期权定价的数值方法
金融工程学 第六章
55.13
5.13
52.5 股票 50
2.5
49.88 C
0
47.5
045.130 NhomakorabeaCuu
p r d 0.54 ud
Cu
C
Cud
Cd
Cu
1 r
pCuu
1
pCud
2.76
Cd 0
Cdd
C 1.48
4/13/2020
15
美式看跌期权—可能提前执行
55.13
0
0
52.5 股票 50
49.88 P
金矿估价(亿) 14.67 14.59 14.58 14.55 14.50 14.49 14.26
24
小结
在合适的情况下尽可能用Black-Scholes 模型,因为它比二叉树简单。但在 Black-Scholes模型束手无策的复杂情况 下(如存在交易费用,美式期权等), 二叉树模型大有用武之地。
4/13/2020
20
停业决策和开业决策
437
394
355
355
320
320
288
288
259
233
黄金价格二叉树 u=1.11, d=0.90
4/13/2020
21
假设开业价410,停业价290
2.5×(437-350) -200
394
394
437
2.5×(394-350)
394
355
355 2.5×(355-350) 355
4/13/2020
55.13
49.88 c
45.13
1月
2月
5.13
2.5 0
0 0
期权定价数值方法
期权定价数值方法期权定价是金融学和衍生品定价的重要研究领域之一。
相对于传统的基于解析公式的定价方法,数值方法在期权定价中发挥了重要作用。
本文将介绍几种常用的期权定价数值方法。
第一种方法是蒙特卡洛模拟法。
这种方法通过生成大量的随机路径,从而模拟出期权的未来价格演化情况。
蒙特卡洛模拟法能够处理各种复杂的衍生品,尤其适用于路径依赖型期权的定价。
其基本思想是通过随机游走模拟资产价格的变化,并在到期日计算期权的收益。
蒙特卡洛方法的优点在于简单易懂,适用于任意的收益结构和模型。
缺点是计算复杂度高,需要大量的模拟路径,同时计算结果存在一定的误差。
第二种方法是二叉树模型。
二叉树模型将时间离散化,并用二叉树结构模拟资产价格的变化。
每一步的价格变动通过建立期权价格的递归关系进行计算。
二叉树模型适用于欧式期权的定价,特别是在波动率较低或资产价格较高时效果更好。
二叉树模型的优点在于计算速度快,容易理解,可以灵活应用于各种不同类型的期权。
缺点是对期权到期日的分割存在一定的限制,复杂的期权结构可能需要更多的分割节点。
第三种方法是有限差分法。
有限差分法将连续时间和连续空间离散化,通过有限差分近似式来计算期权价格。
其基本思想是将空间上的导数转化为有限差分的形式,然后通过迭代的方法求解有限差分方程。
有限差分法适用于各种不同类型的期权定价,特别是美式期权。
它是一种通用的数值方法,可以处理多种金融模型。
缺点是计算复杂度高,特别是对于复杂的期权结构和高维度的模型,需要更多的计算资源。
综上所述,期权定价的数值方法包括蒙特卡洛模拟法、二叉树模型和有限差分法。
不同的方法适用于不同类型的期权和市场情况。
在实际应用中,可以根据具体的问题选择合适的数值方法进行期权定价。
期权定价是金融学中一个重要的研究领域,它的核心是确定期权合理的市场价值。
与传统的基于解析公式的定价方法相比,数值方法在期权定价中有着重要的应用。
本文将进一步介绍蒙特卡洛模拟法、二叉树模型和有限差分法,并探讨它们的优缺点及适用范围。
期权定价中的蒙特卡洛模拟方法
期权定价中的蒙特卡洛模拟方法期权定价是金融市场中的一个重要问题。
近年来,蒙特卡洛模拟方法在期权定价中得到了广泛的应用。
蒙特卡洛模拟方法是一种基于随机模拟的数值计算方法,通过生成大量的随机样本来估计某些数量的数值。
下面将介绍蒙特卡洛模拟方法在期权定价中的基本原理及应用。
蒙特卡洛模拟方法采用随机数生成器生成大量的随机数,并利用这些随机数进行模拟计算。
在期权定价中,蒙特卡洛模拟方法可以用来估计期权的价格以及其他相关的风险指标,例如风险价值和概率分布等。
在蒙特卡洛模拟方法中,首先需要确定期权定价模型。
常用的期权定价模型包括布朗运动模型和风险中性估计模型等。
然后,根据期权定价模型,生成一个或多个随机数来模拟期权价格的变动。
通过对多个随机样本进行模拟计算,我们可以获得期权价格的分布情况及其他相关指标的估计值。
在期权定价中,蒙特卡洛模拟方法的精确度主要取决于两个方面:模拟路径的数量和模拟路径的长度。
路径的数量越多,模拟结果的精确度越高。
路径的长度越长,模拟结果的稳定性越好。
蒙特卡洛模拟方法在期权定价中的应用非常广泛。
例如,在欧式期权定价中,可以使用蒙特卡洛模拟方法来估计期权的风险价值和概率分布等指标。
在美式期权定价中,由于存在提前行权的可能性,蒙特卡洛模拟方法可以用来模拟期权的提前行权时机并确定最佳行权策略。
此外,在一些复杂的期权定价中,例如亚式期权和障碍期权等,蒙特卡洛模拟方法也可以提供有效的定价方法。
总之,蒙特卡洛模拟方法是期权定价中一种重要的数值计算方法。
它通过生成大量的随机样本来估计期权的价格及相关指标,具有较高的灵活性和精确度。
蒙特卡洛模拟方法在期权定价中广泛应用,为金融市场中的投资者和交易员提供了重要的决策工具。
蒙特卡洛模拟方法在期权定价中的应用非常广泛,下面将进一步介绍其在不同类型期权定价中的具体应用。
首先是欧式期权定价。
欧式期权是指在未来某个特定时间点(到期日)才能行使的期权。
蒙特卡洛模拟方法可以用来估计欧式期权的价格和概率分布等指标。
第12章 期权定价的数值方法
S it S it De
r it
其中, D 表示红利。
26
因此,我们需要先构造不含红利的价格树图,之 后再加上未来红利的现值。在 it 时刻: ◦ 当 it 时,这个树上每个节点对应的证券价 格为: * j i j
S0 u d j 0,1......i
t pd 12 2 t pu 12 2
2 pm 3
32
基本原理:期权 A 和期权 B 的性质相似,我们 可以得到期权 B 的解析定价公式,而只能得到 期权 A 的数值方法解,这时就可以利用期权 B 解析法与数值法定价的误差来纠正期权 A 的数 值法的定价误差。 用 f B 代表期权 B 的真实价值(解析解),f A ˆ 和 ˆ 表 表示关于期权 A 的较优估计值, f fB A 示用同一个二叉树、相同的蒙特卡罗模拟或是同 样的有限差分过程得到的估计值。
e
r q t
pu 1 p d
e
r q t
相应有
p
d ud
式( 12.5 )和( 12.6 )仍然成立:
u e d e
t t
21
可通过调整在各个节点上的证券价格,算出期权 价格; 如果时刻 i∆t 在除权日之前,则节点处证券价 格仍为:
为了模拟路径
dS r q Sdt Sdz
我们把期权的有效期分为 N 个长度为 ∆t 的时 间段,则上式的近似方程为:
S t t S t (r q )S t t S t t (12.9)
(12.10)
或
或
2 ln S t t ln S t r q t t 2
期权定价的三种方法
期权定价的三种方法期权是一种权利,持有者有权买卖证券或商品的特定数量。
期权的定价对投资者来说至关重要,因为它决定了期权的价值。
为了定价期权,投资者需要先了解市场和期权的各种因素,然后选择一种有效的定价方法。
本文将介绍期权定价的三种方法,分别是Black-Scholes 模型、蒙特卡罗模拟法和实际条件定价法。
Black-Scholes模型是一种简单而有效的期权定价模型,由美国经济学家贝克-施罗斯和美国数学家史蒂文-黑格森于1973年提出。
Black-Scholes模型假设期权价格受到无风险利率、资产价格、波动率和时间等因素的影响,通过分析复杂的概率函数实现定价。
Black-Scholes模型以期权价值收益率为基准,以确定期权价格是否有利于投资者。
另一种期权定价方法是蒙特卡罗模拟法,它能够模拟出异常动态市场中期权价格的情况。
蒙特卡罗模拟法可以预测风险事件如何影响期权价格,并计算不同投资决策下期权价格的变化。
它根据投资者的投资组合来确定抗风险性,以提供可靠的期权定价评估结果。
最后一种期权定价方法是实际条件定价法,它是基于真实的市场数据定价的。
实际条件定价法主要考虑的因素包括期权的行使价格、期权期限、可买入或卖出的股票价格等。
它可以考虑期权的复杂性,从而帮助投资者做出更精确的定价决策。
总之,期权定价方法有Black-Scholes模型、蒙特卡罗模拟法和实际条件定价法。
期权投资者可以根据他们对期权的理解以及对市场变化的看法,来灵活使用这些方法,以进行有效的期权定价。
期权定价是一个有挑战性的过程,但是把握住期权定价的技巧可以帮助投资者实现更好的投资回报。
许多期权定价模型都是针对特定市场环境的,所以投资者在使用期权定价方法时,需要充分考虑当前市场环境中的多种因素,以确保最优的定价结果。
此外,投资者也需要定期更新期权定价模型,以便于更好地捕捉新的变化并且按照新的变化作出有效的期权定价决定。
期权定价的数值方法
随机抽样值
0.52 1.44 -0.86 1.46 -0.69 -0.74
该时间步长中的 股票价值变化 0.236
0.611 -0.329
0.628 -0.262 -0.280
19
(二)、单个变量和多个变量的蒙特卡罗模拟
▪ 蒙特卡罗模拟的优点之一在于无论回报结果依赖于标的变量S所遵循 的路径还是仅仅取决于S的最终价值,都可以使用这一方法。同时, 这个过程也可以扩展到那些回报取决于多个标的市场变量的情况。
期权定价的数值方法
1
二、基本二叉树方法的扩展
▪ 支付连续红利率资产的期权定价 ▪ 支付已知红利率资产的期权定价 ▪ 已知红利额 ▪ 利率是时间依赖的情形
2
连续红利率资产的期权定价
▪ 当标的资产支付连续收益率为q的红利时,在风 险中性条件下,证券价格的增长率应该为r-q, 因此:
e (rq)t pu (1 p)d
其中
p e(rq)t d ud
u, d表达式仍然适用
3
支付已知红利率资产的期权定价
▪ 若标的资产在未来某一确定时间将支付已知红利率(红 利与资产价格之比),只要调整在各个结点上的证券价 格,就可算出期权价格。调整方法如下:
▪ 如果it 时刻在除权日之前,则结点处证券价格仍为: Su j d i j , j 0,1, , i
S t t S t r qS t t S t t
或
ln
ห้องสมุดไป่ตู้
S
t
t
ln
S
t
r
q
2
2
t
t
S
t
t
S
t exp
r
q
2
2
B-S期权定价模型、公式与数值方法
B-S期权定价公式:假设条件
1.证券价格遵循几何布朗运动,,为常数 2.允许卖空标的证券 3.没有交易费用或税收 4.所有证券都是无限可分的 5.标的证券在有效期内没有红利支付 6.不存在无风险套利机会 7.交易是连续的 8.无风险利率为常数
B-S期权定价公式
经典的B-S期权定价公式是对于欧式股票期权给出的。
期权的价值正是来源于签订合约时,未来标的资产价格与合约执 行价格之间的预期差异变化,在现实中,资产价格总是随机变化 的。需要了解其所遵循的随机过程。
研究变量运动的随机过程,可以帮助我们了解在特定时刻,变量 取值的概率分布情况。在下面几节中我们会用数学的语言来描述 这种定价的思想。
6.1 证券价格的变化过程
**随机微积分与非随机微积分的差别 d ln S dS
S
变量x和t的函数G也遵循Ito 过程:
dG ( G xa G t1 2 2 x G 2b2)d t G xbdz
dSSdtSdz
根据Ito引理,衍生证券的价格G应遵循如下过程:
d G ( G SS G t1 2 S 2 G 22 S2)d t G SSdz
但是当人们开始采用分形理论研究金融市场时,发现它的运行并 不遵循布朗运动,而是服从更为一般的分数布朗运动。
对于标准布朗运动来说:设t 代表一个小的时间
间隔长度,z代表变量z在 t 时间内的变化,遵循标
准布朗运动的 z 具有两种特征:
特征1:z和 t 的关系满足:
z = t
其中, 代表从标准正态分布中取的一个随机值。
的普通布朗运动:
Ito过程
dxadb t dz d xa (x,t)d tb (x,t)dz
or:x( t)x0a t bz(t)x(t)x00 tad s0 tbd
期权定价的数值方法
期权定价的数值方法小结1.当不存在解析解时,可以用不同的数值方法为期权定价,其中主要包括二叉树图方法、蒙特卡罗模拟和有限差分方法。
2.二叉树图方法用离散的随机游走模型模拟资产价格的连续运动在风险中性世界中可能遵循的路径,每个小的时间间隔中的上升下降概率和幅度均满足风险中性原理。
从二叉树图的末端开始倒推可以计算出期权价格。
3.蒙特卡罗方法的实质是模拟标的资产价格在风险中性世界中的随机运动,预测期权的平均回报,并由此得到期权价格的一个概率解。
4.有限差分方法将标的变量满足的偏微分方程转化成差分方程来求解,具体的方法包括隐性有限差分法、显性有限差分法、“跳格子方法”和Crank-Nicolson方法等。
5.树图方法和有限差分方法在概念上是相当类似的,它们都可以看成用离散化过程解出偏微分方程的数值方法,都适用于具有提前执行特征的期权,不太适合路径依赖型的期权。
其中二叉树模型由于其简单直观和容易实现,是金融界中应用得最广泛的数值定价方法之一;有限差分方法则日益受到人们的重视。
6.蒙特卡罗方法的优点在于应用起来相当直接,能处理许多盈亏状态很复杂的情况,尤其是路径依赖期权和标的变量超过三个的期权,但是不擅长于处理美式期权,而且往往所需计算时间较长。
二叉树定价方法的基本思想:假设资产价格的运动是由大量的小幅度二值运动构成,用离散的随机游走模型模拟资产价格连续运行可能遵循的路径。
模型中隐含导出的概率是风险中性世界中的概率p,从而为期权定价。
蒙特卡洛模拟的基本思想:由于大部分期权的价值都可以归结为期权到期回报的期望值的贴现,因此尽可能地模拟风险中性世界中标的资产价格的多种运动路径,计算每种结果路径下的期权回报均值,之后贴现就可以得到期权价值。
蒙特卡洛模拟的优点:在大多数情况下,人们可以很直接地应用蒙特卡洛模拟,而无需对期权定价模型有深刻的认识;蒙特卡洛模拟的适用情形相当广泛。
蒙特卡洛模拟的缺点:只能为欧式期权定价,难以处理提前执行期权的的定价情形;为了达到一定的精准度,需要大量的模拟运算。
《金融衍生品》课件_第11章_期权定价数值方法
美式看跌期权协议价格为 50 元,求该期权
的价值。
20
美式看跌期权的二叉树定价 (cont.)
• 为了构造二叉树,我们把期权有效期分为
五段,每段一个月(等于 0.0833 年)。可
u e t 1.1224
以算出
d e
t
0.8909
4、资产价格随机路径模拟(风险中
性概率测度)
(1)常数波动率模型的离散化和模拟
• 在风险中性世界中,为了模拟路径
dS r q Sdt Sdz
(11.4)
我们把期权的有效期分为 N 个长度为 ∆t 的
时间段,则上式的离散的近似方程为:
(11.5)
6
(2)GARCH模型模拟
模型的离散化形式:
2、欧式期权蒙特卡罗模拟定价
假设标的资长价格服从波动率为常数的几
何布朗运动。对于欧式期权,只需要模拟出
标的资产到期的分布。如欧式看涨期权,第i
条路径下的支付:
()
为标准正态分布的一个随机抽样,
(11.3)=.源自3、蒙特卡罗模拟方法的适用性
• (1)普通的蒙特卡罗模拟方法不适用于美式
(10.23)
(10.24)
其中,
定义为:
(10.25)
3、Heston模型的离散化和模拟
模型的离散化和模拟
5、GARCH模型下的蒙特卡洛模拟定价
二、二叉树模型
1、二叉树模型原理
假设股票当前价格是S,下一期价格有两种可能 (= u)
和 =(Sd),风险中性下上升概率是p,下跌概率是1-p。
e r q t d
p
ud
期权定价模型和数值方法
期权及其有关概念
3. 期权旳内在价值 买入期权在执行日旳价值CT为 CT=max(ST -E,0)
式中:E表达行权价;ST表达标旳资产旳市场价。 卖出期权在执行日旳价值PT为 PT=max(E- ST,0) 根据期权旳行权价与标旳资产市场价之间旳关系,期权可分为价内期权(in the
money)(S > E)、平价期权(at the money)(S = E)和价外期权(out of the money)(S < E)。
4. 珞(Rho)ρ ρ为期权旳价值随利率波动旳敏感度,利率增长,使期权价值变大。
5. 伽玛(Gamma)Γ Γ 表达δ与标旳资产价格变动旳关系。
10.3 B-S公式隐含波动率计算
隐含波动率概念
BlackScholes期权定价公式,欧式期权理论价格旳体现式:
式中:
隐含波动率是将市场上旳期权交易价格代入权证理论价格BlackScholes模型反 推出来旳波动率数值。因为期权定价BS模型给出了期权价格与五个基本参数之间旳 定量关系,只要将其中前4个基本参数及期权旳实际市场价格作为已知量代入定价 公式,就能够从中解出惟一旳未知量,其大小就是隐含波动率。
10.3. 3 隐含波动率计算程序
环节3: 函数求解。 M文件TestImpliedVolatility.M代码如下:
%TestImpliedVolatility %市场价格 Price=100; %执行价格 Strike=95; %无风险利率 Rate=0.10; %时间(年) Time=0.25; CallPrice=15.0;%看涨期权交易价格 PutPrice=7.0; %看跌期权交易价格 %调用ImpliedVolatility函数 [Vc,Vp,Cfval,Pfval]=ImpliedVolatility(Price,Strike,Rate,Time,CallPrice,PutPrice)
金融衍生产品中美式与亚式期权定价的数值方法研究
金融衍生产品中美式与亚式期权定价的数值方法研究一、概述金融衍生产品是现代金融市场的重要组成部分,其定价问题一直是金融数学、金融工程领域的研究热点。
美式期权与亚式期权作为两种常见的金融衍生产品,其定价问题具有广泛的应用背景和重要的理论价值。
美式期权赋予持有人在期权有效期内任何时间执行合约的权利,而亚式期权则以其有效期内某一特定方式确定的平均价格为基础进行定价。
这两种期权因其独特的性质和复杂的定价机制,在金融市场中占据重要地位。
随着计算机技术的飞速发展和数值方法的不断完善,越来越多的学者开始关注并使用数值方法来研究美式与亚式期权的定价问题。
数值方法不仅可以处理复杂的金融模型,还可以提高定价的准确性和效率。
对美式与亚式期权定价的数值方法进行研究,不仅有助于推动金融衍生产品定价理论的发展,还能为金融机构提供有效的风险管理工具和投资决策支持。
本文旨在探讨美式与亚式期权定价的数值方法,并对比分析各种方法的优缺点。
我们将对美式与亚式期权的基本概念、性质及定价原理进行简要介绍。
我们将重点介绍几种常用的数值方法,包括有限差分法、蒙特卡洛模拟法、二叉树法等,并详细阐述这些方法在美式与亚式期权定价中的应用。
我们将通过实际案例或仿真实验来验证这些数值方法的有效性和实用性,并给出相应的结论和建议。
通过对美式与亚式期权定价的数值方法研究,我们期望能够为金融机构提供更准确、高效的定价工具,同时也为金融衍生产品定价理论的发展做出贡献。
1. 金融衍生产品概述金融衍生产品,作为现代金融市场的重要组成部分,其出现与发展极大地丰富了投资与风险管理的工具。
它们是基于传统金融工具如股票、债券、货币、利率等派生出来的金融产品,其价值依赖于这些基础资产的价格变动。
衍生产品主要包括远期、期货、期权和互换等四大类,它们具有杠杆效应、高风险性、灵活性等特点,能满足投资者不同的风险偏好和收益需求。
期权作为一种特殊的衍生产品,在金融市场中具有广泛的应用。
金融MATLAB期权定价模型与数值方法课件
输入参数:
Price:标的资产市场价格
Strike:执行价格
Rate:无风险利率
Time:距离到期时间
Volatility:标的资产价格波动率
Yield:(可选)资产连续贴现利率,默认为0
输出参数:
Call: Call option价格
Put:Put option价格
期权定价模型与数值方法 2020/4/2
期权定价模型与数值方法 2020/4/2
12
2.3 影响期权价格的因素分析
以blsdelta为例,其他函数的语法与blsdelta基本相同
[CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time, Volatility, Yield)
输入参数:
MATLAB
金融数量分析—基于MATLAB 编程
第10章 期权定价模型与数值方法
期权定价模型与数值方法 2020/4/2
1
第10章 期权定价模型与数值方 法
期权定价模型与数值方法 2020/4/2
2
1 期权基础概念
什么是期权?期权就是当什么时候或条件下,你有什么 权力。教课书上的期权似乎离我们比较遥远,或仅限于 金融市场。但如果仔细想想,车险或疾病保险似乎也是 一种期权,期权本质是一种选择权。例如,商业医疗保 险,客户每年缴纳一定的保费,获得在生病时获取一定 补偿的权利。公司期权,若工作业绩达到某个标准(付 出),得到公司多少多上的期权。就如面临选择,需要 权衡一样;各种期权也需要衡量(定价)。
期权定价模型与数值方法 2020/4/2
14
2.3 影响期权价格的因素分析
若要分析期权Detla与标的资产价格、剩余期限的关系, 即不同的Price与Time 计算不同的Detla三维关系,可以 编写delta_price_time.m 程序。
期权定价理论
期权定价理论期权定价理论是衡量期权合约价格的数学模型。
它基于一系列假设和推导出的公式,通过评估期权的相关因素来确定其合理的市场价格。
这些因素包括标的资产价格、期权执行价格、期限、波动率以及无风险利率等。
期权的定价理论中最著名的模型是布莱克-斯科尔斯模型(Black-Scholes Model)。
该模型基于以下假设:市场无摩擦,即不存在交易费用和税收;标的资产价格服从连续时间的几何布朗运动;期权可以在任意时间点以市场价格进行买卖。
布莱克-斯科尔斯模型通过以下公式计算欧式期权的价格:C = S0 * N(d1) - X * e^(-r * T) * N(d2)其中,C是期权的市场价格,S0是标的资产的当前价格,N()是标准正态分布函数,d1和d2分别是两个维度上的标准正态分布变量,X是期权的行权价格,r是无风险利率,T是期权剩余时间。
布莱克-斯科尔斯模型的原理是通过构建组合,使得期权价格与标的资产价格的变动相对冲,从而消除风险。
通过调整组合中的权重,可以确定合理的期权价格。
这一模型在市场上得到广泛应用,被视为期权定价的标准模型之一。
除了布莱克-斯科尔斯模型外,还有其他一些期权定价模型,如考虑股息的期权定价模型、跳跃扩散模型等。
这些模型在不同情况下,可以更准确地预测期权价格。
需要注意的是,期权定价理论是基于一系列假设和前提条件建立的。
市场实际情况中可能存在不符合这些假设的情况,因此实际期权价格可能与模型计算结果存在一定的差异。
此外,期权定价也受到市场供求关系、交易量以及市场情绪等因素的影响。
总之,期权定价理论是一种基于数学模型的方法,用于评估期权合约的合理价格。
布莱克-斯科尔斯模型是最著名的期权定价模型之一,通过构建相对冲抗风险的组合来确定期权价格。
然而,需要注意实际市场中的差异和其他影响因素。
期权定价理论是金融衍生品定价的核心理论之一,它对金融市场的有效运行和风险管理起着重要作用。
期权是一种约定,赋予期权持有人在未来某个特定时间以特定价格买入或卖出某个标的资产的权利,而不是义务。
期权定价模型及算法研究
期权定价模型及算法研究在金融市场中,期权是一种重要的金融工具,它给予持有人在未来一定时间内以特定价格购买(或卖出)标的资产的权利。
期权交易在风险管理、增加收益和投机方面具有广泛的应用。
为了有效地定价期权合约,金融学家和数学家们开发了各种期权定价模型和算法。
本文将介绍期权定价模型的一些基本概念,并研究Black-Scholes模型和蒙特卡洛模拟算法。
期权定价模型是用来计算期权价格的数学模型。
它的核心思想是根据标的资产的特性、时间、风险和其他因素来计算期权的内在价值和时间价值。
内在价值是指期权的立即行权价值,即如果立即行使期权,持有者可以获得的利润。
时间价值则是指期权的附加价值,考虑到剩余期限和标的资产预期价格波动性。
期权定价模型的目标是准确估计期权的价格,以便提供合理的交易价格,并帮助投资者进行有效的风险管理。
Black-Scholes模型是最著名的期权定价模型之一,它是由费希尔·布莱克和默顿·斯科尔斯在1973年提出的。
该模型基于一些假设,包括资产的价格服从几何布朗运动、无风险收益率是已知的、市场是没有摩擦的、期权可以随时买卖等。
基于这些假设,Black-Scholes模型可以用一些简单的公式计算欧式期权的价格。
该模型提供了一个评估期权价格的基准,并成为了金融衍生品定价和风险管理的基础。
然而,Black-Scholes模型也有其局限性。
它假设资产价格服从几何布朗运动,但实际市场中的价格波动往往不遵循正态分布。
此外,该模型无法处理一些复杂的期权类型,如美式期权和波动率衍生品。
因此,研究人员提出了一些改进的模型和算法,以解决Black-Scholes模型的局限性。
蒙特卡洛模拟算法是一种常用的数值计算方法,用于估计期权价格。
该算法通过生成大量随机数对期权进行多次模拟,然后取模拟结果的平均值作为期权价格的估计值。
蒙特卡洛模拟算法可以处理各种复杂的期权类型和市场情景,并且可以考虑到市场波动率等因素的不确定性。
期权定价的数值方法研究
期权定价的数值方法研究1、相关定义1.1、预备概念a. Brown 运动定义1.1[26](Brown运动)如果随机过程{B t , t 0}满足:(1)B0 0; (2) cov( B i , B j) 0,i j; (3)B 2t s Bs ~N (0, t). 则称{B t , t 0}为Brown 运动.特别地,当1时,称之为标准Brown 运动. 图2-1 布朗运动数据模拟图像b. It 过程定义1.2(It 过程)如果随机过程(t ) 满足d t a t dt bt dBt(2-1) 其中a t和bt 都是R 上的函数,则称(t ) 为It 过程. c. It 公式It 公式,随机分析中的一个重要的工具,有很多的重要的公式及定理都是由It 公式推导出的.以下是具体的内容. 51.2、Black-Scholes 模型的基本概念Black-Scholes 微分方程是基于不付红利股票的任意一种衍生证券的价格f 必须满足的方程。
一种无风险证券组合包含一些衍生证券头寸和一个股票头寸,建立一个这样的证券组合并设定其收益率等于无风险利率。
在Black-Scholes 分析中,建立的证券组合仅在很短时期内保持无风险状态,而可以证明:如果无套利机会,这一段短期的收益必定为无风险利率。
可以建立无风险证券组合的原因是股票价格和衍生证券的价格都受到同一种基本的不确定性的影响。
这意味着经过任意一个短时期,两者高度相关。
如果建立了一个恰当的股票和衍生证券的证券组合,股票头寸的盈利(损失)总是会与衍生证券的损失(盈利)相抵消,因而在短时期末证券组合的总价值也就确定了。
Black-Scholes 模型的基本假设: ①允许使用全部所得卖空衍生证券。
②没有交易费用或税收。
③在衍生证券的有效期内没有红利支付。
④不存在无风险套利的机会。
⑤证券交易是连续的。
⑥无风险利率r 为常数且对所有到期日都相同。
重庆大学硕士学位论文2 Black-Scholes 模型的建立和定价公式的推导 6 ⑦标的股票价格S 遵循如下过程: dS=μSdt + σSdZ(t ) (2.1) 其中μ 为股票预期收益率,σ 为股价波动率。
郑振龙《金融工程》第2版课后习题(期权定价的数值方法)【圣才出品】
郑振龙《金融工程》第2版课后习题第十二章期权定价的数值方法1.二叉树数定价方法的基本原理是什么?答:二叉树图模型的基本出发点在于:假设资产价格的运动是由大量的小幅度二值运动构成,用离散的随机漫步模型模拟资产价格的连续运动可能遵循的路径。
同时二叉树模型与风险中性定价原理相一致,即模型中的收益率和贴现率均为无风险收益率,资产价格向上运动和向下运动的实际概率并没有进入二叉树模型,模型中隐含导出的概率p 是风险中性世界中的概率,从而为期权定价。
实际上,当二叉树模型相继两步之间的时间长度趋于零的时候,该模型将会收敛到连续的对数正态分布模型,即布莱克一舒尔斯偏微分方程。
2.一个无红利股票的美式看跌期权,有效期为3个月,目前股票价格和执行价格均为50美元,无风险利率为每年10%,波动率为每年30%。
请按时间间隔为一个月来构造二叉树模型,为期权定价。
并应用控制方差技术对这一估计进行修正。
答:(1)由题意,二叉树模型各参数可计算为表12-1。
表12-1二叉树模型参数计算表121=∆t 0833.03.0ee u t==σ0833.03.0--==eeu tσ9170.00905.19170.00833.0*1.0--=--=∆e d u d e p t r 1-p 0.08331.09050.91700.52660.4734根据以上参数画出时间间隔为一个月的二叉树图(如图12-5)。
图12-5无红利股票期权二叉树其中股票在第j 个节点(j=0,1,2,3……)的价格等于Su j d i-j 。
期权价值采取倒推法,在最后一列的节点处,期权价值等于MAX(X-S T ,0),在假定期权未提前执行的基础上,从最后一列节点处的期权价值可倒推出倒数第二列节点的期权价值。
由于该期权是美式期权,要检查提前执行期权是否较有利。
(2)①在D、E 节点,提前执行的期权价值均为0,显然,不可提前执行。
②在F 节点,如果提前执行,期权价值=50.00-42.0483=7.9517>7.53681美元,因此,F 节点的期权价值应为7.9517美元。
期权定价的数值方法
的二又树定价 。美式看涨 期权被 提前执行 时, 其 内涵价值为 :
V = m ( - K, 0 ) n = O, 1 , …… , m 对于一个看跌期权来 说 . 有:
c
. [ m ( s , O ) ]
_ ቤተ መጻሕፍቲ ባይዱ r r l "
V n = m a x ( K - S . , 0 )n = 0 , 1 , ……, m
价 问题 。
【 关键词 】 期权 定价 ; 数值 方法; 二叉树 ; 三叉树 2 ) 风险 中性假 设 . 即在风 险中性条件下 。 投 资者的风险偏好 于衍 生证券的定 价无关 , 从标 的资产所得 的收益率为无风险利率 r 。 由于期权交易方式 、 方向 、 标的物等方面的不 同, 产生 了众多 的期 风险中性条件下 .随机微分方程 d S = 1 . t S d t + t r S d Z中的t x可 以用 r 权品种 , 对期权进行合理的分类 , 更 有利于我们了解期权 产品。 来表示 . 即d S = r S d t + t r S d Z 1 ) 按期权的权利划分 , 有看涨期权和看跌期权两种类 型 ; 其中 u > 1 + r > d 。 2 ) 按期权视为交割时间划分 , 有美式期权和欧式期权两种类 型。 由于在风险 中性条件 下 . 时 刻的每个 节点上 的期 权值都可 以用 时刻期权价值 的期 望值 在 时 间内用利率 r 贴现求 出.其他 2 B l a c k — S c h o l e s 期 权 定 价 模 型 概 述 节点 以此类 推。 如果期权是美式的 , 必须检查二叉树图的每个节点 。 以 1 9 7 3 年. 斯坦福大学的教授 M y r o n S c h O I e s 和他的同事 . 已故数学 确定 提前执行期权是否 比将期权再持有 时间更为有利 最后倒推 家F i s c h e r B l a c k 在美 国《 政 治经 济学》 上发表 文章 《 期权与公司债务 的 通过所有节点就求出了当前时刻的期权值 : 。 定 价》 , 给出 了欧式 看涨期权 的定价公 式 。 即著 名 的 B l a c k — S c h o l e s 期 3 . 2 欧式期权 的二叉树定价 权定价模型 B l a c k — S c h o l e s 微 分方程是基 于不付红利股票 的任意一种 衍生证 令 : 为m a t 时刻股票价格为s : 时期权的价格, 其中0 ≤ n ≤ m , 券的价格 , 必须满 足的方程 , 推倒此微分方程需要满 足的假设条件如 那么在风险 中性条件下 . 得到 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期权定价的数值方法
小结
1.当不存在解析解时,可以用不同的数值方法为期权定价,其中主要包括二叉树图方法、蒙特卡罗模拟和有限差分方法。
2.二叉树图方法用离散的随机游走模型模拟资产价格的连续运动在风险中性世界中可能遵循的路径,每个小的时间间隔中的上升下降概率和幅度均满足风险中性原理。
从二叉树图的末端开始倒推可以计算出期权价格。
3.蒙特卡罗方法的实质是模拟标的资产价格在风险中性世界中的随机运动,预测期权的平均回报,并由此得到期权价格的一个概率解。
4.有限差分方法将标的变量满足的偏微分方程转化成差分方程来求解,具体的方法包括隐性有限差分法、显性有限差分法、“跳格子方法”和
Crank-Nicolson方法等。
5.树图方法和有限差分方法在概念上是相当类似的,它们都可以看成用离散化过程解出偏微分方程的数值方法,都适用于具有提前执行特征的期权,不太适合路径依赖型的期权。
其中二叉树模型由于其简单直观和容易实现,是金融界中应用得最广泛的数值定价方法之一;有限差分方法则日益受到人们的重视。
6.蒙特卡罗方法的优点在于应用起来相当直接,能处理许多盈亏状态很复杂的情况,尤其是路径依赖期权和标的变量超过三个的期权,但是不擅长于处理美式期权,而且往往所需计算时间较长。
二叉树定价方法的基本思想:假设资产价格的运动是由大量的小幅度二值运动构成,用离散的随机游走模型模拟资产价格连续运行可能遵循的路径。
模型中隐含导出的概率是风险中性世界中的概率p,从而为期权定价。
蒙特卡洛模拟的基本思想:由于大部分期权的价值都可以归结为期权到期回报的期望值的贴现,因此尽可能地模拟风险中性世界中标的资产价格的多种运动路径,计算每种结果路径下的期权回报均值,之后贴现就可以得到期权价值。
蒙特卡洛模拟的优点:在大多数情况下,人们可以很直接地应用蒙特卡洛模拟,而无需对期权定价模型有深刻的认识;蒙特卡洛模拟的适用情形相当广泛。
蒙特卡洛模拟的缺点:只能为欧式期权定价,难以处理提前执行期权的的定价情形;为了达到一定的精准度,需要大量的模拟运算。
有限差分方法的基本思想:将衍生证券所满足的偏微分方程转化为一系列近似的差分方程,即用离散算子逼近偏微分方程中的各项,之后用迭代法求解以得到期权价值。