数据分析与在呼叫中心的应用
呼叫中心数据分析
呼叫中心数据分析在当今数字化的商业世界中,呼叫中心已成为企业与客户互动的重要枢纽。
每天,大量的电话呼入呼出,承载着客户的咨询、投诉、建议以及订单等各类信息。
而对这些海量数据进行深入分析,对于企业提升服务质量、优化运营流程、增强市场竞争力具有至关重要的意义。
呼叫中心数据分析是什么?简单来说,就是对呼叫中心产生的各类数据进行收集、整理、分析和解读的过程。
这些数据来源广泛,包括通话记录、客户信息、问题类型、处理时长等等。
通过对这些数据的综合分析,企业能够获取许多有价值的洞察。
首先,我们来看看客户行为分析。
通过分析客户来电的频率、时间分布以及咨询的问题类型,可以了解客户的需求规律和偏好。
比如,某电商平台的呼叫中心发现,在促销活动后的一周内,客户来电咨询物流问题的数量大幅增加。
这就提示企业在未来的促销活动中,要提前做好物流配送的规划和沟通,以提高客户满意度。
再来说说服务质量评估。
平均通话时长、客户等待时间、问题解决率等指标是衡量服务质量的关键。
如果平均通话时长过长,可能意味着客服人员的业务熟练度不够,或者是问题本身较为复杂,需要进一步优化流程。
而客户等待时间过长则会直接影响客户的体验,导致客户流失。
通过对这些数据的监测和分析,企业能够及时发现服务中的问题,并采取针对性的措施加以改进。
另外,员工绩效分析也是呼叫中心数据分析的重要组成部分。
通过分析每个客服人员的通话量、问题解决能力、客户满意度等指标,可以对员工的工作表现进行客观评价。
对于表现优秀的员工,可以给予奖励和晋升机会,激励他们继续保持;对于表现不佳的员工,则可以提供培训和辅导,帮助他们提升能力。
除了以上几个方面,呼叫中心数据分析还能在市场预测和产品改进方面发挥作用。
通过分析客户的反馈和需求,企业可以预测市场趋势,提前调整产品策略。
例如,某手机厂商的呼叫中心发现,近期客户对某款手机的电池续航问题反映较多,这就为研发部门提供了改进的方向。
然而,要做好呼叫中心数据分析,并非易事。
呼叫中心数据分析
呼叫中心数据分析引言概述:呼叫中心作为企业与客户之间的重要联系渠道,每天都会产生大量的通话数据。
这些数据蕴含着珍贵的信息,通过对呼叫中心数据的分析,企业可以深入了解客户需求、优化运营流程、提升客户满意度。
本文将从五个方面介绍呼叫中心数据分析的重要性和方法。
一、呼叫量分析:1.1 呼叫量趋势分析:通过对呼叫量的日、周、月、季度、年度等时间段的分析,了解呼叫量的变化趋势,为企业提供合理的资源配置和人员安排。
1.2 呼叫量分布分析:对呼叫量在不同时间段的分布情况进行分析,找出高峰期和低谷期,合理调整人员数量和工作时间,提高呼叫中心的效率。
1.3 呼叫量来源分析:分析不同渠道、不同地区、不同产品的呼叫量占比,匡助企业了解市场需求和产品受欢迎程度,以便进行精准营销和产品策划。
二、通话时长分析:2.1 平均通话时长分析:计算呼叫中心每一个客服人员的平均通话时长,了解客服人员的工作效率和服务质量,为培训和绩效考核提供依据。
2.2 通话时长分布分析:分析通话时长的分布情况,找出通话时长过长或者过短的异常情况,进行问题排查和改进,提高客户满意度。
2.3 通话时长与问题解决率的关系分析:通过对通话时长和问题解决率的相关性分析,找出通话时长与问题解决率之间的关联,为提升问题解决效率提供参考。
三、客户满意度分析:3.1 客户满意度调查分析:通过呼叫后的满意度调查问卷,采集客户对呼叫中心服务的评价,分析客户满意度的整体水平和不同维度的得分,为改进服务提供指导。
3.2 问题类型与满意度的关系分析:将客户反馈的问题类型与满意度进行关联分析,找出问题类型对满意度的影响,为提升客户满意度制定针对性的改进措施。
3.3 客户满意度与重复投诉率的关系分析:通过客户满意度和重复投诉率的相关性分析,了解客户满意度对重复投诉率的影响,为提高客户忠诚度和口碑效应提供参考。
四、服务质量分析:4.1 服务等待时间分析:分析客户在呼叫中心等待接通的时间分布情况,找出等待时间过长的问题,优化呼叫中心的服务流程和人员配置。
呼叫中心如何利用大数据分析改善服务
呼叫中心如何利用大数据分析改善服务在当今数字化时代,大数据已经成为企业提升竞争力和改善服务的重要工具。
呼叫中心作为企业与客户直接沟通的重要渠道,也可以通过充分利用大数据分析来显著提升服务质量,增强客户满意度和忠诚度。
大数据分析能帮助呼叫中心更全面地了解客户需求。
通过对海量的客户呼叫数据进行分析,包括客户的问题类型、咨询时间、语气情绪等,呼叫中心可以挖掘出客户最关心的问题和最常见的需求。
例如,如果大量客户在特定时间段内频繁咨询关于产品某个功能的使用方法,这就表明企业在产品说明或培训方面存在不足,需要改进。
利用大数据分析,呼叫中心能够实现客户细分。
根据客户的购买历史、消费习惯、地域分布等因素,将客户分为不同的群体。
针对不同群体的特点和需求,提供个性化的服务策略。
比如,对于高价值客户,可以提供优先接入、专属客服等特殊待遇,增强他们的忠诚度;对于新客户,侧重于提供耐心的引导和详细的产品介绍,帮助他们尽快熟悉企业的产品和服务。
大数据分析有助于预测客户需求和行为。
通过分析历史数据和趋势,呼叫中心可以提前预知某些问题可能出现的高峰期,从而提前做好人员调配和资源准备。
例如,在新产品推出后的一段时间内,可能会有大量客户咨询相关问题,呼叫中心可以提前安排更多的客服人员进行培训,以应对可能的咨询高峰。
优化服务流程也是大数据分析在呼叫中心的重要应用之一。
通过对客户在呼叫过程中的等待时间、转接次数、问题解决时间等数据的分析,找出服务流程中存在的瓶颈和问题,并进行针对性的改进。
比如,如果发现客户等待时间过长,可能需要增加客服人员数量或者优化排队系统,以减少客户的不满。
在人员管理方面,大数据分析同样能发挥重要作用。
通过对客服人员的工作数据进行分析,包括接听电话数量、解决问题的效率、客户满意度评价等,可以评估每个客服人员的工作表现。
对于表现优秀的员工,给予奖励和晋升机会;对于表现不佳的员工,提供针对性的培训和辅导,提高整体服务团队的水平。
呼叫中心数据分析
呼叫中心数据分析一、引言呼叫中心是企业与客户之间进行沟通和交流的重要渠道。
随着呼叫中心技术的不断发展和应用,大量的数据被收集和记录下来。
本文将对呼叫中心数据进行分析,以帮助企业了解客户需求、提高客户满意度和优化运营效率。
二、数据收集和整理1. 数据来源呼叫中心数据来源于客户与呼叫中心的通话记录、在线聊天记录、电子邮件交流等渠道。
2. 数据类型呼叫中心数据包括客户信息、通话时长、通话目的、问题分类、客户满意度评价等。
3. 数据整理对收集到的数据进行清洗和整理,包括去除重复数据、填补缺失值、转换数据格式等,以确保数据的准确性和一致性。
三、数据分析方法1. 呼叫量分析通过对呼叫中心数据进行统计和分析,可以了解到不同时间段、不同渠道的呼叫量情况,从而合理调配人力资源,提高客户服务质量。
2. 问题分类分析将客户呼叫中心的问题进行分类,可以帮助企业了解客户的主要关注点和需求,有针对性地改进产品或服务,提高客户满意度。
3. 通话时长分析通过分析呼叫中心通话的平均时长、最长时长、最短时长等指标,可以评估客户服务的效率和质量,优化呼叫中心的运营流程。
4. 客户满意度分析通过对客户满意度评价数据的统计和分析,可以了解客户对呼叫中心服务的满意程度,发现问题并及时改进,提升客户体验。
5. 呼叫转化率分析通过分析呼叫中心的呼叫转化率,即客户通过呼叫中心解决问题或购买产品的比例,可以评估呼叫中心的销售能力和服务质量,为企业制定营销策略提供依据。
四、数据分析工具和技术1. 数据可视化工具使用数据可视化工具如Tableau、Power BI等,将呼叫中心数据转化为图表、图形等形式,直观地展示数据分析结果,方便管理层和决策者进行数据洞察和决策。
2. 数据挖掘技术利用数据挖掘技术如聚类分析、关联规则挖掘等,挖掘呼叫中心数据中的潜在规律和关联关系,为企业提供更深入的洞察和决策支持。
3. 自然语言处理技术对呼叫中心的在线聊天记录、电子邮件交流等非结构化文本数据进行自然语言处理,提取关键词、情感分析等,帮助企业了解客户需求和情感倾向。
数据分析与在呼叫中心的应用
数据分析与在呼叫中心的应用数据分析与在呼叫中心的应用引言数据收集数据分析的第一步是收集呼叫中心产生的大量数据。
这些数据可以包括来电数量、通话持续时间、客户问题类型、解决方案的成功率等。
还可以收集客户满意度调查结果、员工绩效数据等。
收集多种类型的数据可以为数据分析提供更多的维度和深度。
数据清洗和整理在将数据用于分析之前,需要对数据进行清洗和整理。
清洗数据可以去除无效或错误的记录,确保数据的准确性。
整理数据可以将不同数据源的数据整合到一个统一的数据集中,为后续的分析提供方便。
数据可视化数据可视化是将数据转化为易于理解和解释的图形或图表的过程。
在呼叫中心的应用中,通过数据可视化可以清晰地展示来电量、服务水平、员工绩效等关键指标的趋势和变化。
这样的可视化报表可以帮助管理人员迅速了解当前的运营状况,并根据数据做出相应的决策。
预测和优化数据分析可以帮助呼叫中心进行预测和优化。
通过对历史数据的分析,可以预测的来电数量和处理时间。
这样的预测可以帮助呼叫中心提前制定人员调配计划,以确保在高峰期有足够的人力资源。
还可以通过分析客户满意度数据,找出影响客户满意度的因素,并优化呼叫中心的服务流程和策略。
实时监控和反馈数据分析还可以用于实时监控呼叫中心的运营状况。
通过实时数据的反馈,管理人员可以及时发现和解决运营问题,提高服务质量和效率。
例如,当来电数量超出预期时,可以迅速调配人力资源;当客户满意度下降时,可以立即采取改进措施。
数据分析在呼叫中心的应用为企业提供了更深入的洞察和决策支持。
通过收集、清洗、整理和分析大量的数据,呼叫中心可以更好地管理其运营,提高客户满意度,优化人力资源配置,从而提升企业的竞争力。
随着数据分析技术的不断发展,呼叫中心将能够发挥更大的作用,实现更高的效益。
呼叫中心数据分析岗位职责
呼叫中心数据分析岗位职责呼叫中心数据分析岗位的主要职责是通过分析呼叫中心的数据,提供决策支持和改进建议,以优化呼叫中心的绩效和客户满意度。
岗位的具体职责如下:1. 数据收集与整理:负责收集呼叫中心相关数据,如呼叫量、呼叫时长、客户满意度调查结果等,还要确保数据的完整性和准确性。
需要将原始数据整理成有用的形式,如报表、图表等,以便后续的分析。
2. 数据分析与挖掘:利用统计学和数据分析的方法,对呼叫中心的数据进行深入分析。
通过观察和验证数据,发现数据背后的规律和趋势,揭示问题和潜在机会。
例如,可以通过分析呼叫量和呼叫时长的关系,评估服务质量和响应时间的表现。
3. 绩效评估与报告:根据分析结果,评估呼叫中心的绩效表现。
可以根据指标如平均通话时长、携号转网率、客户满意度等,对呼叫中心的工作进行量化评价,并比较不同时间段、不同团队或不同地区之间的差异。
此外,还需撰写相关报告和建议,向上级或相关部门提供数据驱动的意见和决策支持。
4. 问题解决与优化建议:通过数据分析,发现呼叫中心存在的问题和瓶颈,并提出改进方案和优化建议。
例如,根据分析结果,提出呼叫中心工作流程的改进方法、培训和提升客服人员技能的建议等。
能够将数据和见解转化为具体的行动计划,推动呼叫中心的效率和服务质量的提升。
5. 数据系统管理与维护:负责呼叫中心数据管理系统的维护和更新,确保数据的可靠性和安全性。
需要熟悉和掌握数据管理工具和软件,如数据库、Excel、数据可视化软件等。
能够根据业务需要和数据分析的要求,设计和建立适合的数据系统和报表,并提升数据的自动化和效率。
6. 跨部门合作与培训:与其他部门合作,协调数据的收集和分析工作,以实现跨部门数据的整合和资源共享。
例如,与营销部门合作,分析呼叫中心的客户流失情况,制定营销策略。
此外,还需要向呼叫中心的员工提供数据分析培训和支持,提升他们的数据意识和分析能力。
综上所述,呼叫中心数据分析岗位的职责包括数据收集与整理、数据分析与挖掘、绩效评估与报告、问题解决与优化建议、数据系统管理与维护以及跨部门合作与培训。
呼叫中心如何利用数据分析改善服务
呼叫中心如何利用数据分析改善服务在当今竞争激烈的商业环境中,客户服务质量的优劣直接影响着企业的声誉和业务发展。
呼叫中心作为企业与客户沟通的重要渠道,承担着解答疑问、处理投诉、提供支持等关键任务。
为了不断提升服务水平,满足客户日益增长的需求,呼叫中心应当充分利用数据分析这一有力工具。
数据分析能够帮助呼叫中心深入了解客户行为、需求和满意度,从而精准地优化服务流程、提高员工效率,并最终增强客户忠诚度。
首先,呼叫中心需要明确收集哪些数据。
通话时长、等待时间、解决问题的时间、客户满意度评分等都是关键的指标。
此外,还应包括客户提出的问题类型、问题的复杂程度、客户的情绪状态等细节信息。
这些数据的收集可以通过电话系统的自动记录、客服人员的手动输入以及客户在通话结束后的反馈调查等多种方式进行。
有了丰富的数据基础,接下来就是对数据进行整理和分类。
将海量的数据按照不同的维度进行分类,例如按照业务类型、客户类型、时间段等,以便更清晰地发现数据中的规律和趋势。
比如,通过按时间段分类数据,可以发现某些时段的来电数量特别多,从而合理调整人员安排,避免客户长时间等待。
深入的数据分析是挖掘数据价值的关键步骤。
通过运用统计学方法和数据挖掘技术,呼叫中心可以找出数据之间的隐藏关系。
比如,分析客户满意度与解决问题时间之间的关联,可能会发现如果能在一定时间内解决客户问题,满意度会显著提高。
又或者通过关联分析,发现某些问题常常同时出现,这意味着可能存在一个系统性的根源需要解决。
利用数据分析来优化服务流程是提升服务质量的重要途径。
如果数据显示某个环节经常导致客户不满或者延误处理时间,就应当对该环节进行重新设计或改进。
例如,简化繁琐的身份验证流程,或者优化问题转接机制,确保客户能够快速找到能解决问题的人。
员工培训也是数据分析的一个重要应用方向。
通过分析员工的服务表现数据,如通话时长、解决问题的准确率、客户满意度评价等,可以找出员工的优势和不足之处。
呼叫中心如何利用数据分析提升业务洞察力
呼叫中心如何利用数据分析提升业务洞察力在当今竞争激烈的商业环境中,呼叫中心作为企业与客户沟通的重要渠道,承担着解决问题、提供服务、促进销售等关键任务。
然而,要想在海量的呼叫数据中挖掘出有价值的信息,提升业务洞察力,并非易事。
数据分析成为了呼叫中心突破困境、实现优化和创新的有力武器。
首先,我们要明确什么是业务洞察力。
简单来说,业务洞察力就是能够深入理解业务流程、客户需求和市场动态,从而发现潜在的机会和问题,并制定相应的策略和措施。
对于呼叫中心而言,拥有强大的业务洞察力意味着能够更好地满足客户需求、提高服务质量、优化运营流程,最终提升客户满意度和忠诚度,为企业创造更大的价值。
那么,呼叫中心如何通过数据分析来提升业务洞察力呢?第一步,数据收集是基础。
呼叫中心每天都会产生大量的数据,包括通话记录、客户信息、问题类型、处理时间、客户满意度等等。
这些数据来源多样,且格式各异。
因此,需要建立一个完善的数据收集系统,确保数据的准确性、完整性和及时性。
同时,要对数据进行分类和整理,以便后续的分析和处理。
第二步,数据清洗和预处理至关重要。
收集到的数据往往存在噪声、缺失值和错误等问题。
通过数据清洗,去除无效数据,补充缺失值,纠正错误,能够提高数据的质量,为后续的分析提供可靠的基础。
例如,如果客户的地址信息不完整或错误,可能会影响对客户地域分布的分析,进而影响市场策略的制定。
第三步,选择合适的数据分析方法。
常见的分析方法包括描述性分析、相关性分析、回归分析等。
描述性分析可以帮助我们了解数据的基本特征,如平均值、中位数、标准差等;相关性分析能够揭示不同变量之间的关系;回归分析则可以用于预测和建模。
例如,通过相关性分析,可以发现客户等待时间与客户满意度之间的负相关关系,从而采取措施缩短等待时间,提高满意度。
第四步,深入挖掘数据背后的信息。
这不仅仅是对数据表面的分析,更是要探究其深层次的原因和影响。
比如,通过对客户投诉数据的分析,发现某个产品存在频繁的质量问题,这就需要进一步追溯到生产环节,查找问题根源,采取改进措施。
呼叫中心数据分析
呼叫中心数据分析呼叫中心数据分析1. 概述呼叫中心是企业与顾客进行方式沟通的重要渠道之一,通过分析呼叫中心的数据,企业可以获取客户需求、了解客户反馈、优化服务质量等重要信息。
本文将介绍呼叫中心数据分析的意义、常用方法和步骤。
2. 呼叫中心数据的意义呼叫中心数据包含大量有价值的信息,通过对这些数据进行分析,企业能够获取以下洞察:- 客户需求:通过分析来电目的、问题类型等信息,企业可以了解客户的需求,进一步优化产品和服务。
- 服务质量:通过分析来电时长、通话过程中的沟通质量等信息,企业可以评估服务质量,发现问题并进行改进。
- 客户满意度:通过分析来电评价、客户反馈等信息,企业可以了解客户满意度,发现问题并及时解决。
- 运营效果:通过分析呼叫中心的工作效率、呼叫分布等信息,企业可以评估运营效果,进行资源优化。
3. 呼叫中心数据分析方法呼叫中心数据分析通常使用以下常用方法:- 数据收集:呼叫中心数据可以从各种渠道获取,如方式录音、呼叫记录等。
企业需要建立数据收集机制,确保数据的准确性和完整性。
- 数据清洗:在进行数据分析之前,需要对数据进行清洗,包括去除重复记录、处理缺失值等。
- 数据转换:将呼叫中心数据转换成适合分析的格式,如将方式录音转换成文本,提取关键信息等。
- 数据分析:使用统计学和机器学习等方法,对呼叫中心数据进行分析,探索数据的关联性、趋势等。
- 结果可视化:通过可视化工具,将数据分析的结论以图表等形式展示,便于企业决策和沟通。
4. 呼叫中心数据分析步骤呼叫中心数据分析通常包括以下步骤:- 定义分析目标:根据企业的需求,明确呼叫中心数据分析的目标,如了解客户需求、提升服务质量等。
- 收集和整理数据:获取呼叫中心的数据,清洗和整理数据,确保数据的准确性和完整性。
- 数据探索分析:对数据进行探索性分析,包括统计量计算、数据可视化等,发现数据之间的关系和趋势。
- 数据建模和预测:基于数据分析的结果,建立模型进行预测,如客户满意度的预测、服务质量改进的方向等。
呼叫中心解决方案的6种方法
呼叫中心解决方案的6种方法一、多通道呼叫中心随着互联网的发展,呼叫中心也在不断创新与变革。
多通道呼叫中心是一种集成了多种通信渠道的解决方案,包括电话、电子邮件、短信、社交媒体等。
通过提供多样化的沟通方式,企业可以更好地与客户互动,提高客户满意度。
二、自助服务功能自助服务功能是一种通过自动化技术让客户自助解决问题的解决方案。
企业可以通过提供在线帮助中心、常见问题解答、自助查询等功能,让客户能够在不需要人工干预的情况下解决问题。
这不仅能节省企业人力资源,也提高了客户的满意度和快速解决问题的效率。
三、智能语音识别技术智能语音识别技术是一种通过计算机自动识别和理解语音的技术。
在呼叫中心中应用智能语音识别技术可以使客户在拨打电话后自动与语音助手进行对话,无需等待人工接听。
这种技术可以提高呼叫中心的处理能力,并减轻客户的等待时间。
四、预测性呼叫拨号技术预测性呼叫拨号技术是一种通过算法预测出最佳拨号时间,并自动拨打电话的技术。
通过减少无效电话和提高坐席利用率,预测性呼叫拨号技术可以提高呼叫中心的工作效率和生产力。
此外,它还能够根据拨打结果自动调整拨号策略,进一步提升呼叫中心的业绩。
五、呼叫录音与质检系统呼叫录音与质检系统是一种用于记录和回放客户与呼叫中心工作人员之间通话内容的解决方案。
它可以帮助企业监控和评估呼叫中心的服务质量,发现问题和改进服务。
通过录音与质检系统,企业可以提供更加专业和高效的客户服务,提升客户体验。
六、数据分析与报告数据分析与报告是一种通过对呼叫中心的数据进行深度分析,帮助企业了解呼叫中心的运行情况和客户需求的解决方案。
通过数据分析与报告,企业可以获取呼叫中心的关键指标和统计数据,从而进行优化和改进。
这种解决方案能够帮助企业更加智能地管理呼叫中心,提高企业的运营效率和客户满意度。
呼叫中心数据分析报告
呼叫中心数据分析报告一、引言呼叫中心的数据分析报告对于优化呼叫中心运营、提高客户满意度以及提升公司业绩具有至关重要的意义。
本报告将对呼叫中心的数据进行深入分析,并提出相应的改进建议。
二、数据来源与处理1、数据来源:本报告所采用的数据来源于呼叫中心的日常运营数据,包括呼入呼出数量、通话时长、客户满意度等。
2、数据处理:运用数据处理技术,如数据清洗、数据筛选等,对原始数据进行处理,以保证数据的准确性和完整性。
三、数据分析1、数量分析:分析呼入呼出的数量,可以了解客户的需求和公司的业务状况。
通过对比不同时间段的数量,可以发现高峰期和低谷期,为人力资源调配提供依据。
2、通话时长分析:通话时长是反映呼叫中心工作效率的重要指标。
通过分析通话时长,可以找出工作中存在的问题,并采取相应措施提高工作效率。
3、客户满意度分析:客户满意度是衡量呼叫中心服务质量的重要指标。
通过分析客户满意度,可以了解客户的需求和期望,从而改进服务质量和提升客户体验。
四、改进建议1、针对数量,建议公司在高峰期增加接线员数量,提高工作效率;在低谷期适当减少接线员数量,避免人力浪费。
2、针对通话时长,建议公司对通话过程进行监控,发现存在的问题并及时解决;同时加强员工培训,提高沟通能力和服务水平。
3、针对客户满意度,建议公司加强客户调查,了解客户需求和期望;同时建立完善的客户服务体系,提高客户满意度和忠诚度。
五、结论与展望通过对呼叫中心的数据进行深入分析,我们可以发现存在的问题和改进空间。
通过实施上述改进建议,有望提高呼叫中心的工作效率和客户满意度,从而提升公司业绩。
我们也将持续呼叫中心的数据变化,不断优化改进措施,以适应不断变化的市场环境。
呼叫中心数据分析在当今的数字化时代,呼叫中心已成为企业与客户互动的重要渠道。
然而,随着客户期望的不断提升,呼叫中心的运营面临着巨大的挑战。
为了在这个竞争激烈的市场环境中获得优势,企业需要借助数据分析的力量来优化呼叫中心的运营,提升客户体验。
呼叫中心数据分析
呼叫中心数据分析一、引言呼叫中心作为企业与客户之间沟通的重要渠道,每天都会产生大量的通话数据。
通过对这些数据进行分析,企业可以了解客户需求、改进服务质量、优化运营效率,从而提升客户满意度和企业竞争力。
本文将介绍呼叫中心数据分析的方法和步骤,以及分析结果的应用。
二、数据收集1. 数据来源:呼叫中心通话记录、客户信息、服务质量评价等。
2. 数据类型:通话时长、通话次数、客户满意度评分、问题类型等。
3. 数据收集方式:自动记录、人工记录、在线调查等。
三、数据清洗与整理1. 数据清洗:去除异常值、缺失值、重复值等。
2. 数据整理:将不同数据源的数据进行整合,建立数据表格或数据库。
四、数据分析方法1. 描述性统计:对数据进行整体描述,如平均值、中位数、标准差等。
2. 关联分析:探索不同变量之间的关系,如通话时长与客户满意度的关系。
3. 趋势分析:分析呼叫中心数据的发展趋势,如通话次数的月度变化。
4. 预测分析:基于历史数据预测未来的呼叫量、服务需求等。
五、数据分析步骤1. 确定分析目标:根据企业需求确定分析目标,如提升客户满意度。
2. 数据探索:对数据进行初步的探索性分析,了解数据的分布、特征等。
3. 数据预处理:对数据进行清洗、整理,为后续分析做准备。
4. 数据分析:根据分析目标选择合适的分析方法,进行数据分析。
5. 结果解释:将分析结果进行解释,提取关键信息,形成可视化报告或文档。
6. 结果应用:根据分析结果提出具体的改进措施,优化呼叫中心运营。
六、数据分析工具1. 数据可视化工具:如Tableau、Power BI等,用于制作图表、仪表盘等可视化报告。
2. 统计分析软件:如SPSS、R、Python等,用于进行统计分析和建模。
3. 数据库工具:如MySQL、Oracle等,用于数据的存储和管理。
七、数据分析应用案例以某电商企业的呼叫中心数据为例,进行数据分析的应用案例:1. 客户满意度分析:通过分析客户满意度评分与通话时长、问题解决率等指标的关系,找出影响客户满意度的关键因素,提出改进建议。
呼叫中心数据分析
呼叫中心数据分析一、背景介绍呼叫中心是企业与客户之间进行沟通和交流的重要渠道,通过电话、邮件、在线聊天等方式,客户可以向呼叫中心咨问询题、寻求匡助或者提出投诉。
呼叫中心数据分析是对呼叫中心的通话记录、客户反馈等数据进行深入分析,以获取有价值的信息和洞察,匡助企业优化客户服务、改进业务流程、提升客户满意度。
二、数据采集和整理1. 数据来源:呼叫中心通话记录、客户反馈、调查问卷等。
2. 数据采集方式:自动记录呼叫中心通话,客户反馈通过在线调查或者邮件采集。
3. 数据整理:将采集到的数据进行清洗、去重和归类,确保数据的准确性和完整性。
三、数据分析方法1. 呼叫中心通话记录分析:a. 通话时长分析:统计每一个客户的平均通话时长,识别通话时间过长或者过短的异常情况。
b. 呼叫次数分析:分析每一个客户的呼叫频率,识别高频呼叫客户或者呼叫次数异常的情况。
c. 通话质量分析:评估通话质量,包括通话中是否有噪音、回声、断线等问题,以及客户对通话质量的满意度调查。
d. 通话目的分析:分析客户呼叫的目的,如咨询产品信息、投诉问题、寻求技术支持等,以了解客户需求和关注点。
e. 呼叫时段分析:分析每天不同时间段的呼叫量,以确定呼叫中心的高峰和低谷时段,合理安排人员资源。
2. 客户反馈分析:a. 反馈类型分析:将客户反馈按照问题类型进行分类,如产品质量、售后服务、物流配送等,以了解客户关注的重点领域。
b. 反馈情感分析:通过文本挖掘技术,分析客户反馈中的情感倾向,如积极、消极或者中性,以了解客户对企业的满意度。
c. 反馈渠道分析:分析客户反馈的渠道,如电话、邮件、在线聊天等,以确定不同渠道的反馈特点和效果。
四、数据分析结果应用1. 优化客户服务:根据通话记录分析,针对通话时间过长的情况,可以优化呼叫中心的流程和操作,提高服务效率;根据通话质量分析,改进通话设备和技术,提升通话质量。
2. 改进业务流程:根据通话目的分析,了解客户的需求和关注点,优化企业的产品和服务,提升客户满意度;根据客户反馈分析,改进产品质量、售后服务等环节,提升企业形象和竞争力。
呼叫中心数据分析
呼叫中心数据分析呼叫中心是现代企业中重要的客户服务渠道之一。
随着通信技术的发展,呼叫中心不仅能够为客户提供电话支持,还可以通过电子邮件、即时消息和社交媒体等多种渠道进行交互。
这些渠道产生的海量数据为企业提供了宝贵的机会,通过对呼叫中心数据进行分析,企业可以了解客户需求和行为,优化服务流程,提高客户满意度和忠诚度。
呼叫中心数据分析的目标是从数据中提取有价值的信息和洞察,帮助企业做出更好的决策。
以下是一些常见的呼叫中心数据分析应用:1. 客户行为分析:通过分析呼叫中心数据,企业可以了解客户的需求和行为模式。
比如,可以分析客户在呼叫中心的通话时长、通话次数和问题类型等,从而洞察客户对产品或服务的关注点和满意度。
通过这些分析结果,企业可以优化产品设计、改进服务流程,并针对不同类型的客户提供个性化的服务。
2. 呼叫质量评估:呼叫中心是企业与客户沟通的重要窗口,了解呼叫中心代表的表现和服务质量对企业来说至关重要。
通过对呼叫录音和相关数据的分析,企业可以评估呼叫中心代表的专业度、客户处理能力和问题解决能力等。
这帮助企业发现问题,提供培训和支持,提升呼叫中心代表的水平,从而提高客户满意度。
3. 预测分析:呼叫中心数据可以用于预测客户需求和市场趋势。
通过分析历史呼叫数据和相关的外部数据,企业可以预测未来的电话量、问题类型和服务需求等。
这有助于企业调整资源分配,准备更充足的人力和物力,提供更好的客户服务。
4. 呼叫中心效率分析:呼叫中心的运营效率对企业非常重要。
通过分析呼叫中心数据,企业可以了解平均等待时间、平均通话时长和呼叫处理时间等指标,评估呼叫中心的运行效率。
这可以帮助企业发现瓶颈和问题,并优化服务流程,提高呼叫中心的运营效率和工作效率。
5. 客户满意度调查:呼叫中心数据可以用于进行客户满意度调查。
通过对呼叫中心通话记录和客户反馈的分析,企业可以了解客户对呼叫中心服务的满意度,并根据反馈改进服务质量和流程。
在进行呼叫中心数据分析时,企业需要注意以下几点:1. 数据质量:呼叫中心数据的质量对分析结果的准确性和可靠性至关重要。
呼叫中心数据分析
呼叫中心数据分析一、概述呼叫中心数据分析是指通过对呼叫中心的通话记录、客户信息和其他相关数据的分析,来获取有价值的洞察和决策支持。
通过深入挖掘呼叫中心数据,企业可以优化客户服务、提升运营效率、改进产品和服务等方面。
二、数据收集与整理1. 数据源呼叫中心数据分析的数据来源主要包括呼叫中心系统、CRM系统、IVR系统、在线聊天系统等。
这些系统记录了客户的通话时长、等待时间、问题类型、解决方案等信息。
2. 数据收集通过与呼叫中心系统、CRM系统等进行数据对接,可以实时获取数据。
数据收集可以通过API接口、数据导出等方式进行。
3. 数据整理收集到的数据需要进行清洗和整理,包括去除重复数据、填补缺失值、处理异常值等。
同时,还需要对数据进行分类和归档,以便后续分析使用。
三、呼叫中心数据分析指标1. 通话时长通话时长是衡量呼叫中心绩效的重要指标之一。
可以通过分析通话时长的分布情况,发现通话时长异常的客户,进一步优化客户服务流程。
2. 等待时间等待时间是客户体验的关键指标之一。
通过分析等待时间的分布情况,可以发现等待时间过长的客户群体,进一步优化呼叫中心的人员配置和服务流程。
3. 问题类型问题类型是客户呼叫的主要原因。
通过分析问题类型的分布情况,可以了解客户的主要关注点和需求,进一步改进产品和服务。
4. 解决率解决率是衡量呼叫中心解决问题能力的指标。
通过分析解决率的变化趋势,可以评估呼叫中心的服务质量,并及时采取措施改进。
5. 客户满意度客户满意度是衡量呼叫中心服务质量的重要指标。
通过分析客户满意度的调查结果,可以了解客户对呼叫中心服务的满意程度,进一步改进服务质量。
四、呼叫中心数据分析方法1. 数据可视化通过将呼叫中心数据转化为直观的图表、图像等形式,可以更加清晰地展示数据分布和趋势,帮助决策者更好地理解数据。
2. 数据挖掘通过应用数据挖掘算法,如聚类分析、关联规则挖掘等,可以发现数据中的隐藏模式和规律,提供有价值的洞察。
呼叫中心数据分析报告
呼叫中心数据分析报告一、引言呼叫中心作为企业与客户沟通的重要渠道,每天都会产生大量的数据。
对这些数据进行深入分析,能够为企业提供有价值的信息,帮助企业优化运营、提升服务质量、提高客户满意度。
本报告旨在对呼叫中心的相关数据进行分析,揭示其中的规律和问题,并提出相应的改进建议。
二、数据来源与收集本次分析所使用的数据来源于呼叫中心的业务系统,涵盖了过去一段时间内的通话记录、客户信息、问题类型、处理时长等方面。
数据收集过程遵循了严格的规范和流程,确保数据的准确性和完整性。
三、数据分析1、呼叫量与时间分布通过对呼叫量的统计,我们发现工作日的呼叫量明显高于周末,且每天的呼叫高峰出现在上午 10 点至 12 点以及下午 2 点至 4 点。
这表明客户在工作时间内更倾向于与呼叫中心联系,企业可以在这些时间段内合理调配人力资源,以确保及时响应客户需求。
2、客户问题类型分布对客户提出的问题进行分类统计,发现常见的问题主要集中在产品咨询、售后服务、订单处理等方面。
其中,产品咨询占比最高,达到了 35%,售后服务和订单处理分别占比 25%和 20%。
这提示企业应加强对产品知识的培训,提高客服人员的业务水平,以便更有效地解答客户的咨询。
3、处理时长分析平均处理时长是衡量呼叫中心服务效率的重要指标。
经过分析,我们发现处理时长在 5 分钟以内的呼叫占比 60%,5 10 分钟的占比 25%,超过 10 分钟的占比 15%。
对于处理时长较长的呼叫,需要进一步分析原因,是问题复杂还是客服人员业务不熟练,以便采取针对性的措施进行改进。
4、客户满意度调查通过对客户满意度的调查,我们发现整体满意度为 80%,但仍有 20%的客户表示不满意。
对不满意的原因进行深入分析,发现主要集中在等待时间过长、问题未得到有效解决、客服态度不好等方面。
企业应针对这些问题,采取措施加以改进,以提高客户满意度。
四、问题与挑战1、人力资源配置不合理在呼叫高峰时段,客服人员数量不足,导致客户等待时间过长,影响客户体验。
呼叫中心数据分析
呼叫中心数据分析一、引言呼叫中心作为企业与客户之间的重要沟通渠道,承载着大量的客户交流与信息传递。
对呼叫中心的数据进行分析可以帮助企业了解客户需求、改进服务质量、优化运营效率等方面的问题。
本文将介绍呼叫中心数据分析的目的、方法和应用,并提供一些实际案例进行说明。
二、目的呼叫中心数据分析的目的是通过对呼叫中心数据的收集、整理和分析,获取有价值的信息,为企业决策提供依据。
具体而言,呼叫中心数据分析可用于以下方面:1. 客户满意度分析:通过分析客户投诉、表扬和建议等数据,了解客户对企业服务的满意度,识别问题和改进机会。
2. 服务质量评估:通过分析呼叫中心的接通率、通话时长、问题解决率等指标,评估服务质量,发现问题并提出改进措施。
3. 呼叫中心绩效评估:通过分析呼叫中心的接听率、处理量、转接率等指标,评估呼叫中心的绩效,发现瓶颈和提升空间。
4. 客户行为分析:通过分析客户的呼叫目的、呼叫时间、呼叫频率等数据,了解客户行为模式,为客户关系管理提供支持。
三、方法呼叫中心数据分析的方法主要包括数据收集、数据整理、数据分析和数据可视化。
具体步骤如下:1. 数据收集:通过呼叫中心系统记录的通话录音、通话记录、客户反馈等数据进行收集。
可以利用自动化工具将数据导出为Excel或CSV格式,以便后续处理。
2. 数据整理:对收集到的数据进行清洗和整理,包括去除重复数据、填充缺失值、转换数据格式等。
确保数据的准确性和完整性。
3. 数据分析:根据具体的分析目的,选择合适的统计方法和数据挖掘技术进行分析。
常用的分析方法包括趋势分析、关联分析、分类与预测等。
4. 数据可视化:将分析结果以图表、报表等形式进行可视化展示,使得数据更易于理解和解释。
常用的可视化工具包括Excel、Tableau、Power BI等。
四、应用呼叫中心数据分析可以应用于多个方面,以下是一些实际案例:1. 客户满意度提升:通过分析客户投诉数据,发现了一些常见问题,如服务态度不佳、解决问题不彻底等。
呼叫中心数据分析报告
呼叫中心数据分析报告呼叫中心数据分析报告引言呼叫中心是企业与客户进行有效沟通的重要渠道,通过对呼叫中心数据进行深入分析,可以帮助企业了解客户需求、提高服务质量、优化流程等。
本报告旨在通过对呼叫中心数据的分析,提供对当前呼叫中心运营情况的全面评估,并提出改进建议,以帮助企业提升运营效率和客户满意度。
数据收集与处理本次数据分析使用的数据集包括呼叫中心的通话记录、客户反馈、员工绩效数据等相关信息。
这些数据经过整理和清洗,剔除了异常值和缺失值,并进行了标准化处理,以确保数据的可靠性和一致性。
呼叫中心运营情况分析1. 客户满意度分析通过分析客户反馈数据,我们可以了解客户对呼叫中心的满意度。
根据调查结果,我们发现客户对呼叫中心的整体满意度评分为4.5(满分为5),其中80%的客户表示对呼叫中心的服务比较满意,10%的客户表示满意,5%的客户表示一般,另外5%的客户表示不满意。
这表明客户对呼叫中心的服务整体较为满意。
2. 员工绩效评估通过分析员工绩效数据,我们可以评估呼叫中心员工的表现。
根据绩效评估结果,我们发现呼叫中心员工的平均接听率为90%,平均解决率为85%,平均反馈率为95%。
这说明员工在处理客户问题时表现较为出色,但仍有改进空间。
3. 服务质量分析通过对通话记录数据的分析,我们可以对呼叫中心的服务质量进行评估。
根据分析结果,我们发现呼叫中心的平均通话时长为3分钟,平均客户等待时间为30秒。
这表明呼叫中心的服务速度较快,能够及时为客户提供服务。
然而,仍有部分通话时长较长和客户等待时间较长的情况,建议对这些问题进行进一步调查和改进。
改进建议基于对呼叫中心数据的分析结果,我们提出以下改进建议,以帮助企业提升呼叫中心的运营效率和客户满意度:1. 提高员工的培训与素质,加强对话技巧和服务意识的培养,以提升服务质量和解决率。
2. 减少客户等待时间,可以增加呼叫中心人力资源,改善技术设施的配置,并优化呼叫中心的工作流程。
呼叫中心数据分析
呼叫中心数据分析引言概述:呼叫中心作为企业与客户之间的重要沟通渠道,每天处理大量的客户咨询和投诉。
这些呼叫中心数据蕴含着丰富的信息,通过对这些数据进行分析,企业可以更好地了解客户需求、提升服务质量、优化运营效率。
本文将从五个方面详细阐述呼叫中心数据分析的重要性和方法。
一、客户需求分析1.1 呼叫类型分析:通过对呼叫类型进行分类和统计,了解不同类型呼叫的数量和比例,从而了解客户最关心的问题和需求。
1.2 呼叫时段分析:分析不同时间段内的呼叫量,找出高峰期和低谷期,合理调配人员和资源,提升呼叫中心的工作效率。
1.3 问题热点分析:通过对呼叫内容的关键词提取和分析,找出客户最常咨询和投诉的问题,针对性地改进产品和服务。
二、服务质量评估2.1 通话时长分析:对呼叫的通话时长进行统计和分析,评估客户与呼叫中心人员的沟通效率,发现通话时间过长或过短的问题,并进行改进。
2.2 呼叫转接率分析:分析呼叫中心内部的呼叫转接情况,评估转接的效率和准确性,减少客户被反复转接的情况,提升服务质量。
2.3 客户满意度分析:通过对呼叫结束后的客户满意度调查,了解客户对服务的评价和意见,及时发现问题并改进。
三、人员绩效考核3.1 呼叫处理量分析:对呼叫中心人员的处理量进行统计和分析,评估每个人员的工作效率和质量,为绩效考核提供依据。
3.2 通话时长分析:分析每个人员的通话时长,评估其与客户的沟通效果,发现问题并进行培训和提升。
3.3 客户评价分析:通过客户的评价和意见,评估每个人员的服务质量,及时发现问题并进行改进。
四、运营效率优化4.1 呼叫分布分析:通过对呼叫的来源和分布进行分析,合理调配人员和资源,提升运营效率。
4.2 呼叫等待时间分析:分析客户在等待接通时的平均等待时间,优化呼叫排队系统,减少客户等待时间,提升服务质量。
4.3 呼叫处理时间分析:对呼叫的处理时间进行统计和分析,找出处理时间过长的环节,优化流程,提升运营效率。
呼叫中心数据分析
呼叫中心数据分析呼叫中心数据分析1. 引言呼叫中心作为现代企业日常运营中不可或缺的组成部分,扮演着与客户进行沟通和交互的重要角色。
通过对呼叫中心数据的分析,企业可以更好地了解客户需求、改进服务质量,并做出数据驱动的决策。
本文将介绍呼叫中心数据分析的重要性、常用的数据分析方法和工具,以及一些成功案例。
2. 呼叫中心数据分析的重要性呼叫中心数据分析对企业的经营决策具有重要意义。
通过分析呼叫中心数据,企业可以获得以下几个方面的收益:2.1 客户洞察呼叫中心数据中包含了大量客户的信息,如来电号码、通话时长、问题描述等。
通过对这些数据进行分析,可以了解到客户的需求、关注点和痛点。
企业可以根据这些客户洞察,调整产品策略、优化服务流程,提升客户满意度。
2.2 质量管理呼叫中心数据分析可以帮助企业进行质量管理。
通过分析通话录音和客服人员的绩效指标,如接听率、问题解决率等,企业可以了解客服人员的表现和服务质量。
如果出现问题或不达标的情况,企业可以及时采取措施进行改进,提升整体的服务质量。
2.3 业务优化呼叫中心数据分析可以帮助企业进行业务优化。
通过分析呼叫中心数据,企业可以了解到客户的需求变化和趋势,及时调整业务策略,推出更适合客户的产品和服务。
同时,通过对呼叫中心数据的分析,企业可以了解到客户的投诉和问题,及时改进业务流程,提升整体运营效率。
3. 常用的数据分析方法和工具3.1 数据清洗和整理呼叫中心数据通常以原始数据的形式存在,包含了大量的噪音和冗余信息。
在进行数据分析之前,需要对数据进行清洗和整理,去掉重复数据、缺失数据和不合理数据,保证数据的可靠性和准确性。
常用的数据清洗和整理工具有Python的pandas库和R语言的tidyverse包。
3.2 数据可视化数据可视化是呼叫中心数据分析的重要环节,通过可视化手段可以更直观地展现数据的特征和趋势。
常用的数据可视化工具有Python的matplotlib库和R语言的ggplot2包。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散系数=标准差/平均值
内部资料 注意保密
案例3——IVR通话均长
团队的优秀员工集中在哪个象限?
内部资料 注意保密
案例3(续)
①象限:通话均长较长,离散系数较高
趋势值在明显进步,通常是新员工
趋势值没有明显进步或退步,通常是技能没有成功养成的员工
内部资料 注意保密
数据无处不在
用户数据
VIP/非VIP QQ号码 开通业务 求助渠道 游戏行为
内部资料 注意保密
数据无处不在
工资收入
内部资料 注意保密
数据无处不在
房价
内部资料 注意保密
数据无处不在
消费 恩格尔系数=食物支出金额/总支出金额
60%以上为贫困 50%~60%为温饱 40%~50%为小康 40%以下为富裕
= 通话时长 签入时长 排班时长 签入时长 排班时长
=通话率 工时利用率 168 3600
内部资料 注意保密
案例7——处理率
进单量包含普通回复工单量、批量回复工单量、升级工单 量、临时回复工单量、删单量 处理量包含普通回复工单量、批量回复工单量、升级工单 量、临时回复工单量,不包括删单量
内部资料 注意保密
研究3(续)
内部资料 注意保密
内部资料 注意保密
小结
没有哪个分析方法是绝对正确的,但有些分 析方法是有用的 数据分析可以在企业中得到广泛的应用
数据分析方法未必越“高深”越“好”,往 往简单的方法可以解决“大问题”
内部资料 注意保密
内部资料 注意保密
内部资料 注意保密
案例7(续)
Q:处理率低=删单率高?
内部资料 注意保密
案例7(续)
进单量只能按照产 品属性进行查询
内部资料 注意保密
案例7(续)
内部资料 注意保密
案例7(续)
内部资料 注意保密
案例7(续)
处理量按照技能组 属性进行查询
内部资料 注意保密
案例7(续)
内部资料 注意保密
案例7(续)
案例8——满意度
内部资料 注意保密
综合练习
内部资料 注意保密
内部资料 注意保密
研究1——新游戏的宣传评估
内部资料 注意保密
研究1(续)
内部推广UV1
• Tips消息 • 腾讯网广UV2
• 其它传统媒体
游戏官网UV 下载页UV 下载游戏客户端用户数 注册用户数 进入游戏用户数
正常波动是由随机原因引起的运营波动,处于控制状态
异常波动是指由可指出原因(系统原因)引起的运营波动, 处于脱控状态 通过观察控制图上点的分布来判断运营波动是由随机原因 引起的,还是可指出原因引起的
内部资料 注意保密
一个小知识——标准差
标准差:各数 据偏离均值的 距离的平均数
A、B两种运营情况满意度均值都为70%
趋势值明显退步,注意员工的离职倾向
②象限:通话均长较短,离散系数较高
趋势值在明显进步,处于明显成长进步的阶段
趋势值没有明显进步或退步,表现不稳定
趋势值明显退步,处于明显的低潮和退步阶段,注意向①象限的转变
内部资料 注意保密
案例3(续)
③象限:通话均长较短,离散系数较低
优秀员工集中的象限
注意发展趋势
常用的考核
IVR
人均服务量 通话均长 工时利用率 通话率
ICS
人均服务量 闭环时长 服务响应率 处理率
接通率
满意度 正确率
满意度
正确率
内部资料 注意保密
1.服务量
服务量(工作量) 统计期内,员工处理的服务请求总量
内部资料 注意保密
1.服务量
内部资料 注意保密
1.服务量——是正常波动,还是异常?
1:有1个点在3倍标准差(AVE+3STD,AVE-3STD)之外
内部资料 注意保密
案例1(续)
内部资料 注意保密
练习1
内部资料 注意保密
案例2——人均服务量(人均工作量)
为什么人均服务量重要 ICS总处理量:309755 现有人力为:129.5人,其中一线人力103人,二线人力 12.5人,专家投诉人力14人 一线人均服务量为:3007 加入二线后人均服务量为:2682 再加入专家投诉后人均服务量为:2392 Q:在现有水平上,每增加一个二线人力 (或专家投 诉人力),一线人力不变,则一线人均服务量需增加 多少才能与现有水平“2392单”持平?
内部资料 注意保密
4.IVR接通率/ICS处理率
接通率=接线量/进线量*100% 处理率=回单量/进单量*100%
内部资料 注意保密
案例6——接通率
增多接线量
接线量 接通率= 100% 进线量
减少进线量
减少进线量的同时增多接线量; 同增多,但接线量增幅较大; 同减少,但进线量降幅较大
ห้องสมุดไป่ตู้
接线量 通话均长 =通话时长
内部资料 注意保密
数据无处不在
数据包含的信息很多,但是数据中的信息往 往是分散的,单个数据很难直接被应用起来 统计学就是把数据转化为信息的科学
数据 分析
从数据 中提取 信息
统计 学
数据分 析的依 据
统计 工具 • 服务数
据分析
• 利用统 计原理
内部资料 注意保密
统计的小故事
一辆火车行驶在草原上,遇到一群白色的
多数人都以一般车速开车, 所以多数车祸发生于一般车速
内部资料 注意保密
统计的误区-2
民间调查研究显示,身高比 较高的儿童拼写能力也比较好, 所以从一个人身高的高矮,可 以判断他拼写能力的强弱?
成长中的儿童,年龄较大的 身高会比较高,一般而言年龄 较大的儿童拼写能力会比年龄 较小的儿童强
内部资料 注意保密
羊……
物理学家说,我们看到的羊群是白色的 数学家说,我们看到的羊群朝向我们这面的那 部分是白色的
统计学家说,我们看到了103只羊,它们都是白
色的,我推断天下的羊都是白色的
内部资料 注意保密
统计的小故事
There are three kinds of lies: Lies, Damned lies, and Statistics!! 世上有三种谎言:
④象限:通话均长较长,离散系数较低
技能不好,非常稳定
需要投入较多精力
内部资料 注意保密
练习3
内部资料 注意保密
案例4——ICS闭环时长
发现超时单据
内部资料 注意保密
案例4——ICS闭环时长
组长进行解释
Q:超时单对整体业务的闭环 时长影响有多大?
内部资料 注意保密
案例4(续)
演示:Z技能组平均闭环时长的计算
行业相关研究
出勤率(遵时率) VS 工时利用率 VS 流失率 从员工心理分析,一旦员工有了离职倾向,其工作积极性及 主动性都会有不同程度的下降,在呼叫中心里最直接的表现就 是员工不再按照公司安排的计划时间工作 研究样本:深圳某呼叫中心30个月的人员流失率、遵时率、 工时利用率 研究结论:
Y(流失率)=0.1489X1-0.0861X2+0.02613 其中X1为工时利用率,X2为遵时率 (R2=0.7577,P<0.01)
内部资料 注意保密
5.满意度&正确率
满意度 最终用户的满意率=(选择“很满意”的用户数+选 择“满意”的用户数)/参评用户数*100% 正确率 人工服务差错率=质检发现的出现错误的人工服务量/ 质检的总服务量*100% 正确率=1-人工服务差错率
内部资料 注意保密
案例8——满意度
内部资料 注意保密
内部资料 注意保密
研究2——DNF用户调研
内部资料 注意保密
研究2(续)
内部资料 注意保密
研究2(续)
内部资料 注意保密
研究3——行为经济学
实验结果: 选A:50% 选C:50%
A
B
C
内部资料 注意保密
研究3(续)
征订套餐一: •电子版:59美元/年 •电子版+印刷版:125美元/ 年
订阅结果: •电子版:68% •电子版+印刷版:32%
内部资料 注意保密
案例5——工时利用率&通话率
A1在11日和12日的工作表现如何? A1、A2、A3三位员工在11日和12日的工时利用率和通话率是 怎样的?如何评价其工作表现?和运营情况有什么关联? 工时利用率大于等于100%的员工,其实际情况是?
内部资料 注意保密
练习5
内部资料 注意保密
内部资料 注意保密
练习4
内部资料 注意保密
3.工时利用率&通话率
在线工作时长 有效在线工作时长 刷卡上班 上班 登录/ 换班签入 请假示忙时长 学习时长 退出/ 刷卡下班 换班签出 下班
请假/示忙
结束 请假/示忙
进入 学习态 工作时长
结束 学习态
出勤率 VS 工时利用率 VS 通话率 出勤率=符合要求出勤小时数/排班应出勤小时数×100% 工时利用率=在线工作时长(签入系统时长)/工作时长×100% 通话率=通话时长/在线工作时长(签入系统时长) ×100%
谎言,
该死的谎言, 还有统计!!
内部资料 注意保密
统计的误区-1
ICS与IVR满意度差异大吗?
ICS满意度波动大吗?
内部资料 注意保密
统计的误区-1
更改Y坐标轴之后呢?
内部资料 注意保密
统计的误区-2
根据交通管理部门的统计结 果,多数车祸发生在当汽车行 驶于一般车速的时候,只有少 数车祸发生在超速的时候,所 以开快车比较安全?