两层板双面板如何控制50欧特性阻抗的设计技巧
两层板双面板如何控制50欧特性阻抗的设计技巧

两层板(双面板)如何控制50欧特性阻抗的设计技巧我们都知道,在射频电路的设计过程中,走线保持50欧姆的特性阻抗是一件很重要的事情,尤其是在Wi-Fi产品的射频电路设计过程中,由于工作频率很高(2.4GHz或者5.8GHz),特性阻抗的控制就显得更加重要了。
如果特性阻抗没有很好的控制在50欧姆,那么将会给射频工程师的工作带来很大的麻烦。
什么是特性阻抗?是指当导体中有电子”讯号”波形之传播时,其电压对电流的比值称为”阻抗Impedance”。
由于交流电路中或在高频情况下,原已混杂有其它因素(如容抗、感抗等)的”Resistance”,已不再只是简单直流电的”欧姆电阻”(OhmicResistance),故在电路中不宜再称为”电阻”,而应改称为”阻抗”。
不过到了真正用到”Impedance阻抗”的交流电情况时,免不了会造成混淆,为了有所区别起见,只好将电子讯号者称为”特性阻抗”。
电路板线路中的讯号传播时,影响其”特性阻抗”的因素有线路的截面积,线路与接地层之间绝绿材质的厚度,以及其介质常数等三项。
目前已有许多高频高传输速度的板子,已要求”特性阻抗”须控制在某一范围之内,则板子在制造过程中,必须认真考虑上述三项重要的参数以及其它配合的条件。
两层板如何有效的控制特性阻抗?在四层板或者六层板的时候,我们一般会在顶层(top)走射频的线,然后再第二层会是完整的地平面,这样顶层和第二层的之间的电介质是很薄的,顶层的线不用很宽就可以满足50欧姆的特性阻抗(在其他情况相同的情况下,走线越宽,特性阻抗越小)。
但是,在两层板的情况下,就不一样了。
两层板时,为了保证电路板的强度,我们不可能用很薄的电路板去做,这时,顶层和底层(参考面)之间的间距就会很大,如果还是用原来的办法控制50欧姆的特性阻抗,那么顶层的走线必须很宽。
例如我们假设板子的厚度是39.6mil(1mm),按照常规的做法,在Polar中设计,如下图线宽70mil,这是一个近乎荒谬的结论,简直令人抓狂。
两层板(双面板)如何控制50欧特性阻抗的设计技巧

两层板(双面板)如何控制50欧特性阻抗的设计技巧我们都知道,在射频电路的设计过程中,走线保持50欧姆的特性阻抗是一件很重要的事情,尤其是在Wi-Fi产品的射频电路设计过程中,由于工作频率很高(2.4GHz或者5.8GHz),特性阻抗的控制就显得更加重要了。
如果特性阻抗没有很好的控制在50欧姆,那么将会给射频工程师的工作带来很大的麻烦。
什么是特性阻抗?是指当导体中有电子”讯号”波形之传播时,其电压对电流的比值称为”阻抗Impedance”。
由于交流电路中或在高频情况下,原已混杂有其它因素(如容抗、感抗等)的”Resistance”,已不再只是简单直流电的”欧姆电阻”(OhmicResistance),故在电路中不宜再称为”电阻”,而应改称为”阻抗”。
不过到了真正用到”Impedance阻抗”的交流电情况时,免不了会造成混淆,为了有所区别起见,只好将电子讯号者称为”特性阻抗”。
电路板线路中的讯号传播时,影响其”特性阻抗”的因素有线路的截面积,线路与接地层之间绝绿材质的厚度,以及其介质常数等三项。
目前已有许多高频高传输速度的板子,已要求”特性阻抗”须控制在某一范围之内,则板子在制造过程中,必须认真考虑上述三项重要的参数以及其它配合的条件。
两层板如何有效的控制特性阻抗?在四层板或者六层板的时候,我们一般会在顶层(top)走射频的线,然后再第二层会是完整的地平面,这样顶层和第二层的之间的电介质是很薄的,顶层的线不用很宽就可以满足50欧姆的特性阻抗(在其他情况相同的情况下,走线越宽,特性阻抗越小)。
但是,在两层板的情况下,就不一样了。
两层板时,为了保证电路板的强度,我们不可能用很薄的电路板去做,这时,顶层和底层(参考面)之间的间距就会很大,如果还是用原来的办法控制50欧姆的特性阻抗,那么顶层的走线必须很宽。
例如我们假设板子的厚度是39.6mil(1mm),按照常规的做法,在Polar中设计,如下图线宽70mil,这是一个近乎荒谬的结论,简直令人抓狂。
双面板50欧姆阻抗走线

双面板50欧姆阻抗走线
双面板50欧姆阻抗走线是一种常用的电路板设计,用于传输
高频信号。
50欧姆阻抗是一种标准数值,适合于大部分高频
信号传输需求。
具体的双面板50欧姆阻抗走线设计包括以下几个步骤:
1. 材料选择:选择符合要求的介质材料,常见的材料有FR-4
玻璃纤维,Rogers高频材料等。
2. 走线宽度计算:根据所选用的材料特性和所要传输的信号频率,计算出合适的走线宽度。
50欧姆阻抗设计的关键是走线
的宽度,不同宽度对应不同阻抗。
3. 外层走线布局:将外层走线按照设计规则进行布局,确保走线宽度、间距和连线规则满足50欧姆阻抗要求。
4. 内层走线布局:对于双面板,通常还会有内层走线,同样需要按照设计规则进行布局。
5. 连接方式:外层走线和内层走线需要通过电气连接,常用的连接方式有通过电孔、过孔或通过Blind via和Buried via进行
连接。
6. 丝印和防腐蚀处理:最后还需要进行丝印标识和防腐蚀处理,以提高电路板的可靠性和寿命。
需要注意的是,双面板50欧姆阻抗走线设计对于设计师来说是一项较为复杂的工作。
在实际设计过程中,可能需要借助专业的CAD软件或咨询专业工程师来进行支持。
设计2层板,你需要记住如下7个设计规则

设计2层板,你需要记住如下7个设计规则本文的作者为大名鼎鼎的高速数字信号完整性专家Eric Bogatin,他是Signal Integrity Journal的技术编辑和Teledyne LeCroy信号完整性学院的院长,他还是美国科罗拉多大学博尔德分校ECEE部门的兼职教授。
下面是翻译自“Signal Integrity Journal“的一篇文章。
如果用面包板/杜邦线连接就能够让你的电路正常工作,那么用电路板来实现就不用考虑太多,只需要做到尽可能低的成本、方便生产和测试即可。
但如果性能很重要,用面包板的简单互连无法满足要求,或者你想养成良好的设计习惯,即便设计2层板,你也需要记住如下7个设计规则。
多数的2层电路板很难达到非常高的性能。
一般来讲,仅用2层电路板是很难对BGA封装的器件(例如FPGA或高端微处理器)进行布线的。
所以我们不谈高端主板,但很多的消费类产品,比如微控制器和物联网应用都是采用2层板构建的。
Ericr认为,即便市场上广被使用,历史悠久的2层板- Arduino Uno板(见下面的图1)在本文强调的7个好习惯方面都做的不够,存在着很大的改进空间。
我们试图避免的两个问题:PCB设计中的原理图只是标识了设计中使用的元器件以及它们之间的连接方式,并没有说明设计的信号或电源完整性性能,也就是说原理图中没有考虑实际的连线导致的一系列非理想的问题。
一旦在PCB上通过走线、过孔等对电信号建立了连接,实际达到的产品性能只会偏离理想值,会产生恶化,有可能会出现许多信号和电源完整性方面的问题,但两个最常见且影响最大的问题就是:由信号和返回路径环路之间的互感(地弹)导致的交调/串扰(Crosstalk)由于瞬态电流比较大的摆动导致的供电电源上的开关噪声图2为Arduino Uno板上测得的由于多个数字输出同时“开”/“关”导致的接地反弹。
同轴连接器控50欧姆阻抗

同轴连接器控50欧姆阻抗同轴连接器是一种常用的电子元器件,用于连接两个同轴电缆或设备。
它的主要作用是保持阻抗匹配,确保信号的传输质量。
50欧姆阻抗是同轴连接器最常见的阻抗值,它在电信、无线通信等领域得到广泛应用。
同轴连接器的结构相对简单,由外导体、绝缘体和内导体组成。
外导体通常是金属外壳,起到屏蔽作用,减少外部干扰;绝缘体用于隔离外导体和内导体,防止信号泄漏;内导体是信号传输的核心,负责将信号从一个设备传输到另一个设备。
同轴连接器的设计考虑了阻抗匹配的问题。
50欧姆阻抗是由传输介质的特性决定的,如同轴电缆的内径和外径、绝缘体的介电常数等。
为了保持阻抗匹配,同轴连接器的内导体和绝缘体的尺寸也需要精确控制。
这样,当信号通过同轴连接器时,能够得到最小的反射和衰减,保证信号的传输质量。
同轴连接器的安装非常简便,只需将两个同轴电缆的内导体和外导体插入连接器的插槽中,然后旋紧连接器的外壳即可。
连接器的设计使得连接牢固可靠,不易松动或断开。
同轴连接器的50欧姆阻抗广泛应用于各种通信系统中。
无论是手机、电视、计算机还是无线电设备,都需要使用同轴连接器来连接各个部件。
50欧姆阻抗的广泛应用使得不同设备之间的连接更加方便,同时也提高了信号传输的稳定性和可靠性。
总的来说,同轴连接器控制50欧姆阻抗是现代通信系统中不可或缺的一部分。
它通过精确的设计和安装,保证了信号的传输质量,使得各种设备之间的连接更加稳定可靠。
无论是在家庭中的电视机、无线路由器,还是在商业领域的通信设备中,同轴连接器都发挥着重要的作用。
这一技术的应用不仅简化了设备之间的连接,还提高了通信系统的性能,为人们的生活和工作带来了便利。
1.2,1.6 双面板差分阻抗设计线

成品板厚:1.2mm ,普通差分阻抗:设计线宽
7mil ,线距5mil ,
阻抗控制在100+/-10%欧姆(详见下图阻抗计算结果)成品板厚:1.2mm ,普通差分阻抗:设计线宽10mil ,线距5mil ,
阻抗控制在90+/-10%欧姆(详见下图阻抗计算结果)成品板厚:1.6mm ,普通差分阻抗:设计线宽7mil ,线距5mil ,
阻抗控制在100+/-10%欧姆(详见下图阻抗计算结果)成品板厚:1.2mm ,共面差分皮间距:6mil,阻抗控制在成品板厚:1.2mm ,共面差铜皮间距:5mil,阻抗控制成品板厚:1.6mm ,共面差分皮间距:6mil,阻抗控制在
成品板厚:1.6mm ,共面差分皮间距:5mil,阻抗控制在成品板厚:1.6mm ,普通差分阻抗:设计线宽10mil ,线距5mil ,阻抗控制在90+/-10%欧姆(详见下图阻抗计算结果)
面差分阻抗:设计线宽5mil,线距6mil,线到铜制在100+/-10%欧姆(详见下图阻抗计算结果)
共面差分阻抗:设计线宽6mil,线距5mil,线到抗控制在90+/-10%欧姆(详见下图阻抗计算结果)
面差分阻抗:设计线宽5mil,线距6mil,线到铜制在100+/-10%欧姆(详见下图阻抗计算结果)。
PCB生产工程阻抗制作规范

工程阻抗制作规范1.目的规范制作阻抗P C B的阻抗计算和阻抗图形设计方法,确保成品的阻抗符合规定。
2.适用范围适用于本厂客户要求阻抗控制的P C B的阻抗设计及之C A M制作的阻抗图形设计。
3.名词解释3.1特性阻抗(C h a r a c t e r i s t i c I m p e d a n c e):当一条导线与大地绝缘后,导线与大地彼此之间的阻抗。
3.2差分阻抗(D i f f e r e n t i a l I m p e d a n c e):二条平行导线与大地绝缘后的阻抗,两条导线与大地彼此之间的阻抗。
4.阻抗控制的制作规格范围一般地,对于成品产品来说,我司控制的阻抗值的规格范围为±10%,如客户又特别要求,可根据客户设计的产品结构或客户要求的阻抗规格制作。
4.1 与阻抗控制计算有关的各个材质的计算参数如下:⑴. 芯板:介电常数为4.5±0.2操作中,根据客户要求,以及产品的需要,可向板材供应商了解芯板的具体层压结构,然后依照该芯板的Prepreg配方的介电常数来计算。
⑵. 7628 PrepregA、介电常数为4.5±0.2B、压合后的介质厚度为(内层100%残铜理论值):RC%47 压合后的介质厚度为190±10UM,RC%43 压合后的介质厚度为180±15UM。
⑶. 2116 PrepregA、介电常数为4.3±0.2B、压合后的介质厚度为(内层100%残铜理论值):RC%54 压合后的介质厚度为118±10UM,RC%50 压合后的介质厚度为105±10UM。
⑷. 1080 PrepregA、介电常数为4.2±0.2B、压合后的介质厚度为(内层100%残铜理论值):RC68% 压合后的介质厚度为71±8UM,RC%62 压合后的介质厚度为65±8UM。
⑸. 当选用几种Prepreg同时压合时,则采用最高的介电常数与最低的介电常数的平均值进行计算。
两层板(双面板)如何控制50欧特性阻抗的设计技巧

两层板(双面板)如何控制50欧特性阻抗的设计技巧我们都知道,在射频电路的设计过程中,走线保持50欧姆的特性阻抗是一件很重要的事情,尤其是在Wi-Fi产品的射频电路设计过程中,由于工作频率很高(2.4GHz或者5.8GHz),特性阻抗的控制就显得更加重要了。
如果特性阻抗没有很好的控制在50欧姆,那么将会给射频工程师的工作带来很大的麻烦。
什么是特性阻抗?是指当导体中有电子”讯号”波形之传播时,其电压对电流的比值称为”阻抗Impedance”。
由于交流电路中或在高频情况下,原已混杂有其它因素(如容抗、感抗等)的”Resistance”,已不再只是简单直流电的”欧姆电阻”(OhmicResistance),故在电路中不宜再称为”电阻”,而应改称为”阻抗”。
不过到了真正用到”Impedance阻抗”的交流电情况时,免不了会造成混淆,为了有所区别起见,只好将电子讯号者称为”特性阻抗”。
电路板线路中的讯号传播时,影响其”特性阻抗”的因素有线路的截面积,线路与接地层之间绝绿材质的厚度,以及其介质常数等三项。
目前已有许多高频高传输速度的板子,已要求”特性阻抗”须控制在某一范围之内,则板子在制造过程中,必须认真考虑上述三项重要的参数以及其它配合的条件。
两层板如何有效的控制特性阻抗?在四层板或者六层板的时候,我们一般会在顶层(top)走射频的线,然后再第二层会是完整的地平面,这样顶层和第二层的之间的电介质是很薄的,顶层的线不用很宽就可以满足50欧姆的特性阻抗(在其他情况相同的情况下,走线越宽,特性阻抗越小)。
但是,在两层板的情况下,就不一样了。
两层板时,为了保证电路板的强度,我们不可能用很薄的电路板去做,这时,顶层和底层(参考面)之间的间距就会很大,如果还是用原来的办法控制50欧姆的特性阻抗,那么顶层的走线必须很宽。
例如我们假设板子的厚度是39.6mil(1mm),按照常规的做法,在Polar中设计,如下图线宽70mil,这是一个近乎荒谬的结论,简直令人抓狂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两层板(双面板)如何控制50欧特性阻抗的设计技巧
我们都知道,在射频电路的设计过程中,走线保持50欧姆的特性阻抗是一件很重要的事情,尤其是在Wi-Fi产品的射频电路设计过程中,由于工作频率很高(2.4GHz或者5.8GHz),特性阻抗的控制就显得更加重要了。
如果特性阻抗没有很好的控制在50欧姆,那么将会给射频工程师的工作带来很大的麻烦。
什么是特性阻抗?
是指当导体中有电子”讯号”波形之传播时,其电压对电流的比值称为”阻抗Impedance”。
由于交流电路中或在高频情况下,原已混杂有其它因素(如容抗、感抗等)的”Resistance”,已不再只是简单直流电的”欧姆电阻”(OhmicResistance),故在电路中不宜再称为”电阻”,而应改称为”阻抗”。
不过到了真正用到”Impedance阻抗”的交流电情况时,免不了会造成混淆,为了有所区别起见,只好将电子讯号者称为”特性阻抗”。
电路板线路中的讯号传播时,影响其”特性阻抗”的因素有线路的截面积,线路与接地层之间绝绿材质的厚度,以及其介质常数等三项。
目前已有许多高频高传输速度的板子,已要求”特性阻抗”须控制在某一范围之内,则板子在制造过程中,必须认真考虑上述三项重要的参数以及其它配合的条件。
两层板如何有效的控制特性阻抗?
在四层板或者六层板的时候,我们一般会在顶层(top)走射频的线,然后再第二层会是完整的地平面,这样顶层和第二层的之间的电介质是很薄的,顶层的线不用很宽就可以满足50欧姆的特性阻抗(在其他情况相同的情况下,走线越宽,特性阻抗越小)。
但是,在两层板的情况下,就不一样了。
两层板时,为了保证电路板的强度,我们不可能用很薄的电路板去做,这时,顶层和底层(参考面)之间的间距就会很大,如果还是用原来的办法控制50欧姆的特性阻抗,那么顶层的走线必须很宽。
例如我们假设板子的厚度是
39.6mil(1mm),按照常规的做法,在Polar中设计,如下图
线宽70mil,这是一个近乎荒谬的结论,简直令人抓狂。
在2.4GHz或者5GHz频段,各种元件的引脚都是很小的,70mil的走线是无法实现的,于是,我们必须寻找另外一种解决方案。
运行Polar软件,选择Surface Coplanar Line这个模型,如下图
令Height(H)=39.6mil, Track(W)=30mil, Track(W1)=30mil, Ground Plane处打勾,Thickness=1OZ=1.4mil, Separation(S)=7mil, Dielectric(Er)=4.2, 如下图
然后点击“Press To Caculate”,在弹出的对话框中点击“Continue”,如下图
最终,我们计算出这种情况下的传输线特性阻抗为52.14欧姆,符合要求,如下图:
这样,我们采用Surface Coplanar Line这种模型,就可以很好的控制两层板(双面板)的特性阻抗,在上面的例子中,我们使用30mil的线宽就可以获得50欧姆的特性阻抗
_______________________________________________________________________________ ____
手机布线宽度?匹配50欧!
如果是6层板!走线宽度L1=mil?L2=mil?L4=mil?各为多少?
如果是8层板!走线宽度L1=mil?L2=mil?L5=mil?各为多少?
用阻抗线软件算一下就行,或和板厂的计算至有差异,主要是介质,及层间厚度,可以问板厂索取这些资料。
最好和PCB厂家联系一下,根据材料的介电常数、层叠厚度计算。
最好要PCB厂给出板子的参数,什么类型的板子?每层间距?铜皮厚度…………………………这样输入到阻抗计算软件里就出来了,不过好多东西还是要经验的,例如:FR4-PCB的Er取多少呢?等等
我来回答:FR4的Er一般为3.8~4.3,我取4.2,6层板的板厚一般为0.8mm,8层板一般为1mm,首先你要保证板厚,然后根据软件的W,H,T,Er来计算阻抗。
你是先知道50ohm阻抗的,然后推算其中的H和W,T一般取1mil,整个板子应该是对称结构。
一般经验值microtrip 为4~5mil,PA以后到天线部分为8milYISH\
8mil以上。
stripline要根据是否挖铜来计算。
不挖铜就是软件的对称带状线计算方法。
一般内层信号的会衰减。
8mil不对!要考虑到是否挖铜!还有每层宽都不同!
介质厚度、铜箔厚度没有定论,看你设计时怎么安排了。
8层为例,一般铜箔1/3OZ或1/2OZ,两侧RCC介质0.07mm,FR4和core厚度也可选,具体看厂家参数了。
俺不懂原理
RF信号阻抗要控制在50ohm+/-10%:
个人经验线宽:
微带线:8层板18MIL 6层板12MIL
带状线:8层板6MIL 6层板5MIL
请批评指正!
请问上面的微带线和带状线在layout中你怎样去设计和区分?
其实在设计pcb走线的时候我们首先就可以控制它的阻抗一般阻抗控制再50ohm以内的话线宽设置是20mil,pcb材料一般是用FR4.介电常数是3.8-4.3,板厚是1mm。
铜箔厚度是35um~70um
————————————————————————————————————————————
CC2430用陶瓷天线性能还不如PCB天线
CC2430用陶瓷天线是-26dBm,传输距离只有10米左右。
而用PCB天线则有-17dBm,传输距离有37米左右。
听说CC2430不加PA能做到100米,不知是否确实如此,用的是什么天线?
应该是陶瓷天线的谐振点不对,通常PCB天线的谐振频率比工作频率高一些,可以在天线另一端加一小段走线,微调谐振频率
要自己调谐振与阻抗匹配。
陶瓷天线的增益比较低,而PCB天线却可以将增益做得较高,实际使用中要注意匹配以及选择带宽、中心频率适当的天线,有些山寨天线是很差的。
陶瓷天线的增益比较低,而PCB天线却可以将增益做得较高,实际使用中要注意匹配以及选择带宽、中心频率适当的天线,有些山寨天线是很差的。
PCB天线用的是TI的倒F型,陶瓷天线用的是an9520,应该是没有匹配好。
经过调整陶瓷天线的方向,现在和PCB天线基本相同,匹配还有调整的空间。
希望能达到50米。
目前测试只有22米
陶瓷天线的效果对匹配非常敏感,而且在实际应用时其方向性往往比较强。
CC2530 PCB天线也就 37米的样子
————————————————————
天线中的铺地,很讲究
我的平行线传输知识懂的不多,不过发现一个很有趣的现象:PCB天线下方从来不铺地,而馈线下方都是铺上地的,因此馈线再长再细阻抗也比天线小很多。
可以这么理解吗?
PCB天线的走线一般要有进空区(所以有时天线下不铺地),是为了防止地将信号散弹,影响接收效果,使全向天线有方向性了。
馈线下方铺地是为了将传输线阻抗匹配到50欧姆,不至于将信号在线上损失掉,从而影响接收。
理论上讲馈线应该越短越好。
但是现实中做不到,只能根据实际情况和经验了。
天线和馈电的参数不是一会儿是,前者是为了将能量辐射出去,而后者是为了保证能量的传输同时尽量减小损耗。
馈线下方有地这是微带线自身的结构特性,在介质基板选定时,线宽与其特性阻抗成反比,其辐射的能量很小,起的是能量传输的作用。
天线的下方有没有地、天线的输入阻抗的大小是与具体的天线形式有直接关系的,对于手机上常用的PIFA 而言,如果下方有了地,它就不再是PIFA了,其辐射特性也完全变了。
而对于常规的矩形微带贴片天线而言,如果辐射贴片下方没有地它也就完全不是那么回事儿了。
多谢楼上两位。
我用的天线不是标准50欧姆的,而是直接匹配到一对差分端口上的双极性天线。
阻抗大概要200多欧姆。
我已经用ADS将天线调匹配,现在还需要引两根馈线连接端口和天线。
估计采用宽0.3毫米,长度最长不超过3毫米,敷铜厚度0.06毫米的PCB走线,反面的BOTTOM层铺地,阻抗可以忽略不计吗?我用ADS的那个LINECAL工具貌似只能算不铺地情况下的。
把你的模型放到HFSS里计算一下不就知道了?。