADC在测量仪器中应用广泛,如电压表、电 流表、温度计等。
控制系统
ADC在控制系统中用于实时监测和调节系统 参数,如工业控制、汽车电子等。
音频处理
ADC在音频处理中用于将模拟音频信号转换 为数字信号,便于存储、传输和处理。
04
数模和模数转换的应用场景
音频处理
数模和模数转换
分辨率= 0.1 1 450 4500
1
1
12位ADC的分辨率= 212 4096
故需选用13位A/D转换器。
转换时间= 1 62.5ms 16
3、 转换时间
指 ADC 完成一次转换所需要得时间,即从转换开 始到输出端出现稳定得数字信号所需要得时间。
转换时间越小,转换速度越高。
转换速度比较:并联比较型 > 逐次逼近型 > 双积分型
利用DAC可实现任意波形(如锯齿波、三角波、 正弦波等)得输出,如输出锯齿波、三角波得程序 段如下:
TRG: MOV DX,234H MOV AL,0H
TN1: OUT DX,AL INC AL JNZ TN1 MOV AL,0FFH
TN2: OUT DX,AL DEC AL JNZ TN2
JMP TN1
0
AL全“1”输 出 产生
13、2 模数转换
• A/D转换得原理很多,常见得有双积分式、 逐次逼近式、计数式等。
• 输出码制有二进制、BCD码等。 • 输出数据宽度有8位、12位、16位、20位、
24位等(二进制)。
A /D 转换得基本原理和一般步骤
基本原理
模拟输 入信号
uI
ADC
…
Dn-1 Dn-2
11、1、3 DAC0832得接口设计---单缓冲方式
设D/A转换端口号为PORTA,设需转换得数据放在 1000H单元,则D/A转换程序为:
MOV BX,1000H MOV AL,[BX] MOV DX, PORTA OUT DX,AL
DAC0832得应用举例:
注:在DAC实际连接中,要注意区分“模拟地” 和“数字地”得连接,为了避免信号串扰, 数字量部分只能连接到数字地,而模所量 部分只能连接到模拟地。
数-模与模-数转换
4)转换时间。完成一次A/D所需的时间称为转换时间。各类A/D转换 器的转换时间有很大差别,取决于A/D转换的类型和转换位数。速度 最快的达到ns级,慢的约几百ms。
直接A/D型快,间接A/D型慢。并联比较型A/D最快,约几十ns;逐次 渐近式A/D其次,约几十μs;双积分型A/D最慢,约几十ms~几百ms 。
模拟电子开关的导通压降、导通电阻和电阻网络中电阻的误差等因素 有关。
2021/8/13
5
3)温度系数。在输入不变的情况下,输出模拟电压随温度 变化而变化的量,称压变化的值。
4)建立时间。完成一次D/A转换所需时间。一般小于1μs 。
功能。当采样脉冲us到来后,采样管VT导通,输入的模拟 信号uA经过VT管向电容C充电。在采样脉冲结束后,采样 管VT截止,若电容和场效应管的漏电都很小,运算放大器
的输入阻抗又很高,那么两次采样之间的时间内,电容没
有泄漏电荷,其电压基本保持不变。
2021/8/13
10
3)量化与编码。所谓量化就是将采样/保持后得到的样本值在幅值上以一定的 级数离散化,用最小量化单位的倍数来表示采样保持阶梯波离散电平的过程。
例如,对于一个8位D/A转换器,其分辨率为:1/(281)=1/255≈0.00392=0.392%
2)转换精度。转换精度是指输出模拟电压实际值与理论值之差,即最 大静态误差。
转换精度与D/A转换器的分辨率、非线性转换误差、比例系数误差和温
度系数等参数有关。这些参数与基准电压UREF的稳定、运放的零漂、
电子技术基础与技能
数/模与模/数转换
2021/8/13
1. 数模转换和模数转换基本概念 数字电路和计算机只能处理数字信号,不能处理模拟信号。若
数模和模数转换
详细ห้องสมุดไป่ตู้述
按位数分类,数模转换器可分为二进制数模转换器和十进制 数模转换器。按工作方式分类,数模转换器可分为静态数模 转换器和动态数模转换器。按输入/输出接口分类,数模转换 器可分为独立式和并联式数模转换器等。
02
模数转换器(ADC)
定义
模数转换器(ADC)是一种将模拟信 号转换为数字信号的电子设备。它通 过一系列的电子和逻辑电路,将连续 的模拟信号转换为离散的数字信号。
04
数模和模数转换的挑战与解 决方案
量化误差
要点一
总结词
量化误差是由于数模转换器(DAC) 或模数转换器(ADC)的有限分辨率 和动态范围引起的误差。
要点二
详细描述
量化误差是由于数模转换器或模数转 换器的有限分辨率和动态范围引起的 误差。在数模转换中,量化误差表现 为输出模拟信号的不连续性,而在模 数转换中,量化误差表现为输入模拟 信号的失真。
像。
图像识别与处理
02
通过数模转换将图像从模拟信号转换为数字信号,进行图像识
别、分析和处理。
图像压缩与传输
03
利用数模转换技术对图像数据进行压缩和传输,提高传输效率
和降低存储成本。
通信系统
01
02
03
数字信号传输
数模转换将数字信号转换 为模拟信号,用于调制解 调器进行数据传输。
频分复用
通过模数转换将不同频率 的模拟信号转换为数字信 号,实现频分复用,提高 通信容量。
逐次逼近型ADC
逐次逼近型ADC采用一个比较器和逐位逼近的方法,通过 逐步调整参考电压来逼近输入电压,最终得到数字输出。 它的分辨率较高,但转换速率相对较慢。
积分型ADC
积分型ADC通过测量输入电压引起的电容充电时间来得到 数字输出。它的分辨率较高,但受限于积分器的线性度和 稳定性。
按位数分类,数模转换器可分为二进制数模转换器和十进制 数模转换器。按工作方式分类,数模转换器可分为静态数模 转换器和动态数模转换器。按输入/输出接口分类,数模转换 器可分为独立式和并联式数模转换器等。
02
模数转换器(ADC)
定义
模数转换器(ADC)是一种将模拟信 号转换为数字信号的电子设备。它通 过一系列的电子和逻辑电路,将连续 的模拟信号转换为离散的数字信号。
04
数模和模数转换的挑战与解 决方案
量化误差
要点一
总结词
量化误差是由于数模转换器(DAC) 或模数转换器(ADC)的有限分辨率 和动态范围引起的误差。
要点二
详细描述
量化误差是由于数模转换器或模数转 换器的有限分辨率和动态范围引起的 误差。在数模转换中,量化误差表现 为输出模拟信号的不连续性,而在模 数转换中,量化误差表现为输入模拟 信号的失真。
像。
图像识别与处理
02
通过数模转换将图像从模拟信号转换为数字信号,进行图像识
别、分析和处理。
图像压缩与传输
03
利用数模转换技术对图像数据进行压缩和传输,提高传输效率
和降低存储成本。
通信系统
01
02
03
数字信号传输
数模转换将数字信号转换 为模拟信号,用于调制解 调器进行数据传输。
频分复用
通过模数转换将不同频率 的模拟信号转换为数字信 号,实现频分复用,提高 通信容量。
逐次逼近型ADC
逐次逼近型ADC采用一个比较器和逐位逼近的方法,通过 逐步调整参考电压来逼近输入电压,最终得到数字输出。 它的分辨率较高,但转换速率相对较慢。
积分型ADC
积分型ADC通过测量输入电压引起的电容充电时间来得到 数字输出。它的分辨率较高,但受限于积分器的线性度和 稳定性。
数模和模数转换PPT课件
第29页/共64页
2、量化和编码 由于输入电压的幅值是连续变化的,它的幅值不一定是其量化单位的整倍
数,所以量化过程会引入误差,这种误差叫量化误差。
量化后的信号只是一个幅值离散的信号,为了对量化后的信号进行处理, 还应该把量化的结果用二进制代码或其它形式表示出来,这个过程就叫做编码。
量化的方法一般有两种:只舍不入法和有舍有入法。
把模拟量转化为数字量的过程称为模-数转换,把相应的转换器件称为模-数转 换器(Analog-Digital Converter,简称A/D转换器或ADC )。
把数字量转化为模拟量的过程称为数-模转换, 把相应的转换器件称为数-模转 换器(Digital-Analog Converter,简称D/A转换器或DAC )
克,秤量步骤:
顺序 1 2 3 4
砝码重 8g 8g+4 g 8g+4g+2g 8g+4g+1g
比较判断 8g < 13g
保留
12g < 13g
保留
14g > 13g 撤去
13g =13g
保留
第38页/共64页
逐次渐近型A/D转换器的基本工作原理是: a. 控制电路首先把寄存器的最高位置1, 其它各位置0。
第25页/共64页
(2) 转换误差 偏移误差:数字输入代码全为0时, D/A转换器的输出电压与理想输出电 压0V之差。
增益误差: 为数字输入代码由全0变 全1时,输出电压变化量与理想输出 电压变化量之差。
第26页/共64页
非线性误差:为D/A转换器实际输出电 压值与理想输出电压值之间偏差的最大 值。
第30页/共64页
0~0.7V的模拟信号转化为3位二进制数码的量化过程
2、量化和编码 由于输入电压的幅值是连续变化的,它的幅值不一定是其量化单位的整倍
数,所以量化过程会引入误差,这种误差叫量化误差。
量化后的信号只是一个幅值离散的信号,为了对量化后的信号进行处理, 还应该把量化的结果用二进制代码或其它形式表示出来,这个过程就叫做编码。
量化的方法一般有两种:只舍不入法和有舍有入法。
把模拟量转化为数字量的过程称为模-数转换,把相应的转换器件称为模-数转 换器(Analog-Digital Converter,简称A/D转换器或ADC )。
把数字量转化为模拟量的过程称为数-模转换, 把相应的转换器件称为数-模转 换器(Digital-Analog Converter,简称D/A转换器或DAC )
克,秤量步骤:
顺序 1 2 3 4
砝码重 8g 8g+4 g 8g+4g+2g 8g+4g+1g
比较判断 8g < 13g
保留
12g < 13g
保留
14g > 13g 撤去
13g =13g
保留
第38页/共64页
逐次渐近型A/D转换器的基本工作原理是: a. 控制电路首先把寄存器的最高位置1, 其它各位置0。
第25页/共64页
(2) 转换误差 偏移误差:数字输入代码全为0时, D/A转换器的输出电压与理想输出电 压0V之差。
增益误差: 为数字输入代码由全0变 全1时,输出电压变化量与理想输出 电压变化量之差。
第26页/共64页
非线性误差:为D/A转换器实际输出电 压值与理想输出电压值之间偏差的最大 值。
第30页/共64页
0~0.7V的模拟信号转化为3位二进制数码的量化过程
数模与模数转换器PPT课件
I
<
10
16VREF
190//1166VVRREEFF
vI
vO
D0
3. 逻辑电路
D/A 转换器
D1
D2
01 vC
0
R Q0
C1 S
FF0
01
10
0
01
Q1
R 1D
10
C1
S
FF1
10
R
Q 2 1D 10
C1 S
FF2
0
Q3
R 1D
10
C1
S
FF3
VREF D3
D3( MSB)
1
D2
D1
D0 ( LSB)
(2)转换速率(SR)——在大信号工作状态下模拟电压的变化率。 3. 温度系数——在输入一定时,输出模拟电压随温度变化产生的变化量。一般
用满刻度输出条件下温度每升高1℃,输出电压变化的百分数来表示。
9.2 A/D转换器
一.A/D转换的一般步骤和取样定理
由于输入的模拟信号在时间上是连续量,所以一般的A/D转换过程为: 取样、保持、量化和编码。
R-2R倒T形电阻网络
基准电流: I=VREF/R,
分析计算: 基准电流: I=VREF/R,
流过各开关支路(从右到左)的电流分别为 I/2、I/4、I/8、I/16。
总电流:
i
VREF R
(
D0 24
D1 23
D2 22
D3 21
)
VREF 24 R
3 i0
( Di
2i )
输出电压:
vO
D/A 转换器
D1
D2
1 vC
01
数模和模数转换演示文稿
DI7~DI0
ILE
8位 输入 寄存器
LE
&
8位 DAC 寄存器
LE
8位 D/A 转换器
RFB
CS
&
WR1
XFER
&
WR2
当前第17页\共有40页\编于星期四\18点
UREF IOUT2 IOUT1
Rfb
AGND
VCC
DGND
7.2 数模转换器
2.DAC0832引脚功能
DI7~DI0:8位输入数据信号。
当前第18页\共有40页\编于星期四\18点
7.2 数模转换器
UREF:参考电压输入。一般此端外接一个精确、稳定的电压基 准源。UREF可在-10V至+10V范围内选择。 UCC:电源输入端(一般取+5V~+15V)。 DGND:数字地,是控制电路中各种数字电路的零电位。 AGND:模拟地,是放大器、A/D和D/A转换器中模拟电路的零电位。
IOUT2:DAC输出电流2。它作为运算放大器的另一个差分输入信号 (一般接地)。满足 IOUT1+IOUT2 =
Rfb:反馈电阻(内已含一个反馈电阻)接线端。DAC0832中无运放,且为 电流输出,使用时须外接运放。芯片中已设置了Rfb,只要将此引脚接
到运放的输出端即可。若运放增益不够,还须外加反馈电阻。
数模和模数转换演示文稿
20244//11//2288
1
当前第1页\共有40页\编于星期四\18点
数模和模数转换
20244//11//2288
2
当前第2页\共有40页\编于星期四\18点
7.1 概述
ADC和DAC的应用:
传感器
数模模数转换原理
②不论模拟开关接到运算放大器的反相输入端(虚地)还是接
到变从。地参,也考就电是压不论端输输入入数字的信电号流是1为还:是0I,R各EF支=路的V电RRE流F REF
I'3 R
I'2 R
I'1 R
I'0
+VREF
I3
I2
I1
I0
2R
2R
2R
2R
2R
S3
S2
S1
S0
iF RF
-
i
uo
+
d3
拟电流io=Ki×D。其中Ku或Ki为电压或电流转换比例系数,D
为输入二进制数所代表的十进制数。如果输入为n位二进制 数dn-1dn-2…d1d0,则输出模拟电压为:
uo = Ku (dn−1 ⋅ 2n−1 + dn−2 ⋅ 2n−2 + L + d1 ⋅ 21 + d0 ⋅ 20 )
2.D/A 转换器的主要技术指标
FF5 1D
Q4
Q4
&
C1
FF4 Q3 1D
&
C1
FF3 1D
Q2
Q2 C1
FF2 1D
Q1
&
d1 VREF/14≤ui < 3VREF/14
&
时,7个比较器中只有C1
输出为1,CP到来后,只
有 触 发 器 FF1 置 1 , 其 余 触发器仍为0。经编码器
编码后输出的二进制代
& d0 码为d2d1d0=001。
S0
i
设RF=R/2
iF RF
- uo
+
d3
d2
d1
到变从。地参,也考就电是压不论端输输入入数字的信电号流是1为还:是0I,R各EF支=路的V电RRE流F REF
I'3 R
I'2 R
I'1 R
I'0
+VREF
I3
I2
I1
I0
2R
2R
2R
2R
2R
S3
S2
S1
S0
iF RF
-
i
uo
+
d3
拟电流io=Ki×D。其中Ku或Ki为电压或电流转换比例系数,D
为输入二进制数所代表的十进制数。如果输入为n位二进制 数dn-1dn-2…d1d0,则输出模拟电压为:
uo = Ku (dn−1 ⋅ 2n−1 + dn−2 ⋅ 2n−2 + L + d1 ⋅ 21 + d0 ⋅ 20 )
2.D/A 转换器的主要技术指标
FF5 1D
Q4
Q4
&
C1
FF4 Q3 1D
&
C1
FF3 1D
Q2
Q2 C1
FF2 1D
Q1
&
d1 VREF/14≤ui < 3VREF/14
&
时,7个比较器中只有C1
输出为1,CP到来后,只
有 触 发 器 FF1 置 1 , 其 余 触发器仍为0。经编码器
编码后输出的二进制代
& d0 码为d2d1d0=001。
S0
i
设RF=R/2
iF RF
- uo
+
d3
d2
d1
模数和数模转换
1. 分辨率 DAC 指 的最小输出电压变化量, D/A 转换器模拟输出所能产生的最 也即 DAC 的最小输出电压值 小电压变化量与满刻度输出电压之比。
U LSB 1 分辨率 n U FSR 2 - 1
表示满度输出电压值,FSR 即 Full Scale Range
UFSR = 例如,一个 uO|D = 11 1 = 10 ( 2n – 1 )DAC ULSB 位的 ,分辨率为 0.000 978。 DAC 的位数越多,分辨率值就越小, 能分辨的最小输出电压值也越小。
3. 转换时间 指 ADC 完成一次转换所需要的时间,即从转换 开始到输出端出现稳定的数字信号所需要的时间。
转换时间越小,转换速度越高。
转换速度比较:并联比较型 > 逐次逼近型 > 双积分型 数十 ns
数十 s
数十 ms
本章小结
D/A 转换是将输入的数字量转换为与之成正比
的模拟电量。常用的 DAC 主要有权电阻网络
[例] 右图为 CDA7524 的单极性 D7 输出应用电路。图 D6 中电位器 R1 用于调 D5 整运放增益,电容 D4 C 用以消除运放的 D3 D2 自激。已知 ULSB = D1 VREF / 256,试求满 D0 度输出电压及满度 CS 输出时所需的输入 WR 信号。
VDD VREF = 10V 4 14 15 2 k 5 R1 6 16 7 1 k 8 C 15 pF 9 CDA7524 OUT1 10 ∞ 1 11 OUT2 - + u O 12 2 + 13 3
n 位均为 1
2.
转换精度
指 DAC 实际输出模拟电压与理 想输出模拟电压间的最大误差。
它是一个综合指标,不仅与 DAC 中元件参数的精 度有关,而且与环境温度、求和运算放大器的温度漂 移以及转换器的位数有关。 要获得较高精度的 D/A 转换结果,除了正确选用 DAC 的位数外,还要选用低漂移高精度的求和运算放 大器。 通常要求 DAC的误差小于 ULSB / 2。
U LSB 1 分辨率 n U FSR 2 - 1
表示满度输出电压值,FSR 即 Full Scale Range
UFSR = 例如,一个 uO|D = 11 1 = 10 ( 2n – 1 )DAC ULSB 位的 ,分辨率为 0.000 978。 DAC 的位数越多,分辨率值就越小, 能分辨的最小输出电压值也越小。
3. 转换时间 指 ADC 完成一次转换所需要的时间,即从转换 开始到输出端出现稳定的数字信号所需要的时间。
转换时间越小,转换速度越高。
转换速度比较:并联比较型 > 逐次逼近型 > 双积分型 数十 ns
数十 s
数十 ms
本章小结
D/A 转换是将输入的数字量转换为与之成正比
的模拟电量。常用的 DAC 主要有权电阻网络
[例] 右图为 CDA7524 的单极性 D7 输出应用电路。图 D6 中电位器 R1 用于调 D5 整运放增益,电容 D4 C 用以消除运放的 D3 D2 自激。已知 ULSB = D1 VREF / 256,试求满 D0 度输出电压及满度 CS 输出时所需的输入 WR 信号。
VDD VREF = 10V 4 14 15 2 k 5 R1 6 16 7 1 k 8 C 15 pF 9 CDA7524 OUT1 10 ∞ 1 11 OUT2 - + u O 12 2 + 13 3
n 位均为 1
2.
转换精度
指 DAC 实际输出模拟电压与理 想输出模拟电压间的最大误差。
它是一个综合指标,不仅与 DAC 中元件参数的精 度有关,而且与环境温度、求和运算放大器的温度漂 移以及转换器的位数有关。 要获得较高精度的 D/A 转换结果,除了正确选用 DAC 的位数外,还要选用低漂移高精度的求和运算放 大器。 通常要求 DAC的误差小于 ULSB / 2。
《数模和模数转换》课件
量化
将采样得到的样值进行量 化处理,将连续的模拟量 转化为离散的数字量。
编码
将量化后的数字量转换成 二进制或多进制的数字代 码。
ADC的分类
逐次逼近型ADC
逐次逼近型ADC采用逐次比较的 方法,将输入模拟信号与内部参 考电压进行比较,逐步逼近输入 信号的电压值。
并行比较型ADC
并行比较型ADC采用多个比较器 ,将输入模拟信号与多个参考电 压进行比较,以得到输入信号的 数字代码。
此外,新型封装技术的采用也将有助于减小转换器的尺寸。例如 ,采用球栅阵列封装(BGA)和晶片级封装(WLP)等新型封装技术 ,可以减小封装体积并提高集成度。
PART 05
总结
数模和模数转换的重要性和应用领域
01
重要性和应用领域
数模和模数转换是数字信号处理中的关键技术,广泛应用于通信、雷达
、音频处理、图像处理等领域。通过数模和模数转换,可以实现信号的
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
2023-2026
ONE
KEEP VIEW
《数模和模数转换》 PPT课件
REPORTING
CATALOGUE
目 录
• 数模转换器(DAC) • 模数转换器(ADC) • 数模和模数转换的应用 • 数模和模数转换的未来发展 • 总结
PART 01
数模转换器(DAC)
DAC工作原理
数字信号输入
将数字信号输入到DAC中。
PART 03
数模和模数转换的应用
音频处理
数字音频播放
将模拟音频信号转换为数字信号,通 过数字音频播放器进行播放,可以实 现更高质量的音频输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先将寄存器最高位置成1,使输出数字为100…0。这个数
基 本 原 理
码被D/A转换器转换成相应的模拟电压uo,送到比较器中与ui 进行比较。若ui>uo,说明数字过大了,故将最高位的1清除; 若ui<uo,说明数字还不够大,应将这一位保留。然后,再 按同样的方式将次高位置成1,并且经过比较以后确定这个1
输出二进制数 d2 d1 d0 00 0 00 1 01 0 01 1 10 0 10 1 11 0 11 1
11
6.2.2 逐次比较型A/D转换器
原
理 框 顺序脉冲 图 发生器
输出数字量
输入模拟电压
逐次比较 寄存器
ui
D/A
转换器
uo
电压 比较器
转换开始前先将所有寄存器清零。开始转换以后,时钟脉冲
第6章 数模和模数转换
学习要点: • 数模和模数转换的基本原理
1
第6章 数模和模数转换
6.1 D/A转换电路 6.2 A/D转换电路
退出
2
概述
能将模拟量转换为数字量的电路称为模数转换器,简称 A/D转换器或ADC;能将数字量转换为模拟量的电路称为 数模转换器,简称D/A转换器或DAC。ADC和DAC是沟通 模拟电路和数字电路的桥梁,也可称之为两者之间的接口。
Q5
C1
FF5 1D
Q4
Q4 C1
FF4 Q3 1D
C1
FF3 1D
Q2
Q2 C1
FF2 1D
Q1
C1 FF1
编码器
& & & &
3VREF/14 ≤ui < 5VREF/14 时,比较器C1、C2输出 d2 为1,CP到来后,触发
器FF1、FF2置1。经编码 器编码后输出的二进制
代码为d2d1d0=010。
d0 输入 d1
…
dn-1
uo 或 io
D/A
输出
uo Ku (dn1 2n1 dn2 2n2 d1 21 d0 20 4)
本节小结:
D/A转换器的功能是将输入的二进制数字信 号转换成相对应的模拟信号输出。D/A转换器根 据工作原理基本上可分为二进制权电阻网络D/A 转换器和T型电阻网络D/A转换器两大类。由于T 型电阻网络D/A转换器只要求两种阻值的电阻, 因此最适合于集成工艺,集成D/A转换器普遍采 用这种电路结构。
数
DAC
多 路
功率放大
执行机构
开
…
…
加热炉
…
字 控
关
功率放大
执行机构
加热炉
制
计 算 机
ADC
多
信号放大 温度传感器
路
…
…
开 关
信号放大
温度传感器
3
6.1.1 D/A转换原理
基 将输入的每一位二进制代码按其权的大小转 本 换成相应的模拟量,然后将代表各位的模拟 原 量相加,所得的总模拟量就与数字量成正比, 理 这样便实现了从数字量到模拟量的转换。
C1 FF1
编码器 并联比较型 A/D 转换器
d2
0≤ui < VREF/14 时 , 7 个 比 较器输出全为0,CP到来
后,7个触发器都置0。
&
经编码器编码后输出的
二 进 制 代 码 为 d2d1d0 = 000。
d1 VREF/14≤ui < 3VREF/14 时 ,
&
&
7个比较器中只有C1输出
如果输入的是n位二进制数,则D/A转换器 的输出电压为:
uo
VREF 2n
(d n1 2n1 d n2 2n2
d1 21
d0
20)
5
6.3 A/D转换器
6.2.1 并行电压比较型A/D转换器 6.2.2 逐次比较型A/D转换器
退出
6
6.2.1 并行电压比较型A/D转换器
1.A/D 转换器的基本原理
5VREF/14≤ui < 7VREF/14
&
d1
时 , 比 较 器 C1 、 C2 、 C3输出为1,CP到来后,
触发器FF1、 FF2、 FF3
置1。经编码器编码后
输出的二进制代码为
d2d1d0=011。 d0 依此类推,可以列出ui & 为不同等级时寄存器的
状态及相应的输出二进
制数。
10
输入模拟电压
为1,CP到来后,只有触
&
发 器 FF1 置 1 , 其 余 触 发
器仍为0。经编码器编码
后输出的二进制代码为
& d0 d2d1d0=001。
&
9
R/2
VREF 比较器
-+C7
R
-+C6
R
-+C5
R
ui
-+C4
R -+C3
R -+C2
R -+C1
R/2 CP
寄存器
1D
Q7 C1
FF7
1D
C1
Q6
FF6 1D
是否应该保留。这样逐位比较下去,一直到最低位为止。比
CPS
ui(t)
S
C
dn-1
us(t)
ADC 的数字 …
数字量输出
化编码电路
d1
(n 位)
d0
ADC 输入模拟电压 采样-保持电路 采样展宽信号
模拟电子开关S在采样脉冲CPS的控制下重复接通、断开的 过程。S接通时,ui(t)对C充电,为采样过程;S断开时,C 上的电压保持不变,为保持过程。在保持过程中,采样的 模拟电压经数字化编码电路转换成一组n位的ax
8
R/2
VREF 比较器
-+C7
R
-+C6
R
-+C5
R
ui
-+C4
R -+C3
R -+C2
R -+C1
R/2 CP
寄存器
1D
Q7 C1
FF7
1D
C1
Q6
FF6 1D
Q5
C1
FF5 1D
Q4
Q4 C1
FF4 Q3 1D
C1
FF3 1D
Q2
Q2 C1
FF2 1D
Q1
ui
(0
~
1 14
)VREF
(
1 14
~
3 14
)VREF
(
3 14
~
5 14
)VREF
(
5 14
~
7 14
)VREF
(
7 14
~
9 14
)VREF
(
9 14
~
11 14
)VREF
(
11 14
~
13 14
)VREF
(
13 14
~ 1)VREF
寄存器状态 Q7 Q6 Q5 Q4 Q2 Q2 Q1 0 0 00 0 0 0 0000 001 0000 011 0000 111 000111 1 0011 111 0111 111 1111 111
2.采样-保持电路
-
ui
A1 +
S
uC
- +A2
开关驱
CH
动电路
采样脉冲(fS) (a) 电路图
uo, ui
uo
ui uo
0 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t (b) 波形图
t0时刻S闭合,CH被迅速充电,电路处于采样阶段。由于两个放 大器的增益都为1,因此这一阶段uo跟随ui变化,即uo=ui。t1时 刻采样阶段结束,S断开,电路处于保持阶段。若A2的输入阻抗 为无穷大,S为理想开关,则CH没有放电回路,两端保持充电时 的最终电压值不变,从而保证电路输出端的电压uo维持不变。