关于RFID天线设计阻抗匹配

合集下载

RFID:天线的基础知识(一)

RFID:天线的基础知识(一)

表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。

1.1 天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。

天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。

匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们日常维护中,用的较多的是驻波比和回波损耗。

一般移动通信天线的输入阻抗为50Ω。

驻波比:它是行波系数的倒数,其值在1到无穷大之间。

驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。

在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。

过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。

回波损耗:它是反射系数绝对值的倒数,以分贝值表示。

回波损耗的值在0dB的到无穷大之间,回波损耗越小表示匹配越差,回波损耗越大表示匹配越好。

0表示全反射,无穷大表示完全匹配。

在移动通信系统中,一般要求回波损耗大于14dB。

1.2 天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

另外,随着新技术的发展,最近又出现了一种双极化天线。

就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。

rfid天线设计原理

rfid天线设计原理

rfid天线设计原理
RFID(射频识别)天线设计的主要原理涉及射频工程和天线理论。

以下是一些基本原理:
* 共振频率:RFID系统中的天线应该共振于RFID标签工作的频率。

这通常是通过天线的物理尺寸和形状来实现的。

* 天线类型:天线类型包括标签天线和阅读器天线。

常见的天线类型包括螺旋天线、贴片天线、和线圈天线。

选择合适的天线类型取决于应用需求和使用环境。

* 阻抗匹配:天线的阻抗应该与RFID读写器的输出阻抗匹配,以确保最大功率传输。

通常,天线设计需要调整天线的电感和电容来实现阻抗匹配。

* 方向性:天线的方向性也是一个重要考虑因素。

有些应用需要全向性天线,而其他应用可能需要更为定向的天线。

* 极化:天线的极化应该与RFID标签的极化方向匹配。

通常,线性极化较为常见,但在某些应用中,如在金属表面上使用时,可能需要圆极化天线。

* 损耗:天线的损耗对系统性能有影响。

天线设计应该尽量降低损耗,以提高效率。

* 射频功率:天线设计需要考虑RFID系统的射频功率要求,以确保足够的信号强度用于标签的激活和通信。

天线设计是一个复杂的工程领域,需要深入理解射频工程和电磁场理论。

在设计过程中,通常需要使用模拟工具和测量设备,以优化天线的性能。

1。

考虑反射阻抗的13.56MHz RFID 读写器天线设计

考虑反射阻抗的13.56MHz RFID 读写器天线设计

考虑反射阻抗的13.56MHz RFID 读写器天线设计朱成卫上海交通大学微电子学院, 上海(200335)Email: dzhu@摘 要: 从能量的角度,可将应答器等价为读写器天线线圈上的反射阻抗。

应答器获得的能量和反射阻抗的功耗成正比。

在很多应用场合,反射阻抗远远大于读写器天线电感的内阻,在计算天线品质因数时是重要参数。

阻抗匹配的理想目标是使反射阻抗的功率最大,但为了衰减天线过高的空载品质因数往往偏离效率最高的设计方案。

读写器天线的谐振形式应包含反射阻抗进行计算并选择。

关键词: 射频识别;读写器;天线;反射阻抗;谐振;品质因数;阻抗匹配中图分类号 TN957.21. 引言大多数13.56MHz RFID 系统采用无源应答器。

当读写器、应答器天线面积接近、间距较小时,应答器功耗对读写器影响较大。

或者当工作磁场范围内存在多个应答器时,部分应答器按指令进入休眠之前的总功耗也较大。

有文献[1][2]为阻抗匹配而在天线上串、并电阻,但这并不等于应答器获得最大能量。

本文以应答器为负载,探讨了能量、品质因数和匹配问题。

2. 应答器得到的能量图1为13.56MHz 无源RFID 应答器的一种常见电路基本结构[3]。

应答器由天线和芯片组成,而芯片又包含整流(D 1~D 4)、储能(C 3)、降压(LDO)、EEPROM 、状态机、负载调制(D out 、M 1)等电路模块。

R 2是天线线圈L 2的内阻,C 2为谐振电容。

图1 应答器电路结构简图记P 2为应答器获得的能量在读写器发射时间内的平均值,记u 2为应答器天线的输出电压。

定义应答器等效负载 222||P u R L = (1)假设读写器天线线圈L 1和电容C 1串联谐振,且将天线前级抽象为输出电压u 1、阻抗Z S 的电压源,记R 1为L 1的内阻,则不包含读写器接收电路的RFID 系统可简化为图2。

图2 13.56MHz RFID 系统简化图 图3 以u Q2代替读写器 为减少高频辐射L 1上电流i 1应为简谐信号,即i 1=|i 1|cos ωt ,其变化率di 1 /dt = j ωi 1。

用于RFID系统的天线设计

用于RFID系统的天线设计

用于RFID系统的天线设计RFID(无线射频识别)技术是一种非接触式的自动识别技术,通过无线电波传输信息,实现物品的自动识别和追踪。

RFID系统主要由标签和阅读器组成,而天线则是连接标签和阅读器的关键组件。

天线的设计对于RFID系统的性能和可靠性有着至关重要的影响。

RFID系统通过无线电波进行通信,通常使用的是56 MHz的频率。

标签内置天线,用于接收来自阅读器的信号,并将信号传输到芯片中。

阅读器则通过天线发送信号,同时接收来自标签的信号。

图像处理技术也常常被用于RFID系统,以识别和解析标签上的信息。

天线设计是RFID系统设计的关键部分,主要包括以下步骤:方案选择:首先需要确定天线的类型和结构,根据应用场景的不同,可以选择不同的天线方案。

参数确定:在设计过程中,需要确定的参数包括天线的频率、增益、阻抗、波束宽度等。

这些参数的计算和选择将直接影响天线的性能。

设计仿真:利用仿真软件对设计进行模拟和分析,以验证设计的可行性和性能。

实验验证:制作样品,进行实际测试,以验证设计的有效性和可靠性。

在RFID系统的天线设计中,可能会遇到以下技术难题:阻抗匹配:天线与标签和阅读器之间的阻抗匹配是影响信号传输的重要因素。

如果阻抗不匹配,将会导致信号传输效率降低,甚至无法传输。

信号噪声比较:在复杂的电磁环境中,信号可能会受到各种噪声的干扰,如何提高天线的信噪比是一个关键问题。

针对以上技术难题,以下是一些可能的解决方案:采用全向波瓣天线或圆形天线:这些类型的天线具有较好的阻抗匹配特性,可以有效提高信号传输效率。

优化天线结构:通过改变天线的结构,可以改善天线的电气性能,减少信号噪声的影响。

使用滤波技术:滤波技术可以有效地抑制噪声,提高信号的信噪比。

天线设计在RFID系统中具有至关重要的地位。

正确的天线设计可以保证RFID系统的高性能和可靠性,进而广泛应用于供应链管理、门禁系统、支付系统等领域。

本文介绍了RFID系统和天线的基本原理、设计流程以及可能遇到的技术难题和解决方案。

RFID天线主要问题详解

RFID天线主要问题详解

RFID天线主要问题详解RFID天线问题1射频天线类型的选择必须使它的阻抗与自由空间和ASIC匹配。

方向性天线具有更少的辐射模式和返回损耗的干扰。

门禁系统可以使用短作用距离的无源标签。

引言在RF装置中,工作频率增加到微波区域的时候,天线与标签芯片之间的匹配问题变得更加严峻。

天线的目标是传输最大的能量进出标签芯片。

这需要仔细的设计天线和自由空间以及其相连的标签芯片的匹配。

本文考虑的频带是435MHz, 2.45 GHz 和 5.8 GHz,在零售商品中使用。

天线必须:足够的小以至于能够贴到需要的物品上;有全向或半球覆盖的方向性;提供最大可能的信号给标签的芯片;无论物品什么方向,天线的极化都能与读卡机的询问信号相匹配;具有鲁棒性;非常便宜。

在选择天线的时候的主要考虑是:天线的类型;天线的阻抗:在应用到物品上的RF的性能;在有其他的物品围绕贴标签物品时的RF性能。

RFID天线问题2可能的选择这里有两种使用方式:一)贴标签的物品被放在仓库中,有一个便携装置,可能是手持式,询问所有的物品,并且需要它们给予信息反馈信息;二)在仓库的门口安装读卡设配,询问并记录进出物品。

还有一个主要的选择是有源标签还是无源标签[1],[2]。

可选的天线在435 MHz, 2.45 GHz 和5.8 GHz频率是用的RFID系统中,可选的天线有几种,见下表,它们重点考虑了天线的尺寸。

这样的小天线的增益是有限的,增益的大小取决于辐射模式的类型,全向的天线具有峰值增益0到2dBi;方向性的天线的增益可以达到6dBi。

增益大小影响天线的作用距离。

下表中的前三个种类的天线是线极化的,但是微带面天线可以使圆极化的,对数螺旋天线仅仅是圆极化的。

由于RFID标签的方向性是不可控的,所以读卡机必须是圆极化的。

一个圆极化的标签天线可以产生3dB 以强的信号。

RFID天线问题3为了最大功率传输,天线后的芯片的输入阻抗必须和天线的输出阻抗匹配。

几十年来,设计天线与5 0 或70欧姆的阻抗匹配,但是可能设计天线具有其他的特性阻抗。

RFID系统的标签天线设计与应用综述

RFID系统的标签天线设计与应用综述

在实际应用中,北斗四臂螺旋天线需要满足多种要求。首先,它们需要能够 与卫星进行有效的通信,以确保导航信号的准确接收和发送。其次,四臂螺旋天 线需要有足够的耐用性和稳定性,以应对各种环境条件。此外,由于北斗卫星导 航系统广泛应用于定位、导航和管理等场景,因此四臂螺旋天线还需要具有较高 的安全性和隐私保护性。
在进行整流系统设计时,可以参考以下步骤:
1.确定整流系统的输入和输出参数:如电压、电流等。 2.选择合适的整流 二极管和电容:根据系统需求选择合适的器件,并考虑到成本和性能的平衡。 3. 设计电源管理电路:实现高效的电源管理,以满足电子标签芯片的能耗需求。
4.设计信号处理电路:对天线接收到的信号进行处理,得到稳定的直流电。 5.设计保护电路:防止电源异常、雷击等情况对电子标签芯片造成损害。 6.进 行仿真和优化:通过仿真软件对设计进行优化,提高整流系统的性能和稳定性。 7.制作样品并进行测试:制作整流系统样品,进行实际测试,根据测试结果对设 计进行改进。
参考内容
一、RFID标签天线
RFID (Radio Frequency Identification)是一种无线通信技术,通过无线 信号实现数据的传输和识别。RFID标签天线是RFID系统中的关键部分,负责接收 和发送信号。这些天线通常制成标签形状,可以直接附着在物体表面或嵌入物体 内部。
RFID标签天线的性能主要取决于其尺寸、形状、材料和阻抗匹配。一般来说, 标签天线的尺寸越小,其读取范围也越小。但随着技术的进步,小型化天线的读 取范围正在逐渐增大。形状方面,虽然矩形和圆形是最常见的标签天线形状,但 其他形状如八边形和蝴蝶形等也被广泛应用。材料的选择也会影响天线的性能, 如铜、铝等金属是常用的导电材料。而阻抗匹配则是影响RFID系统性能的关键因 素之一,需要仔细考虑以实现最佳的天线性能。

RFID与天线设计问题探讨讲解

RFID与天线设计问题探讨讲解

RFID与天线设计问题探讨在RFID的家族中,天线和RFID是同样重要的成员,RFID和天线相互依存,不可分割。

无论是阅读还是标签,无论是HF还是UHF,都离不开天线。

对于到底是先有RFID还是先有天线的问题,做射频和天线的人马上会跳出来说当然是先有天线了。

那么,大家有没有想过是先有RFID天线还是先有RFID硬件呢?有没有想过为什么HF的频率是13.56MHz,而UHF 的频率是840M-960MHz呢?关于LF、HF、UHF等故事很多,我这里就针对UHF RFID来讲一下是先有鸡(天线)还是先有蛋(RFID)的故事。

UHF RFID由来人们在长期使用条码之后发现条码有很多弊端,比如识别率比较低,容易被污染。

这个时候就想是不是有一种技术可以通过电磁波来实现通讯呢?因为电磁波通讯不需要介质阻挡,不会出现无法识别的问题,加上电磁波的穿透能力可以实现多个物品一起识别。

有了这个想法的科学家们兴奋了,就开始深入研究,发现条码的尺寸基本固定一般宽高分别小于3英寸(7.5cm)、5英寸(12.5cm),总面积小于12平方英寸(75cm*cm)。

大家现在通过观察UHF的标签可以发现,大部分面积都是天线只有中间的一个小黑点是芯片,也就是说这个RFID标签的大小主要是由天线尺寸决定的。

既然已经知道了天线尺寸那么就要选择工作频率了。

人们通过一组测试数据最终确定了RFID的频率。

测试是这样的:一个发射天线,一个接收天线(接收天线就是今后的RFID 天线),其中发射天线的输出功率一定,接收天线的尺寸一定,看在不同的频率下接收天线能获得多少能量,当然如果设定了开启阈值(今后的标签灵敏度)就相当于频率与距离的关系,如图1所示为不同频率下的工作距离图。

图1 不同频率下的工作距离图从图中可以看到,在频率800-1G的情况下工作距离是最远的。

其实早期的手机频率也是在这个频率范围,就是因为早期的手机尺寸(早期的手机尺寸都很大,天线很长)也是这么大,最终做手机协议的科学家就定下了这个频率。

一款实用的UHF RFID标签天线设计

一款实用的UHF RFID标签天线设计

超高频标签天线快速设计标签天线设计指标与结构分析本论文所设计的天线就小型化,结构简单易加工,与相应的标签芯片共轭匹配,并且保持天线各项性能完全达到指标。

标签天线设计指标:1、天线阻抗与选用芯片阻抗共轭匹配;2、工作频带为920MHz,带内驻波比低于2;3、线极化,带宽内增益不低于2dBi,具有全向辐射特性;4、小尺寸,结构紧凑。

设计了如下标签天线,如图5.1所示:L1L2图5.1简易天线的结构天线结构介质基底所采用的为FR4材质,介质尺寸32×32(mm2)介电常数ε是4.4,厚度为0.4mm,损耗是0.02,芯片尺寸0.2mm*0.2mm,天线整体尺寸为2π⨯(mm3),弯折偶极子天线的参数尺寸如表5-1所示:12.50.4表5-1天线尺寸详细对照表天线的实物图如图5.2以及天线接上测试架的实物图,天线和测试架之间通过导电银胶粘连进行测试,如图5.3所示:图5.2 实物天线图5.3接上测试架的天线标签天线仿真及测试结果的分析本论文使用HFSS作为本文天线的仿真软件,以及测试所采用的仪器是安捷伦E8357A矢量网分仪,双端口S参数测试方法,以及设计标签天线依据的是IT 公司研发的UI型超高频RFID标签芯片。

测得该芯片在920MHz的阻抗约为1.9j198.4-Ω,标签天线的仿真结果和实际测试分析如图5.4所示,标签天线输入阻抗的虚部,位于谐振频率附近时,相对平坦,可以让标签天线与标签芯片在较宽的频段内实现共轭匹配,标签天线仿真的阻抗在920MHz 时阻抗约为1.87j 197.13+Ω,实测标签天线频率在920MHz 时的阻抗为2.07j 196.30+Ω,S 11相比于仿真结果,谐振频率向左偏移了2MHz 左右,不影响天线的实际应用,实测结果和仿真结果近似,能达到和芯片实现共轭匹配。

11S 用来描述标签天线和芯片间阻抗匹配程度,11S 如图5.5所示:输入阻抗Freq(MHZ)S 11(d B )Freq(MHZ)图5.4实测和仿真输入阻抗对比图 图5.5 S11实测和仿真数据对比图V S W RFreq(GHZ)图5.6 电压驻波比VSWR图5.4和图5.6反应了标签芯片和天线的阻抗匹配状况,由实测图的结果可以得天线在谐振频率918MHz处的回波损耗为-25.34dB,由图5.6得电压驻波比为1.107(1<VSWR<1.5),由电压驻波比的值可以推算近97%的能量可以辐射出去,符合天线设计的要求。

RFID系统设计中的天线匹配技术研究

RFID系统设计中的天线匹配技术研究

RFID系统设计中的天线匹配技术研究RFID(Radio Frequency Identification)技术是一种无线通信技术,通过无线电信号识别特定目标并读取相关数据。

在RFID系统中,天线是至关重要的组成部分,它负责接收和发送无线电信号,直接影响RFID系统的性能和稳定性。

因此,天线的设计和匹配技术对RFID系统至关重要。

在RFID系统设计中,天线匹配技术是一个重要的研究方向。

天线的设计需要考虑到频率匹配、阻抗匹配和效率匹配等因素,以确保天线能够有效地与RFID标签进行通信。

频率匹配是指天线的工作频率必须与RFID系统的工作频率相匹配,否则通信会受到干扰或信号质量下降。

阻抗匹配是指天线的输入阻抗必须与RFID读写器的输出阻抗匹配,以确保信号传输的最大效率。

效率匹配是指天线的天线增益、辐射效率和方向性等性能指标需要匹配RFID系统的要求,以满足通信距离、数据传输速率等方面的需求。

天线匹配技术在RFID系统设计中的应用是多方面的。

首先,天线匹配技术可以提高RFID系统的识别率和识别距离。

通过精确匹配天线的工作频率和阻抗,可以提高信号传输的稳定性和可靠性,确保RFID系统能够准确地读取目标标签的数据。

其次,天线匹配技术可以降低系统的功耗和成本。

通过优化天线的设计和匹配技术,可以减少系统对功率的需求,降低系统的能耗,提高系统的使用寿命和稳定性。

最后,天线匹配技术还可以提高RFID系统在复杂环境下的抗干扰能力。

精确的天线匹配可以减少外部环境因素的影响,提高系统在复杂环境下的可靠性和稳定性。

总的来说,RFID系统设计中的天线匹配技术是一个复杂而重要的研究课题。

通过对天线的设计和匹配技术进行深入研究和优化,可以提高RFID系统的性能和稳定性,满足不同应用场景的需求。

未来,随着RFID技术的不断发展和应用范围的扩大,天线匹配技术将会成为RFID系统设计中的关键技术领域,为RFID技术的发展和应用提供更多可能性和机会。

RFID系统中阻抗匹配

RFID系统中阻抗匹配

RFID系统中阻抗匹配1 引言阻抗匹配问题是电子技术中的一项基本概念,通过匹配可以实现能量的最优传送,信号的最佳处理。

总之,匹配关乎着系统的性能,使匹配则是使系统的性能达到约定准则下的最优。

其实,阻抗匹配的概念还可扩展到整个电学之中,包括强电(以电能应用为主)与弱电(以信号检测与处理为主)两个大的领域。

再进一步,如果去掉阻抗的概念单就匹配而言,则其覆盖的范围将更为广阔,比如:在RFID技术应用中,技术与需求的满足涉及到匹配的问题等。

本文主要讨论阻抗匹配在电子技术中的应用,特别是在无源RFID标签与读写器天线端口阻抗匹配中的应用。

2 阻抗匹配的几种方式在电子技术中,电压(U/u)、电流(I/i)、电阻(R/r)或阻抗(Z/z)都是非常基本的电学概念,一个欧姆定律即将其贯穿起来,如式(1)所示:其中,阻抗具有较电阻更一般的概念。

基尔霍夫定律(KCL和KCL)则关系到一个子电路(一个闭合回路或一个闭包)的电压和电流应遵守的约束性关系。

讨论阻抗匹配的问题最常用到的另外一个概念是戴维南定理,它是一个将复杂电路等效成为单一阻抗与理想电压源相串联的转换,如图1所示。

其中,图1(a)中的NS和N分别为含有电源的阻抗网络和纯阻抗网络。

对于所研究的端口(A-A’),端口的电压与电流关系由戴维南定理保证了图1(a)和图1(b)的情况完全等效,再简化可得到图1(c)。

通过戴维南定理的等效转换,分析研究端口的阻抗匹配问题均可转化为图1(c)的模型来进行。

电源端的阻抗ZS和负载端的阻抗ZL可以分别写成如式(2)所示的形式:端口阻抗匹配问题的研究可以从2个基本方向来考虑:(1)方向1:源端固定,即RS和XS不可变,考虑负载端RL和XL与源端的阻抗匹配问题。

(2)方向2:负载端固定,即RL和XS不可变,考虑源端RS和XS与负载端的阻抗匹配问题。

下面以方向1,源端固定负载改变以实现匹配的问题为例讨论具体的匹配模式。

结合式(2)与图2(c),可能的端口阻抗匹配有如下5种模式:针对阻抗电路(由电源、电阻、电容、电感),如果电源的频率是可变的,或者涉及到多个不同频率的电源时(叠加定理可处理),则源端阻抗ZS和负载阻抗ZL均是频率的函数(电阻R 和电抗X)。

基于RFID的天线阻抗自动匹配技

基于RFID的天线阻抗自动匹配技

基于RFID的天线阻抗自动匹配技
 射频设别( Radio Frequency IdenTIficaTIon,RFID)技术是从20世纪90年代兴起并逐步走向成熟的一项自动识别技术,通过射频耦合方式进行非接触双向通信,达到目标识别和数据交换的目的。

RFID读写器在移动过程中,天线感应系数和阻抗的易变性造成读写器传输功率不必要的损耗和识别能力的下降。

对于读写器天线阻抗的匹配,国外一些大公司的研究已经转向自动匹配方面,并有了比较成功的案例,而国内应用研究主要还集中于手动匹配方面。

随着集成技术的发展,天线与读写器模块将向集成化发展,对于天线阻抗的匹配也将提出新的要求,而手动匹配是个耗时长且复杂的过程。

因此,天线阻抗的自动匹配技术也将成为一种发展趋势。

本文论证了天线阻抗的手动匹配方法,并在最大化应用集成元件的情况下,提出了一种新的适用于13. 56 MHz RFID读写器的天线阻抗自动匹配方法。

1 阻抗手动匹配技术。

RFID表征天线性能的主要参数

RFID表征天线性能的主要参数

RFID表征天线性能的主要参数1 天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。

天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。

匹配的优劣一般用四个参数参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们日常维护中,用的较多的是驻波比和回波损耗。

一般移动通信天线的输入阻抗为50&Omega;。

驻波比:它是行波系数的倒数,其值在1到无穷大之间。

驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。

在移动通信系统中,一般要求驻波比小于 1.5,但实际应用中VSWR应小于1.2。

过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。

回波损耗:它是反射系数绝对值的倒数,以分贝值表示。

回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。

0表示全反射,无穷大表示完全匹配。

在移动通信系统中,一般要求回波损耗大于14dB。

2 天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

另外,随着新技术的发展,最近又出现了一种双极化天线。

就其设计思路而言,一般分为垂直与水平极化和&plusmn;45&deg;极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是&plusmn;45&deg;极化方式。

基于MFRC500的RFID读写器的天线及匹配电路设计

基于MFRC500的RFID读写器的天线及匹配电路设计

·63·文章编号:1006-1576(2007)11-0063-02基于MF RC500的RFID 读写器的天线及匹配电路设计唐海琳,邹逢兴(国防科技大学 机电工程与自动化学院,湖南 长沙 410073)摘要:基于MF RC500的读写器的天线采用直接在PCB 板上制作的微带天线,需要设计天线线圈,使其符合电磁传播规律。

该电路要求使用无源的功率匹配网络将天线阻抗转为50Ω,然后由同轴电缆无辐射无损失的将功率从读写器传送给天线。

匹配电路设计首先需测出天线的等效电路,再计算出天线的品质因子,然后得出匹配电路的电容值。

关键词:射频识别;读写器;MF RC500;天线;匹配电路 中图分类号:TN98 文献标识码:ADesign of Antenna and Matching Circuit of Reader Based on MF RC500TANG Hai-lin, ZOU Feng-xing(School of Electromechanical Engineer & Automation, National University of Defense Technology, Changsha 410073, China) Abstract: The antenna of reader based on MF RC500 adopts striped antenna made from PCB, which must be complied with electromagnetism transmission law. In this circuit, it is required to convert the impedance of the antenna into 50Ω by passive power matched network, then the power will be transmitted from reader to antenna through the coaxial line without any loss. Firstly, the antenna’s equivalent circuit and quality factor will be calculated, then the capacitance value of matching circuit can be worked out.Keywords: Radio frequency identification (RFID); Reader; MF RC500; Antenna; Matching circuit0 引言射频识别(FID :Radio Frequency IDentification )是应用前景非常广泛的自动识别技术,整个系统包括读写器、标签和天线。

13.56MHzRFID阅读器直接匹配天线的设计

13.56MHzRFID阅读器直接匹配天线的设计

13.56MHzRFID阅读器直接匹配天线的设计1引言近年来,射频识别(RFID)技术取得了广泛的商业应用,特别是我国政府于2009年开始出台相关政策,提出要大力发展物联网技术与产业,而物联网的核心技术之一即为RFID。

在RFID系统中,天线作为能量的转换器,在发送和接收信息的过程中实现了电磁能量的相互转换。

因此,天线的性能好坏直接影响整个系统的性能。

本文设计的天线基于NXP公司的RC52X射频芯片,工作频率为13.56MHz,射频芯片通过匹配电路驱动天线工作。

该天线尺寸只有普通RFID阅读器天线的30%~50%。

通过安捷伦(Agilent)公司的ADS软件对天线及匹配电路进行仿真优化,天线S11小于-30dB,实现了很好的匹配。

实测表明,该天线的读卡距离达到35mm。

2天线设计13.56MHz的工作频率位于高频频段,其工作原理属于磁场耦合方式,通信距离较近(远小于其工作波长)[1]。

天线根据具体使用环境一般设计成矩形、圆形等[2-4]。

对于矩形天线,其关键几何参数有如下6个:天线线圈外围长度A;外围宽度B;导体宽度W;导体厚度t;线圈间距S与线圈圈数N,如图1所示。

这些参数对天线主要电参数电感值L有如下影响:增加天线的尺寸(长×宽),则电感增大;增加导体宽度W,则电感减小;增加线圈圈数N,则电感增大。

常用天线的电感L一般小于5μH,否则阻抗匹配较难实现。

综合以上因素以及电路加工工艺要求,本文设计的矩形天线的几何参数为:A=30mm,B=20mm,W=0.5mm,S=0.5mm,N=6,导体厚度t根据常用加工工艺取为0.035 mm。

图1 天线的几何尺寸天线基板采用的是柔性线路板(FPC),厚度为普通PCB硬板的十几分之一,重量也比硬板轻很多。

天线的外围尺寸只有普通阅读器天线的1/2~1/3,甚至更小,为阅读器节省了空间。

由于FPC板材可自由弯曲、折叠、卷绕,而轻微的弯曲基本不会影响天线的性能,所以也为天线在阅读器中的空间布局提供了很大的便利。

关于RFID天线设计阻抗匹配

关于RFID天线设计阻抗匹配

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。

阻抗匹配分为低频和高频两种情况讨论。

我们先从直流电压源驱动一个负载入手。

由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。

假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。

负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。

再来计算一下电阻R消耗的功率为:P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)=U*U*R/[(R-r)*(R-r)+4*R*r]=U*U/{[(R-r)*(R-r)/R]+4*r}对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。

注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R 上可获得最大输出功率Pmax=U*U/(4*r)。

即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。

对于纯电阻电路,此结论同样适用于低频电路及高频电路。

当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。

在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。

从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。

阻抗匹配分为低频和高频两种情况讨论。

我们先从直流电压源驱动一个负载入手。

由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。

假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。

负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。

再来计算一下电阻R消耗的功率为:P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)=U*U*R/[(R-r)*(R-r)+4*R*r]=U*U/{[(R-r)*(R-r)/R]+4*r}对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。

注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R 上可获得最大输出功率Pmax=U*U/(4*r)。

即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。

对于纯电阻电路,此结论同样适用于低频电路及高频电路。

当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。

在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。

从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。

有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。

在高频电路中,我们还必须考虑反射的问题。

当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。

如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。

为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。

传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。

例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。

另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。

因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。

实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。

这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。

为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。

如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。

如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。

当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。

第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。

第三,可以考虑使用串联/并联电阻的办法。

一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。

而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。

为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包。

如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。

但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。

相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况。

另一个例子,不知道大家有没有过这样的经历:就是看不清楼梯时上/下楼梯,当你以为还有楼梯时,就会出现“负载不匹配”这样的感觉了。

当然,也许这样的例子不太恰当,但我们可以拿它来理解负载不匹配时的反射情况。

阻抗匹配在高频设计中是一个常用的概念,这篇文章对这个“阻抗匹配”进行了比较好的解析。

回答了什么是阻抗匹配。

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。

要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。

改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。

如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。

重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

[编辑]调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。

最大功率传输定理,如果是高频的话,就是无反射波。

对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。

阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。

高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。

这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便.阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。

在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。

电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。

但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。

电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。

它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。

此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。

这种匹配条件称为共扼匹配。

一.阻抗匹配的研究在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。

阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。

例如我们在系统中设计中,很多采用的都是源段的串连匹配。

对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。

例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配;1、串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射.串联终端匹配后的信号传输具有以下特点:A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播;B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。

C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同;D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;?E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。

相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。

选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。

理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。

比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。

因此,对TTL或CMOS 电路来说,不可能有十分正确的匹配电阻,只能折中考虑。

链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。

否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。

可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。

相关文档
最新文档