射频功率放大器RFPA概述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本概念

射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。

放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。

射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。

分类

根据工作状态的不同,功率放大器分类如下:

传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。

开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。

传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表:

电路组成

放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。

1、晶体管

晶体管有很多种,包括当前还有多种结构的晶体管被发明出来。本质上,晶体管的工作都是表现为一个受控的电流源或电压源,其工作机制是将不含内容的直流的能量转化为“有用的”输出。直流能量乃是从外界获得,晶体管加以消耗,并转化成有用的成分。不同的晶体管不同的“能力”,比如其承受功率的能力有区别,这也是因为其能获取的直流能量的能力不同所致;比如其反应速度不同,这决定它能工作在多宽多高的频带上;比如其面向输入、输出端的阻抗不同,及对外的反应能力不同,这决定了给它匹配的难易程度。

2、偏置电路及稳定电路

偏置和稳定电路是两种不同的电路,但因为他们往往很难区分,且设计目标趋同,所以可以放在一起讨论。

晶体管的工作需要在一定的偏置条件下,我们称之为静态工作点。这是晶体管立足的根本,是它自身的“定位”。每个晶体管都给自己进行了一定的定位,其定位不同将决定了它自身的工作模式,在不同的定位上也存在着不同的性能表现。有些定位点上起伏较小,适合于小信号工作;有些定位点上起伏较大,适合于大功率输出;有些定位点上索取较少,释放纯粹,适合于低噪声工作;有些定位点,晶体管总是在饱和和截至之间徘徊,处于开关状态。一个恰当的偏置点,是正常工作的础。在设计宽带功率放大器时,或工作频率较高时,偏置电路对电路性能影响较大,此时应把偏置电路作为匹配电路的一部分考虑。

偏置网络有两大类型,无源网络和有源网络。无源网络(即自偏置网络)通常由电阻网络组成,为晶体管提供合适的工作电压和电流。它的主要缺陷是对晶体管的参数变化十分敏感,并且温度稳定性较差。有源偏置网络能改善静态工作点的稳定性,还能提高良好的温度稳定性,但它也存在一些问题,如增加了电路尺寸、增加了电路排版的难度以及增加了功率消耗。

稳定电路一定要在匹配电路之前,因为晶体管需要将稳定电路作为自身的一部分存在,再与外界接触。在外界看来,加上稳定电路的晶体管,是一个“全新的”晶体管。它做出一定的“牺牲”,获得了稳定性。稳定电路的机制能够保证晶体管顺利而稳定的运转。

3、输入输出匹配电路

匹配电路的目的是在选择一种接受的方式。对于那些想提供更大增益的晶体管来说,其途径是全盘的接受和输出。这意味着通过匹配电路这一个接口,不同的晶体管之间沟通更加顺畅,对于不同种的放大器类型来说,匹配电路并不是只有“全盘接受”一种设计方法。一些直流小、根基浅的小型管,更愿意在接受的时候做一定的阻挡,来获取更好的噪声性能,然而不能阻挡过了头,否则会影响其贡献。而对于一些巨型功率管,则需要在输出时谨小慎微,因为他们更不稳定,同时,一定的保留有助于他们发挥出更多的“不扭曲的”能量。

典型的阻抗匹配网络有L匹配、π形匹配和T形匹配。其中L匹配,其特点就是结构简单且只有两个自由度L和C。一旦确定了阻抗变换比率和谐振频率,网络的Q值(带宽)也就确定了。π形匹配网络的一个优点就是不管什么样的寄生电容,只要连接到它,都可以被吸到网络中,这也导致了π形匹配网络的普遍应用,因为在很多的实际情况中,占支配地位的寄生元件是电容。T形匹配,当电源端和负载端的寄生参数主要呈电感性质时,可用T形匹配来把这些寄生参数吸收入网络。

确保射频PA稳定的实现方式

每一个晶体管都是潜在不稳定的。好的稳定电路能够和晶体管融合在一起,形成一种“可持续工作”的模式。稳定电路的实现方式可划分为两种:窄带的和宽带的。

窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。

不稳定的根源是正反馈,窄带稳定思路是遏制一部分正反馈,当然,这也同时抑制了贡献。而负反馈做得好,还有产生很多额外的令人欣喜的优点。比如,负反馈可能会使晶体管免于匹配,既不需要匹配就可以与外界很好的接洽了。另外,负反馈的引入会提升晶体管的线性性能。

相关文档
最新文档