金属材料的液态成型

金属材料的液态成型
金属材料的液态成型

第一章金属材料的液态成形

1.1概述

金属的液态成型常称为铸造,铸造成形技术的历史悠久。早在5000多年前,我们的祖先就能铸造红铜和青铜制品。铸造是应用最广泛的金属液态成型工艺。它是将液态金属浇注到铸型型腔中,待其冷却凝固后,获得一定形状的毛坯或零件的方法。在机器设备中液态成型件所占比例很大,在机床、内燃机、矿山机械、重型机械中液态成型件占总重量的70%~90%;在汽车、拖拉机中占50%~70%;在农业机械中占40%~70%。液态成型工艺能得到如此广泛的应用,是因为它具有如下的优点:

(1)可制造出内腔、外形很复杂的毛坯。如各种箱体、机床床身、汽缸体、缸盖等。

(2)工艺灵活性大,适应性广。液态成型件的大小几乎不限,其重量可由几克到几百吨,其壁厚可由0.5mm到1m左右。工业上凡能溶化成液态的金属材料均可用于液态成型。对于塑性很差的铸铁,液态成型是生产其毛坯或零件的唯一的方法。

(3)液态成型件成本较低。液态成型可直接利用废机件和切屑,设备费用较低。同时,液态成型件加工余量小,节约金属。

但是,金属液态成型的工序多,且难以精确控制,使得铸件质量不够稳定。与同种材料的锻件相比,因液态成型组织疏松、晶粒粗大,内部易产生缩孔、缩松、气孔等缺陷。其机械性能较低。另外,劳动强度大,条件差。

近年来,随着液态成型新技术、新工艺、新设备、新材料的不断采用,使液态成型件的质量、尺寸精度、机械性能有了很大提高,劳动条件到底改善,使液态成型工艺的应用范围更加广阔。

液态材料铸造成形技术的优点:

(1)适应性强,几乎适用于所有金属材料。

(2)铸件形状复杂,特别是具有复杂内腔的铸件,成形非常方便。

(3)铸件的大小不受限制,可以由几克重到上百吨。

(4)铸件的形状尺寸,组织性能稳定。

(5)铸造投资小、成本低,生产周期短。

液态材料铸造成形技术也存在着某些缺点:

如铸件内部组织疏松,晶粒粗大,易产生缩孔、缩松、气孔等缺陷;而外部易产生粘砂、夹砂、砂眼等缺陷。另外铸件的力学性能低,特别是冲击韧性较低。铸造成形工艺较为复杂,且难以精确控制,使得铸件品质不够稳定。

铸造成形技术的发展:

(1)提高尺寸精度和表面质量;

(2)先进的造型技术及自动化生产线;

(3)高效、节能,减少污染;

(4)降低成本,改善劳动条件。

1.2 钢铁的生产过程

钢铁的生产过程是一个由铁矿石炼成生铁、再由生铁炼成钢液并浇注成钢锭的过

1.2.1 炼铁

炼铁在高炉中进行,其过程为:将铁矿石、焦碳和石灰石等按一定比例配成炉料,由加料车送入炉内,形成料柱,加料完毕,将炉顶关闭。被热风炉加热到900~1200℃的热风,由炉壁上的风口吹入高炉下部,使焦碳燃烧,产生大量的炉气。炙热的炉气在炉内上升,加热炉料,

并与之发生化学反应,如图所示为钢铁生产过程。

图1.1 钢铁生产过程示意图

高炉中发生的冶金反应有:

(1)还原反应:将氧化铁中的铁还原。

(2)造渣反应:生成低熔点炉渣。

(3)渗碳反应:生成碳含量较高,熔点较低的铁液。

炉渣的密度小,浮在铁液之上,炉渣和铁液分别从高炉下部的出渣口和出铁口排除炉外炼铁的产品有:

炼钢生铁—用来炼钢

铸造生铁—用来铸造

1.2.2 炼钢

炼钢的主要任务是将生铁中多余的碳和其它杂质氧化成氧化物,并使其随炉气或炉渣一起去除。

间接氧化是炼钢的主要反应形式,即氧首先与铁液发生氧化反应,生成FeO,然后再通过FeO来氧化其它元素。

钢的熔炼方法有:电炉炼钢、转炉炼钢和平炉炼钢。

炼好的钢液,部分浇入连续铸锭机,铸成“钢坯”直接用来轧制钢材;部分浇注到钢锭模内铸成一定形状和尺寸的钢锭。

1.3 铸造金属熔炼

熔炼是液态金属铸造成形技术过程中的一个重要环节,与铸件的品质、生产成本、产量、能源消耗以及环境保护等密切相关。

1.2.1 金属的熔炼

在熔炼中,多种固态金属的炉料(废钢、生铁、回炉料、铁合金、有色金属等)按比例搭

配装入相应的熔炉中加热熔化,通过冶金反应,转变成具有一定化学成分和温度的符合铸造成形要求的液态金属。

熔炼的要求:

(1)保证金属液的化学成分和材质性能。

(2)保证金属液有足够的温度(过热)。

(3)保证金属液的数量(质量)。

(4)保证低能耗、低成本。

(5)保证低噪声、低污染。

1.熔炼的分类

(1)按熔炼金属分:铸铁熔炼、铸钢熔炼和有色金属熔炼。

(2)按熔炉分:冲天炉熔炼、电弧炉熔炼、感应电炉熔炼、坩埚炉熔炼。

2.熔炼过程和熔炼炉

在高温中熔炼,用耐火材料做熔炉的炉衬,用熔渣覆盖在液态金属表层,以防止液态金属的氧化及溶入气体。

炉衬分为:酸性炉衬和碱性炉衬。

酸性炉衬——耐火粘土、石英砂组成。酸性炉衬坚固和便宜,能量消耗低且产量较高。熔炼过程中造酸性渣,不能脘硫和脱磷。

碱性炉衬——镁砂筑成。熔炼过程中造碱性渣,具有一定的脱磷和脱硫能力。

(1)冲天炉熔炼

应用极为广泛,具有结构简单、设备费用少、电能消耗低、生产率高、成本低、操作和维修方便,并能连续进行生产等特点。

常用的为用焦(焦碳)冲天炉,也有非焦冲天炉(油、天燃气等)。

图1.2 冲天炉

用焦冲天炉是由:底焦燃烧→热量交换→冶金反应,三个基本过程组成。

金属与炉气、焦炭、炉渣相互接触,发生一系列物理化学变化——冶金反应,引起金属液化学成分的变化。

图1.3 焦碳冲天炉

图1.4 冲天炉工作过程原理图

(2)电弧炉熔炼

电弧炉是利用电极与金属炉料之间电弧产生的热能,通过辐射、传导和对流传递给炉料,加热、熔化固体炉料,并使金属液过热,从而实现熔炼目标的一种设备,主要用于钢、铸铁的熔炼。

图1.5 电弧炉熔炼

(3)感应电炉熔炼

常用为无芯感应电炉,其电流频率为:工频(50Hz)、中频(750~10000Hz)、高频(>10000Hz)。无芯感应电炉工作时,炉衬外的感应器线圈相当于变压器的原绕组,炉衬内的金属炉料相当于副绕组,当感应线圈通以交变电流时,则因交变磁场的作用,使短路连接的金属炉料产生强大的感应电流,电流流动时,为克服金属炉料表层的电阻面产生热量,致使金属炉料加热熔化。

图1.6 感应电炉

(4)坩埚炉

坩埚炉分为:燃油、燃气、焦碳和电阻坩埚炉。主要用于有色金属的熔炼,如铜合金、铝合金、镁合金、低熔点轴承合金等。

图1.7 坩埚炉

常用的铸铁:

(1)灰铸铁——灰铸铁是因断口呈灰色而得名,灰铸铁生产方便,成品率高,生产成本低,是目前应用最为广泛的一种铸铁。在各种铸铁总产量中,灰铸铁占80%以上。灰铸铁的组织特点是在基体上分布着片状石墨。

(2)可锻铸铁——可锻铸铁又称玛钢,是由铸态白口铸件经热处理而得到的一种高强度铸铁,其塑性比灰铸铁好,其组织为铁素体(或珠光体)基体上分布着团絮状石墨。可锻铸铁实际上并不能锻造。

(3)球墨铸铁——球墨铸铁的石墨呈球状。其生成工艺是向铁水中加入一定量的球化剂(如Mg、稀土元素等)进行球化处理,并再加入少量的孕育剂(硅铁)而制得。由于石墨呈球状,它对基体的缩减作用和造成应力集中都很少,使球墨铸铁具有很高的强度,良好的塑性和韧性,并且铸造性能好,生产工艺简便,成本低廉,获得广泛的应用。

1.3.2 浇注

金属熔化后,液态金属通过浇注系统充填铸型型腔的过程称为浇注过程。

1.浇注压力

(1)高压——2~15MPa,适用于薄的截面且对品质要求高的铸件。

(2)低压——0.12~0.3MPa,金属型铸件。

(3)重力(常压)——普通铸件

2.浇注系统

浇注系统是铸型中液态金属注入铸型型腔的通道。浇注系统的主要功能:

(1)将金属液由浇包导入型腔。

(2)挡渣及排除铸型型腔中的空气及其它气体。

(3)调节温度分布,控制凝固顺序。

(4)保证充型时间、压力、速度。

浇注系统的组成:

浇口杯——缓解金属液冲蚀,阻挡熔渣。

直浇道——有一定锥度以保证流速,排出空气。

横浇道——将直浇道的金属液分配至内浇道。

内浇道——将金属液引入型腔。

图1.8 浇注系统

图1.9 浇注的形式

3.浇注后的冷凝

浇注入铸型型腔的液态金属,随温度的降低,将经历由液态向固态的转变过程,即冷凝过程。冷凝是金属材料一种重要的相变过程。

金属的凝固过程包括:晶核的形成和晶粒的长大。

金属的冷凝过程中,熔液体积收缩是导致铸件在最后凝固部分产生缩孔、缩松的基本原因;而固态收缩是铸件变形、产生内应力和裂纹的主要原因。

在铸型中,合理放置冒口和冷铁以保证铸件质量,如图所示。

图1.10 冒口的类型

铸型中能储存一定金属液,补偿铸件收缩以防止产生缩孔和缩松缺陷的空腔称为冒口。

冒口的作用:补缩、集渣、通气、排气。

冒口的要求:凝固时间≥铸件;金属液足够补缩量;补缩通道畅通。

1.4液态合金的工艺性能

液态合金的工艺性能是指符合某种生产工艺要求所需要的性能。液态合金在铸造生产过程

中所表现出来的工艺性能,常称为铸造性能,铸造性能是表示合金铸造成形获得优质铸件的能力。铸造性能是一个非常重要的工艺性能,对铸件质量、铸造工艺及铸件结构有显著的影响,通常用流动性、收缩性等来衡量。

1.4.1合金的流动性

1. 流动性的概念

液态合金充满型腔,形成轮廓清晰、形状完整的优质铸件的能力,称为液态合金的流动性又叫做“充型能力”。液态合金的流动性愈好,不仅易于铸造出轮廓清晰,薄而形状复杂的铸件,而且有助于液态合金在铸型中收缩时得到补充,有利于液态合金中的气体及非金属夹杂物上浮与排除。若流动性不好,则易使铸件产生浇不足、冷隔、气孔、夹渣和缩松等缺陷。

液态合金流动性的好坏,通常以螺旋形流动性试样的长度来衡量。如图所示,将液态合金注入螺旋形试样铸型中,冷凝后,测出其螺旋线长度。为便于测量,在标准试样上每隔50mm 做出凸点标记,在相同的浇注工艺条件下,测得的螺旋线长度越长,合金的流动性越好。常用合金的流动性如表1所示。其中灰铸铁、硅黄铜的流动性最好,铝合金次之,铸钢最差。

图1.11 螺旋形标准式样

表1 常用铸造合金的流动性

2. 影响流动性的因素

影响流动性的因素很多,其中主要是合金的种类及化学成分、浇注温度和铸型的填充条件。

(1)合金的种类及化学成分

不同的合金,其流动性有很大差异(见表1)对同种合金而言,化学成分不同,其流动性不同。

纯金属和共晶成分的合金是在恒温下进行结晶的,此时由铸件断面的表层向中心逐层凝固,以结晶固体层与剩余液体的界面比较清晰、平滑,对中心未凝固的液态金属的流动阻力小,故流动性最好。

其它成分的合金是在一定温度范围内结晶的,即经过液、固两相共存区。该区中液相与固相界面不清晰,其固相为树枝晶,它使固体层内表面粗糙,增加了对液态合金流动的阻力,因而流动性差。合金的结晶温度范围愈宽,则液固两相共存的区域愈宽,液态合金的流动阻力愈大,故流动性愈差。显然,合金成分愈接近共晶成分,流动性愈好。图1.12所示为铁碳合金的流动性与含碳量的关系。由图可见,亚共晶铸铁随含碳量的增加,结晶温度范围减小,流动性提高。

图1.12 Fe-C合金流动性与含碳量的关系

(2)铸型的特点

铸型材料的导热速度愈大,使液态合金的冷却速度加快,从而使流动性变差。如液态合金在金属型中的流动性比在砂型中差;铸件壁厚过小,形状复杂,会增加液态合金的流动阻力,故会降低合金的流动性。因此设计铸件时,铸件的壁厚必须大于规定的最小允许壁厚值。并力求形状简单。

型砂含水分多或铸型透气性差,会使浇注时产生大量气体且又不能及时排出,造成型腔内气体压力增大,使液态合金流动的阻力增加,从而降低合金的流动性。因此提高铸型的透气性,减少型砂的水分,多设出气口等,有利于提高液态合金的流动性。

(3)浇注条件

浇注温度愈高,液态合金的粘度愈低,保持液态的时间愈长,故液态合金的流动性提高。提高浇注温度是生产中减少薄壁铸件的浇不足、冷隔等缺陷的重要措施。但浇注温度过高,铸件易产生缩孔、缩松、粘砂、气孔、粗晶等缺陷,在保证铸件薄壁部分能充满的前提下,浇注温度不宜过高。各种合金的浇注温度范围是:铸铁为1230~1450℃;铸钢为1520~1620℃;铝合金为680~780℃。薄壁复杂件取上限,厚大件取下限。

1.4.2合金的收缩

1.合金收缩的概念

合金从浇注、凝固直至冷却到室温的过程中,其体积或尺寸缩减的现象,称为收缩。收缩是合金的物理本性,是铸件中缩孔、缩松、裂纹、变形、残余应力等缺陷产生的主要原因。液态金属从浇注温度冷却到常温,其收缩过程如图所示的三个阶段:

图1.13 铸造合金的收缩过程

Ⅰ-液态收缩;Ⅱ-凝固收缩;Ⅲ-固态收缩

(1)液态收缩指合金从浇注温度冷却到液相线温度时的收缩。

(2)凝固收缩指合金从液相线温度冷却到固相线温度时的收缩。

(3)固态收缩指合金从固相线温度冷却到室温时的收缩。

合金的总体积收缩为上述三个阶段收缩之和。

液态收缩和凝固收缩会引起型腔内液面的下降,表现为合金体积的收缩,常用体收缩率表示。它们是铸件产生缩孔、缩松的基本原因。固态收缩一般直观的表现为铸件外形尺寸的减少,常用线收缩率表示。它是铸件产生内应力、变形和裂纹的基本原因。

2.影响合金收缩的因素

合金的收缩与其化学成分、浇注温度、铸件结构和铸型条件有关。

(1)化学成分碳钢随含碳量增加,凝固温度范围扩大,收缩量随之增大。灰口铸铁中碳、硅为促进石墨化元素,当其含量增加或碳以石墨形态存在的可能性愈大,则收缩量减小。因石墨密度小,比容大,抵消了灰口铸铁的部分收缩,使其总的收缩量减小;而阻碍石墨化元素,硫会使收缩量增加。

总之,不同的合金,化学成分不同,收缩率也不一样。几种铸造合金的收缩见表2。

表2 几种铸造合金的铸造收缩率

(2)浇注温度浇注温度愈高,过热度愈大其液态收缩量增加,合金总的收缩率增大。

(3)铸型条件和铸件结构铸件在铸型中是受阻收缩而不是自由收缩。其阻力来自铸型和型芯;铸件壁厚不同,壁在型内所处的位置不同,其冷却速度也不同,冷凝时,铸件各部分相互制约也会产生阻力。这些都会影响合金的实际收缩率。

3. 缩孔和缩松

液态金属在冷凝过程中,由于液态收缩和凝固收缩的结果,会在铸件最后凝固的部位形成孔洞。容积大而集中的孔洞称为缩孔;细小分散的孔洞称为缩松。

(1)缩孔的形成缩孔常产生在铸件的厚大部位或上部最后凝固部位,常呈倒锥状,内表面粗糙。缩孔的形成过程如图1.14所示。液态合金充满铸型型腔后(图中a),由于铸型的吸热,液态合金温度下降,靠近型腔表面的金属凝固成一层外壳,此时内浇道以凝固,壳中金属液的收缩因被外壳阻碍,不能得到补缩,故其液面开始下降(图中b)。温度继续下降,外壳加厚,内部剩余的液体由于液态收缩和补充凝固层的收缩,使体积缩减,液面继续下降(图中c)。此

过程一直延续到凝固终了,在铸件上部形成了缩孔(图中d)温度继续下降之室温,因固态收缩使铸件的外轮廓尺寸略有减小(图中e)。

纯金属和共晶成分的合金,易形成集中的缩孔。

图1.14 缩孔的形成过程示意图

(2)缩松的形成结晶温度范围宽的合金易形成缩松,其形成的基本原因与缩孔相同,也是由于铸件最后凝固区域得不到补充而形成的。

缩松的形成过程如图1.15所示。当液态合金充满型腔后,由于温度下降,紧靠型壁处首先结壳,且在内部存在较宽的液—固两相共存区(图中a)。温度继续下降,结壳加厚,两相共存区逐步推向中心,发达的树枝晶将中心部分的合金液分隔成许多独立的小液体区(图中b)。这些独立的小液体区最后趋于同时凝固,因得不到液态金属的补充而形成缩松(图中c)。

缩松分为宏观缩松和显微缩松两种。宏观缩松是用肉眼或放大镜可以看出的分散细小缩孔。显微缩松是分布在晶粒之间的微小缩孔,要用显微镜才能观察到,这种缩松分布面积更为广泛,甚至遍布铸件整个截面。

图1.15 缩松形成过程示意图

(3)缩孔和缩松的防止缩孔和缩松都使铸件的机械性能下降,缩松还可是铸件因渗漏而报废。因此,缩孔和缩松都属铸件的重要缺陷,必须根据技术要求、采取适当的工艺措施予以防止。实践证明,只要能使铸件实现“顺序凝固”,尽管合金的收缩较大,也可获得没有缩孔的致密铸件。

所谓顺序凝固,就是在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件上远离冒口的部位先凝固(如图1.16中?),尔后是靠近冒口部位凝固(图中Ⅱ、Ⅲ),最后才是冒口本身的凝固。按照这样的凝固顺序,先凝固部位的收缩,由后凝固部位的金属液来补充;后凝固部位的收缩,由冒口中的金属液来补充,从而使铸件各个部位的收缩均能得到补充,而将缩孔转移到冒口之中。冒口为铸件的多余部分,在铸件清理时将其去除。

图1.16 顺序凝固

为了实现顺序凝固,在安放冒口的同时,还可在铸件上某些厚大部位增设冷铁。(图1.17)所示铸件的热节不止一个,若仅靠顶部冒口,难以向底部凸台补缩,为此,在该凸台的型壁上安放了两个外冷铁。由于冷铁加快了该出的冷却速度,使厚度较大的凸台反而最先凝固,从而实现了自下而上的顺序凝固,防止了凸台处缩孔、缩松的产生,可以看出,冷铁仅是加快某些部位的冷却速度,以控制铸件的凝固顺序,但本身并不起补缩作用。冷铁通常用钢或铸铁制成。

图1.17 冷铁的应用

正确地估计铸件上缩孔或缩松可能产生的部位是合理安设冒口和冷铁的重要依据。在实际生产中,常以画“凝固等温线法”和“内切圆法”近似地找出缩孔的部位,如(图1.18)所示。图中等温线未曾通过的心部和内切圆直径最大处,即为容易出现缩孔的热节。

图1.18 缩孔位置的确定

安放冒口和冷铁,实现顺序凝固,虽可有效的防止缩孔和缩松(宏观缩松),但却耗费许多金属和工时,加大了铸件成本。同时,顺序凝固扩大了铸件各部位的温度差,促进了铸件的变

形和裂纹倾向。因此,主要用于必须补缩的场合,如铝青铜、铝硅合金和铸钢件等。

必须指出,对于结晶温度范围甚宽的合金,结晶开始之后,发达的树枝状骨架布满了整个截面,使冒口的补缩道路严重受阻,因而难以避免显微缩松的产生。显然,选用近共晶成分或结晶温度范围较窄的合金生产铸件是适宜的。

1.4.3铸造应力、变形和裂纹

1.铸造应力

铸件的固态收缩受到阻碍而引起的内应力,称铸造应力。阻碍按形成的原因不同分为热阻碍和机械阻碍。铸件各部分由于冷却速度不同、收缩量不同而引起的阻碍称热阻碍;铸型、型芯对铸件收缩的阻碍,称机械阻碍。由热阻碍引起的应力称热应力,由机械阻碍引起的应力称机械应力(收缩应力)。铸造应力可能是暂时的,当引起应力的原因消除以后,应力随之消失,称为临时应力;也可能是长期存在的,称残留应力。

(1)热应力它是由于铸件的壁厚不均匀、各部分的冷却速度不一致,导致其收缩在同一时期内不相同,彼此相互制约而形成的。落砂后热应力仍存在于铸件内,是一种残留铸造应力。

为了分析热应力的形成,首先必须了解金属自高温冷却到室温时应力状态的改变。固态金属在再结晶温度以上的较高温度时(钢和铸铁为620—650℃以上),处于塑性状态。此时,在较小的应力下就可发生塑性变形,变形之后应力可自行消除。在再结晶温度以下,金属呈弹性状态,此时,再应力作用下将发生弹性变形,而变形之后应力继续存在。

图1.19 热应力的形成

下面用(图1.19 a)所示的框形铸件来说明热应力的形成过程。该铸件由杆Ⅰ和杆Ⅱ两部分组成,杆Ⅰ较粗、杆Ⅱ较细。当铸件处于高温阶段(图中T0~T1间),两杆均处于塑性状态,尽管两杆的冷却速度不同、收缩不一致,但瞬时的应力均可通过塑性变形而自行消失。继续冷却后,冷速较快的杆Ⅱ以进入弹性状态,而粗杆Ⅰ仍处于塑性状态(图中T1~T2间)。由于细杆Ⅱ冷却快,收缩大于粗杆Ⅰ,所以细杆Ⅱ受拉伸,粗杆Ⅰ受压缩(图中b),形成了暂时内应力,但这个内应力随之便被粗杆Ⅰ的微量塑性变形(压短)而消失(图中c)。当进一步冷却到更低温度时(图中T2~T3间),已被塑性压短的粗杆Ⅰ也处于弹性状态,此时,尽管两杆长度相同,但所处的温度不同。粗杆Ⅰ的温度较高,还会进行较大的收缩;细杆Ⅱ的温度较低,收缩已趋停止。因此,粗杆Ⅰ的收缩必然受到细杆Ⅱ的强烈阻碍,于是,杆Ⅱ受压缩,杆Ⅰ受拉伸,直到室温,形成了残余内应力(图中d)。

由此可见,热应力使铸件的厚壁或心部受拉伸,薄壁或表面受压缩。铸件的壁厚差别愈大,热应力愈大。

预防热应力的基本途径是尽量减少铸件各部位间的温度差,使其均匀的冷却。为此,可将浇口开在薄壁处,使薄壁处铸型在浇注过程中的升温较厚壁处高,因而可补偿薄壁处的冷速快的现象。有时为增快厚壁处的冷速,还可在厚壁处安放冷铁(图1.20)。

图1.20 铸件的同时凝固原则

坚持同时凝固原则可减少铸造内应力、防止铸件的变形和裂纹缺陷,又可不用冒口而省工省料。其缺点是铸件心部容易出现缩孔或缩松,主要用于普通灰口铸铁、锡青铜等。这是由于灰口铸铁的缩孔、缩松倾向小;锡青铜的糊状凝固倾向大,用顺序凝固也难以有效地消除其显微缩松缺陷。

(2)机械应力它是合金的线收缩受到铸型或型心机械阻碍而形成的内应力,如(图1.21)所示。

图1.21 机械应力

机械应力使铸件产生拉伸或剪切应力,并且是暂时的,在铸件落砂之后,这种内应力便可自行消除。但机械应力在铸型中可与热应力共同起作用,增大了某些部位的拉伸应力,促进了铸件的裂纹倾向。

2.铸件的变形与防止

残余内应力使铸件不同部位被拉伸或压缩,好象被拉伸或压缩的弹簧一样,处于一种不稳定的状态,有自发通过铸件变形来缓解其应力,以回到稳定的平衡状态。显然,只有原来受拉伸的部分产生压缩变形、受压缩部分产生拉伸变形,才能使铸件中的残余应力减少或消除。(图1.22)所示为车床床身,其导轨部分因较厚而受拉应力,床壁部分较薄而受压应力,于是朝着导轨方向发生扰曲变形,使导轨呈内凹。(图1.23)为一平板铸件,尽管其壁厚均匀,但其中心部分因比边缘散热慢而受拉应力,其边缘处受压应力。由于铸型上面比下面冷却快,于是该平板发生如图所示方向变形。

为防止铸件产生变形,除在铸件设计时尽可能使铸件的壁厚均匀、形状对称外,再铸造工艺上应采用同时凝固原则,以便冷却均匀。对于长而易变形的铸件,还可采用“反变形”工艺。反变形法是在统计铸件变形规律的基础上,在模样上预先作出相当与铸件变形量的反变形量,

以抵消铸件的变形。

图1.22 床身导轨面的扰曲变形

图1.23 平板铸件的变形

实践证明,尽管变形后铸件的内应力有所减缓,但并未彻底去除,这样的铸件经机械加工之后,由于内应力的重新分布,还将缓慢地发生微量变形,使零件丧失了应有的精确度。为此,对于不允许发生变形的重要机件必须进行时效处理。

自然时效是将铸件置于露天场地半年以上,使其缓慢地发生变形,从而使内应力消除,人工时效是将铸件加热到550—650℃进行去应力退火。时效处理宜在粗加工之后进行,以便将粗加工所产生的内应力一并消除。

3.铸件的裂纹与防止

根据裂纹形成的温度范围可将其分为冷裂和热裂两种。

冷裂是铸件处于弹性状态时,铸造应力超过合金在该温度下的强度极限而产生的。他往往出现在铸件受拉应力的部位,特别是应力集中之处,如尖角处以及缩孔、气孔和渣眼附近。

冷裂是在较低温度下形成的,故表面具有金属光泽或只呈轻微的氧化色泽,断口圆滑、干净、且常穿过晶粒延伸到铸件表面。复杂的铸件以及灰铸铁、白口铸铁和高锰钢等塑性差的材料易产生这类缺陷。

要防止冷裂,主要是减少铸造应力,提高合金的力学性能。钢和铸铁中的磷会使合金的冲击韧性下降,脆性增加,是冷裂倾向增大。钢液脱氧不良和非金属夹杂物也会增加冷裂倾向。

热裂是铸件在凝固过程中和固相线温度附近形成的。此时结晶骨架已经完成,但晶粒间还有少量液体,强度很低,其收缩时受到铸型、型心等的阻碍,铸件则产生热裂。

热裂是在较高温度下形成的,因此,断口氧化严重,无金属光泽,裂口往往沿晶界产生和发展,形状曲折而不规则。铸钢件(特别是合金钢件)、可锻铸铁件和某些铝合金铸件容易产生这类裂纹。

要防止热裂,减少铸造应力是关键,如合理设计铸件结构,提高砂型(芯)的退让性;合理设计浇冒口系统;严格控制铸钢和铸铁中的含硫量;在易产生热裂处设防裂筋等。

1.4.4铸件的化学成分偏析

化学成分不均匀的现象称为偏析。

(1)微观偏析

微观偏析指微小范围内的化学成分不均匀(一般在一个晶粒尺寸范围内)。

(2)宏观偏析(区域偏析)

宏观偏析是指在较大尺寸范围内的成分不均匀,主要包括正偏析和逆偏析。

在实际生产中,铸件断面成分偏析极为复杂。往往以一种偏析为主,其他偏析同时存在。

1.5 铸件的结构设计及几何形状特征

在液态材料铸造成形技术中,铸件的结构设计及几何形状是否合理,即结构技术性是否良好,对铸造零件的品质、生产率及成本等有较大的影响。

1.铸件结构设计的一般原则

(1)必须针对不同的铸造合金的性能、铸造方法、产品多少和生产条件,综合考虑合理的结构。

(2)铸件壁厚的变化对金属的力学性能均有影响。

(3)铸件的最小壁厚必须结合零件的复杂程度、尺寸大小、材料及制造技术来确定。

(4)简化模型设计。

(5)易于造型及合理确定分型面,尽量避免或减采用型芯,便于落砂清理。

(6)考虑浇注的特点。

(7)充分考虑材料的不同特性。

2.铸件的结构要素设计

(1)铸件的最小壁厚

在一定铸造条件下,铸造合金液能充满铸型的最小厚度称为该铸造合金的最小壁厚。

(2)铸件的临界壁厚

厚壁铸件易产生缩孔、缩松等缺陷,不产生此类缺陷的最大壁厚称为临界壁厚。一般临界壁厚取最小壁厚的3倍。

(3)铸件的内壁厚

为保证铸件同时凝固,减少热应力,内壁厚要小于外壁厚。

(4)铸件壁的过渡和连接

采用逐渐过渡;连接应避免交叉,以减少和分散热节点。

(5)肋

为了增加铸件的力学性能和减轻铸件的质量,消除缩孔和防止裂纹、变形、夹砂等缺陷,在铸件结构设计中大量采用肋。

设计肋时,要尽量分散和减少热节点,避免多条肋互相交叉,肋与肋和肋与壁的连接处要有圆角过渡,垂直于分型面的肋应有铸造斜度。

(6)铸造斜度

铸件壁的内、外两侧,沿起模方向应设计适当的斜度即结构斜度。

1.6 铸造成形方法

1.砂型铸造

以型(芯)砂为主要造型材料制备铸型的方法称为砂型铸造。

常见的砂型铸造过程如图所示,造型方法有:整模造型、两箱造型、三箱造型、活块造型、刮板造型、挖砂造型等。

图1.24 两箱造型

图1.25 三箱造型

图1.26 锥齿轮铸造工艺

常见的典型铸件有:床身铸件、三通铸件、支架类铸件等。

常见的砂型结构有:砂芯、砂垛、外型芯等。

2.特种铸造

(1)熔模铸造

熔模铸造又称为失蜡铸造、熔模精密铸造。方法是先将低熔点易熔材料蜡制成模样,再在蜡模表面涂上耐火材料,待其硬化干燥后将其中的蜡模样熔失,而制成无分型面的铸型型壳,再经焙烧,然后进行浇注,最后清理获得铸件。特点是铸件尺寸精度高、表面质量好。

熔模铸造如图所示,其生产过程为:组装蜡模、上涂料、失蜡、熔模焙烧、熔模浇注及清理等。

图1.27 熔模铸造

(2)金属型铸造

金属型铸造又称硬模铸造、永久型铸造。其铸型是金属材料制成,可以反复使用。如活塞铸型。

图1.28 金属型铸造形式

(3)压力铸造

压力铸造简称压铸,是将液态金属在高压作用下以较高的速度充填压铸型型腔,并在压力作用下结晶凝固,而获得铸件的方法。

压力铸造的生产原理如图所示,常用的生产设备有:热压铸机、卧式压铸机等。

图1.29 热压铸机工作过程

(4)离心铸造

离心铸造是将液态金属浇入旋转的铸型中,使液态金属在离心力的作用下充填铸型,结晶凝固而获得铸件的铸造方法。

铸造离心机的工作原理如图所示。

图1.30 离心铸造

(5)机械铸造

对于大量生产的铸件,为提高生产效率,采用机械造型机生产。

1.7 半固态成形

半固态合金是将合金熔化后,待合金冷却到液相线温度以下时,使固态组分达到40~60%(类似糊状悬液)并具有一定的流动性的合金。

利用半固态合金实现浇注或压注成形方法称为半固态成形。

半固态成形的特点:

(1)应用范围广;

(2)铸件质量高,力学性能好,尺寸精度高;

(3)成型时减少了对成型装置的热冲击,节省能源;

(4)便于实现自动化,提高了劳动生产率,降低了生产成本。

半固态成形的方法:

1.流变成形

利用半固态金属制备器,批量制备或连续制备糊状浆料,然后直接进行铸造、挤压、轧制、模锻等成型的方法。

图1.31 半固态流变成形

2.触变成形

利用半固态金属制备器制成半固态浆料,冷却后得到铸锭。再分割铸锭并加热到半固态温度进行成型的方法。

图1.32 半固态触变成形

3.铸锻成形

(1)液态模锻

材料成型及控制技术

材料成型及控制技术 材料成型及控制技术是通过改变金属材料的结构与形状来提高材料的性能,这是X为大家整理的材料成型控制技术论文,仅供参考! 材料成型控制技术论文篇一 材料成型与控制工程模具制造技术分析初探 摘要:材料成型与工程控制在制造业中扮演着十分重要的角色,是机械制造业发展的重头戏,在发展中机器制造业企业必须加以重视。作为汽车、电力、石化、造船及机械等方面的基础制造技术,材料成型加工技术在发展中得到不断成熟与发展壮大。文章主要论及材料成型与控制工程方面的汽车零部件方面的模块制造技术方面额介绍与分析探讨。 关键词:材料成型控制工程技术 现代制造工业在行业发展中呈蒸蒸日上的发展新趋势,并受到业界的广泛关注,为工业发展作出巨大的贡献。制造业的材料成型与控制工程方面的技术发展,同时也是业内十分关注的内容之一,我们从其技术发展特点入手屁,实现进一步分析和探究。 一、材料成与控制工程模具制造技术分析探讨 材料成型与制造中讲究技术发展,从效益、节能、生产速率等方面考虑进一步探讨研究,下面以奇瑞A21汽车中支

板产品图的制造技术方面进行分析探究。 (一)金属材料成型与控制工程加工技术 1技术材料一次成型加工技术 挤压:在置于模具内金属坯料的端部加压,使之通过一定形状、尺寸摸孔,产生塑性变形,获得与模孔相应的形状尺寸的工件。 特点:塑性好、不易变形 拉拔:在置于模具内金属坯料的前端施加拉力,使之通过一定形状、尺寸的摸孔,产生塑性变形,获得与模孔相应的形状尺寸的工件 特点:变形阻力比挤压小,但对材料塑性要求高 轧制:金属通过旋转的轧辊受到压缩产生塑性变形,获得一定形状、尺寸断面的工件。 2金属材料的二次成型加工 锻造:阻力大,通常需要加热实现。 自由锻造:在锤或压力机上,通过砧子、锤头或其它简单工具对金属坯料施加压力,使之产生塑性变形,获得所需形状、尺寸的工件。 特点:不用模具,易变形,简单的工件形状。 模型锻造:坯料在锤或压力机上,通过模具施加压力,产生塑性变形,获得所需形状、尺寸的工件。 特点:需要模具(锻模),变形阻力大,工件形状可以比

金属材料的塑性成形

第3章金属材料的塑性成形 概述 3.1金属塑性成形基础 3.2 常用的塑性成形方法 3.3 少、无切削的塑性成形方法3.4 常用的塑性成形金属材料

概述 金属塑性成形是利用金属材料所具有的塑性, 在外力作用下通过塑性变形,获得具有一定形状、尺寸和力学性能的零件或毛坯的加工方法。由于外力多数情况下是以压力的形式出现的,因此也称为金属压力加工。 塑性成形的产品主要有原材料、毛坯和零件三大类。 金属塑性成形的基本生产方式有:轧制、拉拔、挤压、自由锻、模锻、板料冲压等。

塑性成形的特点及应用: (1)消除缺陷,改善组织,提高力学性能。 (2)材料的利用率高。 (3)较高的生产率。如利用多工位冷镦工艺加工内角螺钉,比用棒料切削加工工效提高约400倍。 (4)零件精度较高。应用先进的技术和设备,可实现少切削或无切削加工。如精密锻造的伞齿轮可不经切削加工直接使用。 但该方法不能加工脆性材料和形状特别复杂或体积特别大的零件或毛坯。 塑性成形加工在机械制造、军工、航空、轻工、家用电器等行业得到了广泛应用。例如,飞机上的塑性成形零件约占85%;汽车、拖拉机上的锻件占60%~80%。

3.1 金属塑性成形基础 3.1.1 单晶体和多晶体的塑性变形3.1.2 金属的塑性变形 3.1.3 塑性成形金属在加热时组织和 性能的变化 3.1.4 金属的塑性成形工艺基础

3.1.1单晶体和多晶体的塑性变形1.单晶体的塑性 变形 金属塑性变形最常 见的方式是滑移。 滑移是晶体在 切应力的作用下, 一部分沿一定的晶 面(亦称滑移面) 和晶向(也称滑移 方向)相对于另一 部分产生滑动。 晶体滑移变形示意图

材料成型及控制工程

材料成型及控制工程 Materials Molding & Control Engineering 专业代码:080203学制:4年 Program Code:080203Duration:4 years 培养目标: 本专业培养热爱祖国,坚持社会主义道路,适应经济、科技和社会发展需要,在知识、能力、素质各方面全面发展,掌握必需的自然科学、工程技术的基础知识,具有一定人文科学和社会科学素养及创新创业意识,掌握金属/高分子材料成型及控制工程的基础理论、专业知识和基本技能,了解学科与行业发展动态,能在金属/高分子材料成型过程的控制和工艺优化、新材料和新产品的开发和制备、材料成型装备和模具设计以及数值模拟等领域从事科学研究、技术开发及经营管理工作的高级复合型人才。 Educational Objectives: In order to meet the economic, science, technology and social development demands, the talent cultivation in the major pays attention to overall development in knowledge, ability, quality aspects. The students in the major are essentially required for not only mastering basic knowledge in the field of natural science, engineering technology, and human science, social science, innovation and entrepreneurship awareness to a certain extent, but also mastering fundamental theories, professional knowledge and basic skills in the discipline of metal /polymer materials Molding & Control Engineering, and comprehending disciplines and industries development trends. The objectives of talent cultivation in the major is to cultivate the senior comprehensive professional talents who will be equipped with the ability and quality of being engaged in scientific research, technology development and management in the fields of metal/polymer material forming process control and process optimization, new materials and new product development and preparation, material molding equipment and mold design and computer simulation. 毕业要求: №1.工程知识:掌握从事金属/高分子材料成型及控制工程工作所需的数学和其它相关自然科学知识、工程基础理论和专业基本原理、方法和手段,具备一定的企业管理知识,了解专业前沿发展状态和趋势,能解决该领域企业的实际复杂工程问题。 №2.问题分析:能够应用数学、自然科学、专业基本原理、方法和技术手段以及经济管理知识,识别、表达、并通过文献研究分析金属/高分子材料成型及控制中的复杂工程问题,以获得有效结论。 №3.设计/开发解决方案:能够考虑社会、健康、安全、法律、文化以及环境等因素、并能够在设计环节中体现创新意识,针对金属/高分子材料成型及控制领域的复杂工程问题,提供综合解决方案,设计和开发出满足特定需求的金属/高分子成型设备和模具的系统、单元(部件)及其工艺流

材料成型及控制工程.doc

目标 本专业培养具备材料科学与工程的理论基础、材料成型加工及其控制工程、模具 材料成型及控制工程 设计制造等专业知识,能在机械、模具、材料成型加工等领域从事科学研究、应用开发、工艺与设备的设计、生产及经营管理等方面工作的高级工程技术人才和管理人才。本专业分为四个培养模块: (一)焊接成型及控制: 培养能适应社会需求,掌握焊接成型的基础理论、金属材料的焊接、焊接检验、焊接方法及设备、焊接生产管理等全面知识的高级技术人才。 (二)铸造成型及控制 这是目前社会最需要人才的专业之一。主要有砂型铸造、压力铸造、精密铸造、金属型铸造、低压铸造、挤压铸造等专业技术及专业内新技术发展方向。

(三)压力加工及控制 分为锻造和冲压两大专业方向,在国民经济中起到非常重要的作用。 (四)模具设计与制造: 掌握材料塑性成型加工的基础理论、模具的设计与制造、模具的计算机辅助设计、材料塑性加工生产管理等全面知识的高级技术人才。 编辑本段课程设置 由于材料成型与控制包括焊接、铸造、压力加工、模具设计四个方面,每个方面之间差别较大。因而课程开设将依据学校的侧重点而异。 主要课程:高等数学、大学物理、基础外语、马克思主义哲学原理、计算机应用、机械制图、电工电子技术、金属学、材料冶金与成型工艺、材料成型设备及方法、材料成型微机应用、先进制造技术、检测技术与控制工程、技术经济、CAD/CAM基础、表面工程学、焊接冶金学、金属材料焊接、焊接方法与焊接设备、焊接检验、塑性成型理论、橡塑材料成型工艺学、橡塑成型模具、金属冲压工艺与模具设计、模具制造技术等专业基础和专业课程知识等等。

主要实践性教学环节:包括金工实习、机械热加工实习、机械设计课程设计、专业实习、综合设计、毕业设计(论文)等。 主要专业实验:包括材料冶金与成型工艺综合实验、材料成型设备方法综合实验、材料成型自动控制综合实验等。 编辑本段培养特色 本专业涉及的知识面广、信息量大,注重英语能力、计算机能力和实际动手能力的培养,使学生具有很强的适应能力、创新能力、分析和解决问题的能力。另外还注重学生的素质教育,培养富有创新精神的高素质复合型人才。 编辑本段就业去向 本专业具有工学学士、工学硕士和工学博士学位的授予权,学生可以选择进一步深造。学

工程材料液态成型实验指导书

开放实验指导书大纲 实验名称: 工程材料液态成型 引言 什么是液态成型 金属的液态成型常称为铸造,铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。 图-1 铸造示意图 一、实验目的 1.了解铸造的概念及基本原理; 2.了解并掌握铸造的基本工艺及其主要的工艺参数; 3.了解并掌握铸造过程中金属从液态到固态转变过程中影响金属性能和铸件质量的一些基本因素; 4.了解金属收缩的基本规律,以及常见铸造缺陷缩的形成机理,及其影响因素。

二、实验原理 1.铸造的定义 铸造过程是指将金属置于熔炼炉内的坩埚中, 加热熔炼成符合一定要求的液体并浇铸到锭模或铸模中,经冷却凝固, 液态金属转变成固态金属, 清整处理后获得一定形状、尺寸的铸件或铸件的工艺过程。铸造毛胚因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代机械制造工业的基础工艺之一. 铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。 2.铸造的分类 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。 2.1 普通砂型铸造 以型砂和芯砂为造型材料制成铸型,液态金属在重力下充填铸型来生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 图-2 砂型铸造示意图

全国材材料成型与控制专业院校实力排名

材料成型及控制工程专业排名 1 上海交通大学 A+ 9 吉林大学 A 17 浙江大学 A 2 哈尔滨工业大学 A+ 10 天津大学 A 18 四川大学 A 3 清华大学 A+ 11 同济大学 A 19 兰州理工大学 A 4 华南理工大学 A+ 12 西安交通大学 A 20 北京航空航天大学 A 5 西北工业大学 A+ 13 大连理工大学 A 21 武汉理工大学 A 6 北京科技大学 A 14 山东大学 A 22 北京工业大学 A 7 华中科技大学 A 15 郑州大学 A 23 东南大学 A 8 东北大学 A 16 太原理工大学 A 2012年全国大学材料成型及控制工程专业排名: 科别:理工 培养目标:本专业培养具备机械热加工基础知识与应用能力,能在工业生产第一线从事热加工领域内的设计制造、试验研究、运行管理和经营销售等方面工作的高级工程技术人才。 培养要求:本专业学生主要学习材料科学及各类热加工工艺的基础理论与技术和有关设备的设计方法,受到现代机械工程师的基本训练,具有从事各类热加工工艺及设备设计、生产组织管理的基本能力。 毕业能力: 1.具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力。 2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括力学、机械学、电工与电子技术、热加工工艺基础、自动化基础、市场经济及企业管理等基础知识。 3.具有本专业必需的制图、计算、测试、文献检索和基本工艺操作等基本技能及较强的计算机和外语应用能力。 4.具有本专业领域内某个专业方向所必需的专业知识,了解科学前沿及发展趋势。 5.具有较强的自学能力、创新意识和较高的综合素质。 核心课程:机械工程、材料科学与工程。 主要课程:工程力学、机械原理及机械零件、电工与电子技术、微型计算机原理及应用、热加工工艺基础、热加工工艺设备及设计、检测技术及控制工程、CAD/CAM基础。

金属材料成型工艺及设备

《金属材料成型工艺及设备》课程教学大纲 (Metal Forming Process and Equipments) 学时数:32 其中:实验学时: 课外学时: 学分数:2 适用专业:模具设计及制造 执笔者:王兴波 审核人: 编写日期:2010年9月 一、课程的性质、目的和任务 本课程是模具设计及制造专业本科的专业必修课程之一,主要根据模具设计与制造的专业特点,以金属材料成型技术为核心,围绕金属材料液态(铸造)、金属材料固态塑性变形(冲压)、金属材料液态连接(焊接)以及粉末成型四个方向的成型技术和基本操作,介绍铸造成型、冲压成型、焊接成型、粉末成型的相关工艺及设备。通过本课程的学习,学生在理论上能够了解并掌握金属材料成型的工艺、材料变形与分析的基本方法以及相关成型设备的特征与使用。 二、课程教学的基本要求 课程是模具设计与制造专业的专业必修课程。通过本课程的教学,学生应该: (一)掌握铸造成型的基本原理,熟练掌握压铸成型的工艺及设备是使用方法; (二)熟练掌握塑性成型的工艺过程、设备的使用以及材料变形的控制; (三)掌握焊接成型的工艺原理、设备特征; (四)掌握粉末成型的工艺原理、设备特征。 三、课程的教学内容、重点和难点 第一章金属材料及其成型 一、金属材料 (一)碳素钢与合金钢 (二)铸钢 (三)有色金属及粉末冶金材 二、金属成型的种类及特点 (一)液态成型 (二)压力加工成型 (三)焊接成型 (四)粉末成型 三、金属成型制件的价值

(一)汽车工业 (二)飞机工业 (三)其他民用与国防工业 第二章金属液态成型——铸造成型 一、概述 二、铸造成形方法 (一)浇铸 (二)压铸 三、精铸成形 四、压铸成型和半固态成型 (一)压铸成型原理 (二)压铸的基本工艺过程 (三)铸件成形缺陷与防止措施 四、压铸设备 (一)压铸机及其工作原理 (二)压铸设备的技术参数 第三章金属塑性成型——压力加工成型 一、金属塑性成型基础 (一)金属的弹性与塑性变形 (二)应力应变关系——本构关系 (三)金属塑性成型的屈服理论 (四)金属压力加工成型的种类 二、锻压成型 (一)自由锻成型 (二)模锻成型 (三)锻压成型的工艺过程 三、冲压成型 (一)板材冲压成型 (二)冲压成型的工艺过程及特征 1.冲裁 2.弯曲 3.拉伸 (三)冲压成形材料 1.板料的冲压性能及试验方法

材料液态成型及控制

材料液态成型及控制 压成形过程中流场、温度场等问题进行数值模拟,得出电机鼠笼转子流变挤压铸造最佳工艺参数,最后采用挤压铸造法以AZ91D镁合金为基体制备了一种SiCp/AZ91D镁基复合材料, SiCp/AZ91D镁基复合材料经热处理后抗拉强度和伸7000系高强铝合金流变挤压铸造工艺,优化了工艺参数,对电机鼠笼转子流变挤长率都得到了大幅提升。 摘要:挤压铸造是一种对液态金属施加机械压力来保证其凝固结晶,获取高性能、高强铝合金流变挤压铸造的计算模型采用数值模拟和实验相结合的方法,研究低缺陷铸件的先进铸造工艺技术,首先文章从理论研究、设备制造、选用材料、生产工艺、主要零件等几大方面介绍了挤压铸造的发展历史,通过建立7000系关键词:液态成型;挤压铸造;液态模煅; 引言 挤压铸造( Squeeze Casting, SC) 又称液态模煅,是一种将一定量的液态金属注入模具型腔,然后施加较高的机械压力,使液态或半液态的金属在压力下低速充型、凝固和成形的技术。在国内外已广泛应用于汽车、摩托车的发动机外壳等重要零部件毛坯的生产。与其他铸造成形方法相比,挤压铸造技术具有选材范围宽、金属液利用率高(直接挤压铸造可达95%~98%)、铸件组织均匀致密、力学性能优良、表面光洁度和尺寸精度高等优点。与塑性成形方法相比,挤压铸造技术具有变形力和成形能较小、无需多道工序加工、可制造形状复杂的零件等特点。概言之,它是一种结合了铸造和塑性加工特点的短流程、高效、精确成形技术,广泛应用于机械、汽车、家电、航空、航天、国防等领域,生产高性能和高精度的零件[1]。 1挤压铸造技术介绍 挤压铸造成形方法根据工艺特点可以区分为直接法(Direct Squeeze Casting)和间接法(Indirect Squeeze Casting)[2]。 1.1直接挤压铸造法 直接挤压铸造方法是压力直接施加于金属熔体的整个液面上,模具不设充型系统,所以金属液凝固速度快,所获得的铸件组织致密,理论上可以生产出接近100%致密的铸件,这种方法适合于生产形状简单、对称结构的铸件,如活塞、卡钳、气缸等。该方法的主要缺点是浇入到型腔内的金属熔液必须精确定量,否则由于熔液量的变动使铸件尺寸精度不稳定;要求铸件向冲头方向单向凝固以保证压力有效传递,使制品的形状受到了限制,成形形状复杂铸件存在一定困难。1.2间接挤压铸造法 间接挤压铸造方法是首先将模具合模形成封闭模腔,压力作用在模腔外充型系统的金属熔体上,将金属熔体送入封闭的模腔保压成形。间接挤压铸造方法具有浇道长度短、截面大、充型速度低、保压时间长等优点,容易控制铸件尺寸,不需要配置精确的定量充型系统。该方法可充分利用充型装置中液态金属的热容量,使铸件易于成形和在压力下对零件进行补缩,因此适合生产形状复杂、壁厚不均、尺寸精度和表面粗糙度要求高的铸件。但是这种施压方式不会在铸件内形成塑性变形组织,铸件的力学性能低于直接法生产的铸件[3]。

材料成型及控制工程

材料成型及控制工程 材料成型及控制工程这个专业的就业前景 材料成型及控制工程是材料、机械、控制、计算机等多学科交叉融合的工程技术专业,主要研究金属材料、非金属材料、超导材料、微电子材料及特殊功能材料的成型设备与工艺、成型过程的自动化与智能控制、质量检测和可靠性评价等。随着各种新材料在各行各业中的广泛应用,加之我国新材料行业的产业结构调整与材料成型设备新技术的发展紧密相关,因此对既有材料科学知识,又能掌握材料成型设备设计和制造技术的高级科技人才的需求将有所增加。 材料成型及控制工程专业作为机械工程、材料工程、计算机应用技术相结合的宽口径高技术专业,培养工程材料、材料成型、模具设计与制造、计算机应用等领域内的高级工程技术人才。该专业包含材料成型工程、模具设计与制造多个方向。 材料成型工程是制造业的基础,是各类产品制造的先行和必备工序;模具工程是衡量一个国家工艺水平的重要标志,模具技术人才的社会需求量极大。本专业的学生应掌握机械工程、材料科学与工程、计算机应用技术等相关领域的基本原理、基本技能、基本工作能力,本专业的毕业生应能在机械、材料、模具、电子电器、检测、工业管理、技术贸易等领域内的大中型企业、科研及设计部门中胜任新材料设计开发、材料成型工艺设计、材料的检测与质量控制、模具设计与制造、热处理与表面处理、计算机应用、企业信息化,以及管理、教学、技术贸易和其它技术工作。 材料成型及控制工程专业毕业生就业前景非常好,就业领域宽,可在机械、电子、电器、汽车、仪器仪表、能源、交通、航空航天等行业内从事材料和产品的研究与开发、工艺设计、模具设计与制造、质量检测、经营销售及管理工作或在相关的研究部门和高校从事科技研究和教学。

材料成型知识点归纳总结

一、焊接部分 1.焊接是通过局部加热或同时加压,并且利用或不用填充材料,使两个分离的焊件达到牢固结合的一种连接方法。实质——金属原子间的结合。 2.应用:制造金属结构件;2、生产机械零件;3、焊补和堆焊。 3.特点:与铆接相比1 . 节省金属;2 . 密封性好;3 . 施工简便,生产率高。与铸造相比 1 . 工序简单,生产周期短;2 . 节省金属; 3 . 较易保证质量 4.焊条电弧焊:焊条电弧焊(手工电弧焊)是用电弧作为热源,利用手工操作焊条进行焊接的熔焊方法,简称手弧焊,是应用最为广泛的焊接方法。 5.焊接电弧:焊接电弧是在电极与工件之间的气体介质中长时间稳定放电现象,即局部气体有大量电子流通过的导电现象。电极可以是焊条、钨极和碳棒。用直流电焊机时有正接法和反接法. 6.引弧方式接触短路引弧高频高压引弧 7.常见接头形式:对接搭接角接T型接头 8.保护焊缝质量的措施:1、对熔池进行有效的保护,限制空气进入焊接区(药皮、焊剂和气体等)。2、渗加有用合金元素,调整焊缝的化学成分(锰铁、硅铁等)。3、进行脱氧和脱磷。 9.牌号J×××J-结构钢焊条××-熔敷金属抗拉强度最低值×-药皮类型及焊接电源种类 10.焊缝由熔池金属结晶而成。冷却凝固后形成由铁素体和少量珠光体组成的柱状晶铸态组织。 11.热影响区的组织过热区正火区部分相变区熔合区 12.影响焊缝质量的因素影响焊缝金属组织和性能的因素有焊接材料、焊接方法、焊接工艺参数、焊接操作方法、焊接接头形式、坡口和焊后热处理等。 13.改善焊接热影响区性能方法:1.用手工电弧焊或埋弧焊焊一般低碳钢结构时,热影响区较窄,焊后不处理即可保证使用。2.重要的钢结构或用电渣焊焊接构件,要用焊后热处理方法消除热影响区。3.碳素钢、低合金结构钢构件,用焊后正火消除。4.焊后不能接受热处理的金属材料或构件,要正确选择焊接方法与焊接工艺。 14.常见的焊接缺陷裂纹夹渣未焊透未熔合焊瘤气孔咬边 15.焊接应力的产生及变形的基本形式收缩变形弯曲变形波浪变形扭曲变形角变形 16.焊接应力与变形产生的原因焊接过程中,对焊件进行了局部不均匀的加热是产生焊接应力与变形。 17.防止和减少焊接变形的措施:可以从设计和工艺两方面综合考虑来降低焊接应力。在设计焊接结构时,应采用刚性较小的接头形式,尽量减少焊缝数量和截面尺寸,避免焊缝集中等。 18.矫正焊接变形的方法机械矫正法火焰加热矫正法 19.坡口:焊件较薄时,在焊件接头处只需留出一定的间隙,用单面焊或双面焊,就可以保证焊透。焊件较厚时,为保证焊透,需预先将接头处加工成一定几何形状的坡口。 20.焊缝位置:熔焊时,焊缝所处的空间位置称为焊接位置。它有平焊、立焊、横焊和仰焊等四种。 21.埋弧自动焊的焊接电弧是在熔剂下燃烧,其引弧,维持一定弧长和向前移动电弧等主要焊接动作都由机械设备自动完成,故称为埋弧自动焊。 22.埋弧自动焊特点:1.生产率高2.焊缝质量好3.节省焊接材料和电能4.改善了劳动条件5.焊件变形小6.设备费用一次性投资较大。但由于埋弧焊是利用焊剂堆积进行焊接的,故只适用于平焊和直焊缝,不能焊空间位置焊缝及不规则焊缝。 23.自动焊工艺:仔细下料、清洁表面、准备坡口和装配点固。 24.气体保护焊:用外加气体作为电弧介质并保护电弧和焊接区的电弧焊。按照保护气体的不同,气体保护焊分为两类:使用惰性气体作为保护的称惰性气体保护焊,包括氩弧焊、氦弧焊、混合气体保护焊等;使用CO2气体作为保护的气体保护焊,简称CO2焊。特点:保护气体廉价,成本低;热量集中,焊速快,不用清渣,生产率高;明弧操作,焊接方便;热影响区小,质量好,尤其适合焊接薄板。主要用于30mm 以下厚度的低碳钢和部分合金结构钢。缺点是熔滴飞溅较为严重,焊缝不光滑,弧光强烈操作不当,易产生气孔。焊接工艺规范:采用直流反接,低电压(小于36V)和大电流密度。

常用金属材料及其成形

第七章常用金属材料及其成形 这是用铸造方法生产出的电机外壳 金属材料在许多领域中的应用都十分广泛,特别是在机械行业中更是主要的使用对象。要合理的选择材料和成形加工方法,就要掌握和了解金属材料的种类、性能特点、成形加工方法和应用范围等知识。学习本章后应掌握和应了解的具体内容如下: 1.铸造成形的方法,工艺技术 2.几种常用铸造方法的工艺过程、特点,适用铸造合金,应用范围 3. 锻造成形的方法,设备,工艺技术 4. 锻造毛坯的组织和性能特点,应用范围 5.冲压成形的加工对象,基本工序 6.钢的分类、牌号,性能特点,应用 7.铸铁的分类,组织和性能特点,应用 8.非铁金属的分类,性能特点,应用 金属材料包括钢铁(黑色金属)和非铁(有色)金属两大类。钢铁材料在各个领域中的应用都十分广泛,尤其在机械行业中更是起到基础材料的作用。 金属材料的主要成形技术——铸造和锻造由来已久,是人类最早应用的工业技术。直到现在高科技迅速发展的信息时代,这些传统的工艺技术仍在不断发展,仍在起着不可替代的重要作用。 通过本章的学习,你将了解到:金属材料的种类,各种金属材料的性能特点、应用范围,金属成

形加工的方法、工艺过程、特点和应用。这些知识都是工程师和设计师所必需的基础知识。 7.1.1 概述 金属零件的制造过程一般包括毛坯成形和对毛坯的切削加工,有时需要进行热处理以获得所希望的性能(见图7.1-1)。金属成形方法主要指获得毛坯的生产加工方法。工业上应用的金属成形方法(即毛坯生产方法)主要有:铸造,压力加工,焊接,粉末冶金等(见图7.1-2)。 图7.1-1机器生产过程示意图 图7.1-2金属毛坯的生产方法及其分类 图7.1-2列举了一些主要的金属成形方法。每一种成形方法都有自己的特点和适用范围,所应用的

浅谈我对材料成型及控制的认识

浅谈我对材料成型及控制的认识在大学里,我学的专业是材料成型及控制工程。很多人会以为这是一个材料系的专业,其实不是,它是属于机电学院的。高考填报志愿的时候,虽然专业是我自己选的,但是当时了解得也并不多,只是有个粗略的了解。经过一年的学习,现在对这个专业有了更深的了解。 我们这个专业的培养目标是:培养具备金属、塑料等材料的产品、工艺与模具方面的知识,能运用计算机技术进行产品、工艺与模具的设计、运用数控加工技术进行成型模具的制造,能从事产品及模具的试验研究、生产管理、经营销售等方面的高级工程技术人才。培养具备材料加工基本原理、计算机控制及信息学科的知识和技能,掌握材料加工成形过程的自动化与人工智能、专家信息系统的建立与开发、机械零件及工模具的计算机辅助设计与制造、新材料制备与加工、先进成形加工技术与设备、材料组织与性能的分析及控制等专业知识,能够从事材料加工、计算机和信息技术应用领域的产品和技术开发、设计制造、质量控制、经营管理等方面的高级工程技术人才。 材料成型及控制工程专业研究通过热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。本学科是国民经济发展的支柱产业。

材料成型及控制工程专业是一个大专业,它的专业知识包含了一般机械加工厂中的所有热加工车间的技术知识。我校的材料成型及控制工程专业有四个发展方向,即铸造、锻压、焊接及塑料成型。个人来讲,我对铸造成型比较感兴趣,对铸造也有更深的了解。 铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代制造工业的基础工艺之一。 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。 铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金; ③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处

金属材料的液态成型

第一章金属材料的液态成形 1.1概述 金属的液态成型常称为铸造,铸造成形技术的历史悠久。早在5000多年前,我们的祖先就能铸造红铜和青铜制品。铸造是应用最广泛的金属液态成型工艺。它是将液态金属浇注到铸型型腔中,待其冷却凝固后,获得一定形状的毛坯或零件的方法。在机器设备中液态成型件所占比例很大,在机床、燃机、矿山机械、重型机械中液态成型件占总重量的70%~90%;在汽车、拖拉机中占50%~70%;在农业机械中占40%~70%。液态成型工艺能得到如此广泛的应用,是因为它具有如下的优点: (1)可制造出腔、外形很复杂的毛坯。如各种箱体、机床床身、汽缸体、缸盖等。 (2)工艺灵活性大,适应性广。液态成型件的大小几乎不限,其重量可由几克到几百吨,其壁厚可由0.5mm到1m左右。工业上凡能溶化成液态的金属材料均可用于液态成型。对于塑性很差的铸铁,液态成型是生产其毛坯或零件的唯一的方法。 (3)液态成型件成本较低。液态成型可直接利用废机件和切屑,设备费用较低。同时,液态成型件加工余量小,节约金属。 但是,金属液态成型的工序多,且难以精确控制,使得铸件质量不够稳定。与同种材料的锻件相比,因液态成型组织疏松、晶粒粗大,部易产生缩孔、缩松、气孔等缺陷。其机械性能较低。另外,劳动强度大,条件差。 近年来,随着液态成型新技术、新工艺、新设备、新材料的不断采用,使液态成型件的质量、尺寸精度、机械性能有了很大提高,劳动条件到底改善,使液态成型工艺的应用围更加广阔。 液态材料铸造成形技术的优点: (1)适应性强,几乎适用于所有金属材料。 (2)铸件形状复杂,特别是具有复杂腔的铸件,成形非常方便。 (3)铸件的大小不受限制,可以由几克重到上百吨。 (4)铸件的形状尺寸,组织性能稳定。 (5)铸造投资小、成本低,生产周期短。 液态材料铸造成形技术也存在着某些缺点: 如铸件部组织疏松,晶粒粗大,易产生缩孔、缩松、气孔等缺陷;而外部易产生粘砂、夹砂、砂眼等缺陷。另外铸件的力学性能低,特别是冲击韧性较低。铸造成形工艺较为复杂,且难以精确控制,使得铸件品质不够稳定。 铸造成形技术的发展: (1)提高尺寸精度和表面质量; (2)先进的造型技术及自动化生产线; (3)高效、节能,减少污染; (4)降低成本,改善劳动条件。 1.2 钢铁的生产过程 钢铁的生产过程是一个由铁矿石炼成生铁、再由生铁炼成钢液并浇注成钢锭的过 1.2.1 炼铁 炼铁在高炉中进行,其过程为:将铁矿石、焦碳和石灰石等按一定比例配成炉料,由加料车送入炉,形成料柱,加料完毕,将炉顶关闭。被热风炉加热到900~1200℃的热风,由炉壁上的风口吹入高炉下部,使焦碳燃烧,产生大量的炉气。炙热的炉气在炉上升,加热炉料,并

什么是材料成型及控制工程材料成型及控制工程主要学习什么

什么是材料成型及控制工程?材料成型及控制工程主要学习什么? 什么是材料成型及控制工程?材料成型及控制工程主要学习什 么?材料成型及控制工程是研究热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。是国民经济发展的支柱产业。 材料成型及控制工程专业分为四个培养模块: (一)焊接成型及控制: 培养能适应社会需求,掌握焊接成型的基础理论、金属材料的焊接、焊接检验、焊接方法及设备、焊接生产管理等全面知识的高级技术人才。 (二)铸造成型及控制 \ 这是目前社会最需要人才的专业之一。主要有砂型铸造、压力铸造、精密铸造、金属型铸造、低压铸造、挤压铸造等专业技术及专业内新技术发展方向。 (三)压力加工及控制 分为锻造和冲压两大专业方向,在国民经济中起到非常重要的作用。 (四)模具设计与制造: 掌握材料塑性成型加工的基础理论、模具的设计与制造、模具的计算机辅助设计、材料塑性加工生产管理等全面知识的高级技术人 才。 课程设置

主要课程:高等数学、大学物理、基础外语、马克思主义哲学原 理、计算机应用、机械制图、电工电子技术、金属学、材料冶金与成型工艺、材料成型设备及方法、材料成型微机应用、先进制造技术、检测技术与控制工程、技术经济、CAD/CA基础、表面工程学、焊接冶金学、金属材料焊接、焊接方法与焊接设备、焊接检验、塑性成型理论、橡塑材料成型工艺学、橡塑成型模具、金属冲压工艺与模具设计、模具制造技术等专业基础和专业课程知识等等。 培养特色 本专业涉及的知识面广、信息量大,注重英语能力、计算机能力和实际动手能力的培养,使学生具有很强的适应能力、创新能力、分析和解决问题的能力。另外还注重学生的素质教育,培养富有创新精神的高素质复合型人才。 未来方向 分析材料成形及控制工程专业的现状及存在的问题,在今后一段 时间内应开展以下几方面的研究工作: (1 )材料成形及控制工程专业的知识结构及课程的体系建设。 (2)机械、材料、控制、信息等多学科融合与本专业建设的关系。 (3)强化实践性教学环节,建设专业实习基地的问题。 (4)人才培养模式与市场需求的关系。 (5)专业教材建设的问题发展趋势材料成形及控制工程专业既不 完全是按照行业特点设立的专业,也不是按照学科特征设立的专业,因此其

金属材料成型工艺基础重点

第一章:金属的液态成型 一、充型: 1.充型概念:液态合金填充铸型的过程,简称充型。 2.充型能力:液态合金充满铸型型腔,获得形状完整、轮廓清晰铸件的能力。 ?充型能力不足时,会产生浇不足、冷隔、夹渣、气孔等缺陷 ?影响充型能力的主要因素 ?⑴合金的流动性—液态合金本身的流动能力 a 化学成分对流动性的影响—纯金属和共晶合金的成分的流动性好 b工艺条件对流动性的影响—浇注温度、充型能力、铸型阻力 c流动性的实验 ?⑵工艺条件:a、浇注温度一般T浇越高,液态金属的充型能力越强。 b、铸型填充条件—铸型的许热应力 c、充型压力:态金属在流动方向上所受的压力越大,充型能力越强。 d、铸件复杂程度:构复杂,流动阻力大,铸型的充填就困难 e、浇注系统的的结构浇注系统的结构越复杂,流动阻力越大,充型能力越差。 f、折算折算厚度也叫当量厚度或模数,为铸件体积与表面积之比。折算厚度大,热量散失慢,充型能力就好。铸件壁厚相同时,垂直壁比水平壁更容易充填。 ——影响铸型的热交换影响动力学的条件(充型时阻力的大小),必须在保证工艺条件下金属的流动性好充型能力才好。 二、冷却 ⑴影响凝固的方式的因素:a.合金的结晶温度范围—合金的结晶温度范围愈小,凝固区 域愈窄,愈倾向于逐层凝固。金属和共晶成分的合金是在恒温下结晶的。由表层向中心逐层推进(称为逐层凝固)方式,固体层内表面比较光滑,流动阻力小,流动性好。 b.铸件的温度梯度—在合金结晶温度范围已定的前提下,凝固区域的宽窄取决与铸 件内外层之间的温度差。若铸件内外层之间的温度差由小变大,则其对应的凝固区由宽变窄。 ⑵凝固: a.逐层凝固—充型能力强,便于防止缩孔、缩松。灰铸铁和铝硅合金等倾向于逐层凝固。 b.糊状凝固—充型能力差,难以获得结晶紧实的铸件球铁倾向于糊状凝固。 c.中间凝固— ⑶收缩:a.液态收缩从浇注温度到凝固开始温度之间的收缩。由温度下降引起。 T浇—T液用体收缩率表示 b.凝固收缩从凝固开始到凝固终止温度间的收缩。由状态改变、温度下降和相 变三部分组成。 T液—T固用体收缩率表示 ——液态收缩与凝固收缩产生的缺陷:1)缩孔 产生部位:通常在铸件上部,或最后凝固的部分,呈倒锥形,内表面粗糙。 产生条件:铸件由表及里地逐层凝固,即纯金属或共晶成分的合金易产生缩孔。 影响因素:合金的液态收缩↑,凝固收缩↑→缩孔容积↑浇注温度↑→缩孔容积↑;铸件较厚→缩孔容积↑ 2)缩松 缩松:分散在铸件某些区域内的细小孔洞,分为宏观缩松和显微缩松两种,显微缩松分布更为广泛。

材料成型工艺

问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别?

对材料成型及其控制工程的认识

对材料成型及其控制工程的认识通过这几周对专业概论的学习,我对这个专业大致的了解了,刚进入大学的我什么都不知道,然而现在我知道这个专业将来可以去做什么,了解了本专业是以铸造、锻压、焊接为主。 材料成型及控制工程是研究热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。是国民经济发展的支柱产业。也是我国较多工科院校开设的重要专业。材料成形加工行业是制造业的重要组成部分,材料成形加工技术是汽车、电力、石化、造船及机械等支柱产业的基础制造技术,新一代材料加工技术也是先进制造技术的重要内容。铸造、锻造及焊接等材料加工技术是国民经济可持续发展的主体技术。 据统计,全世界75%的钢材经塑性加工成形,45%的金属结构用焊接得以成形。又如我国铸件年产量已超过1400万t,是世界铸件生产第一大国。汽车结构中65%以上仍由钢材、铝合金、铸铁等材料通过铸造、锻压、焊接等加工方法成形。对材料加工与成型的工艺的认识: 材料加工与成型的工艺分类主要按照材料的种类可分为金属塑性成形工艺及非金属成型加工。 金属塑性成形工艺是指利用金属的塑性变形来获得一定形状、尺寸和组织性能的成形加工方法。金属塑性成形的一般特点是生产率高、生成效率高、节约原材料、节约能源、降低成本。其中突出的优点为内部组织得以改善,性能

提高。但也存在缺点,像通常需要较大的成形力,设备体积、吨位较大;为 了提高被加工材料的塑性、降低成形力,有时需要加热,脆性材料、形状过于复杂的零件不能进行塑性成形。金属塑性成形工艺可应用于以下领域,特别是重要的零件:汽车(连杆、曲轴、大梁、齿轮、轴等)飞机(发

金属材料成型原理

金属材料成型原理 铸造部分 *液态金属的判断方法:间接法:通过固——液态、固——气态转变后的一些物理性质的变 化判断液态原子的结合状况。 直接法:通过液态金属的X射线或中子线的结构分析研究液态的原子 排列情况。 偶分布函数:距某一参考粒子r处找到另一粒子的概率 液态金属结构的主要特征:进程有序(存在很多不停游离的居于有序的原子集团),远程无 序(不具备对称性、平移性) 三种起伏:能量起伏:能量高低不同 结构起伏:结构的此消彼长 浓度起伏:浓度分布不同 充型能力:液态金属充满型腔,获得外形完整、轮廓清晰的铸件的能力。 *影响充型能力的因素:金属性质、铸型性质、浇注条件、铸件结构 螺旋图P17 流动性的测定方法:螺旋线法、真空法p17 1-16 1-17 提高充型能力的措施:正确选择合金的成分、合理的熔炼工艺“高温出炉,低温浇注” 铸件凝固方式:逐层凝固方式、体积凝固方式、中间凝固方式(取决于凝固区域的宽度)影响铸件凝固方式的因素:合金成分、铸件断面温度梯度 金属凝固过程中的传热图P26-27 液态成型:将金属液浇入铸型后,凝固后获得一定形状和性能的铸件的方法 影响铸件温度场的因素:金属性质、铸型性质、浇注条件、铸件结构 均质形核:在没有任何外来界面的均匀熔体种的形核过程。 非均质形核:在不均匀熔体中依靠外来杂质或型壁界面提供的衬底进行形核的过程。 固液界面的微观结构分为:粗糙界面:界面固相一侧的点阵位置有一半左右为固相原子所占据。这些原子散乱地随机分布在界面上,形成一个坑坑洼洼、凹凸不平的界面层。 平整界面:固液界面固相一侧表面的点阵位置几乎全部为固相原子所占据,只留下少数空位或台阶,从而形成了一个整体上平整光滑的界面结构。 相变驱动力:固液两相自由能之差△G。 凝固过程中溶质分配的平衡条件:凝固界面上溶质迁移的平衡、固相液相内部扩散的平衡热过冷:金属凝固时所需的过冷度完全由传热所提供,仅由溶体实际温度分布决定 成分过冷:由溶质再分配导致界面前方溶体成分及其凝固温度发生变化而引起的过冷度成为成分过冷。产生条件:平衡液相凝固温度大于同一点的实际温度(纯金属或共晶合 金的金属无成分过冷) 溶质再分配:从形核到结晶完毕,固液两相内部不断进行着溶质元素的重新分配的过程。平衡结晶:在结晶过程中,固液两相都能通过充分传质而使成分完全均匀并达到平衡相图对应温度的平衡成分。

相关文档
最新文档