基本初等函数和函数的应用知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页共 4 页

基本初等函数和函数的应用知识点总结

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,

其中n >1,且n ∈N *.

◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。当n 是奇数时,a

a n n =,当n 是偶数时,??

?<≥-==)

0()0(||a a a a a a n n 2.分数指数幂

正数的分数指数幂的意义,规定: )

1,,,0(*>∈>=n N n m a a a n m n m ,)1,,,0(11

*>∈>==-n N n m a a a a n m n m

n m

◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义

3.实数指数幂的运算性质

(1)r a ·

s r r a a +=),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>;

(3)

s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质

1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x

且叫做指数函数,其中x 是自变量,函数的定义域为R .

注意:指数函数的底数的取值范围,底数不能是负数、零和1. 因为负数对一些分数次方无意义,0的负数次方无意义。 2、指数函数的图象和性质

a>1 0

654321-1-4-22460

1 6

54

3

2

1

-1-4-224601

定义域 R

定义域 R 值域y >0

值域y >0 在R 上单调递增在R 上单调递减

非奇非偶函数非奇非偶函数函数图象都过定点(0,1) 函数图象都过定点(0,1)

对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;

二、对数函数 (一)对数

1.对数的概念:一般地,如果N a x

=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a —底数,N —真数,N a log —对数式)

说明:○1 注意底数的限制0>a ,且1≠a ; ○

2 x N N a a x =?=log ; ○

3 注意对数的书写格式. 两个重要对数:

1 常用对数:以10为底的对数N lg ; ○

2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化

幂值真数

b a = N ?log a N = b

底数

指数对数 (二)对数的运算性质

如果0>a ,且1≠a ,0>M ,0>N ,那么:

1 M a (log ·=)N M a log +N a log ; ○

2 =N

M

a log M a log -N a log ; ○

3 n a M log n =M a log )(R n ∈. 注意:换底公式

a

b

b c c a log log log =

(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).

利用换底公式推导下面的结论

N

a log

(1)b m n

b a n a m log log =

;

(2)a

b b a log 1log =. (二)对数函数

1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).

注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

2 对数函数对底数的限制:0(>a ,且)1≠a . 2、对数函数的性质: a>1

0

32.521.5

1

0.5-0.5

-1-1.5-2-2.5

-1

1

23456780

1

1

32.521.5

1

0.5

-0.5

-1

-1.5

-2

-2.5

-1

1

2345678

1

1

定义域x >0 定义域x >0 值域为R 值域为R 在R 上递增在R 上递减函数图象都过定点(1,0) 函数图象都过定点(1,0)

(三)幂函数

1、幂函数定义:一般地,形如α

x y =)(R a ∈的函数称为幂函数,其中α为常数. 2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;

(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.

函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函

数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数

)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)

(x f y =有零点.

3、函数零点的求法:

相关文档
最新文档