高分子分离膜的改性方法
高分子膜概述
高分子膜概述一、高分子膜的分类根据孔径尺寸,分离膜可分为微滤(Microfiltration,MF)膜、超滤(Ultrafiltration,UF)膜、纳滤(Nanofiltration,NF)膜和反渗透(Reverse osmosis,RO)膜。
MF膜的孔径尺寸大于50nm,可用于去除悬浮固体、原生动物和细菌等。
UF膜的孔径尺寸为2~50nm,主要用于去除病毒和胶体。
具有纳米孔的NF膜和RO膜可去除溶解的盐离子,是主流的脱盐膜。
RO膜的结构最为致密,其孔径尺寸为0.3~0.6nm,具有很高的NaCl脱盐率(>98%),而NF膜结构更为疏松,孔径尺寸小于等于2nm,通常被称为“低压RO膜”,对NaCl脱盐率较),同时具有更高低(20%~80%),主要用于脱除高价离子(Ca2+、Mg2+和SO2-4的水通量。
二、高分子膜的结构和制备MF/UF多孔高分子膜可独立用于废水处理或作为NF膜和RO膜脱盐过程的预处理。
高分子MF膜和UF膜是应用最广泛的,其主要的制备成膜工艺是相转化法。
MF膜的截面孔分布可以是对称的或是非对称的,对称的MF膜截面孔径变化不明显,膜的厚度是影响其过滤分离性能的主要因素。
非对称的MF膜是由孔径小的表面分离层和孔径大的支撑层组成的,分离层的孔结构和厚度决定了膜整体的过滤分离性能。
UF膜的结构通常是非对称的,如图2-1所示,由开孔的底部支撑层和相对致密的表层构成,支撑层和表层属于同一种材料。
表层起到主要的分离作用,支撑层可使水溶液无阻碍地跨膜传输。
图2-1 聚砜UF膜的SEM照片平板MF/UF膜主要通过相转化法制备,以无纺布作为基底,提高膜的力学强度。
相转化法是指将含有聚合物和溶剂的均相聚合物溶液浸入非溶剂凝固浴中,并在可混溶的溶剂和非溶剂交换过程中发生聚合物固化。
此方法制备的膜的特性可通过改变浇铸条件、聚合物种类、聚合物浓度,溶剂/非溶剂体系和添加剂以及凝固浴条件实现调控。
目前MF/UF高分子膜材料主要包括醋酸纤维素(Cellulose Acetate,CA)、聚砜(Polysulfone,PSF)、聚醚砜(Polyethersulfone,PES)、聚丙烯腈(Polyacrylonitrile,PAN)、聚丙烯(Polypropylene,PP)、聚四氟乙烯(Polytetrafluoroethylene,PTFE)和聚偏二氟乙烯(Polyvinylidine Fluoride,PVDF)等。
简述膜分离技术与膜的改性
第7期刘玉川,等:简述膜分离技术与膜的改性-81-简述膜分离技术与膜的改性刘玉川,严思明,余宗学(西南石油大学化学化工学院,四川成都610000)摘要:膜分离技术作为重要的高新技术具有其实际应用方便、适应性强、能耗低等特点,本文综述了膜分离技术的分类及膜的改性,重点介绍了对膜的表面改性。
关键词:膜分离;膜的改性;表面涂覆中图分类号:TQ028;X703文献标识码:A文章编号:1008-021X(2021)07-0081-02Brief Introduction of Membrane Separation Technology and Membrane ModificationLiu Yuchuan,Yan Siming,Yu Zongxue(College of Chemistry and Chemical Engineering,Southwest Petroleum University,Chengdu610000,China)Abstract:As an important high and new technology,membrane separation technology has the characteristics of convenient practical application,strong adaptability and low energy consumption.This article reviews the classification of membrane separation technology and membrane modification,focusing on the surface modification of membranes.Key words:membrane separation;membrane modification;surface coating膜分离技术作为21世纪最有发展前景的高新技术,将其用于工业水净化中有着明显的优势。
《功能高分子材料》 讲义
《功能高分子材料》讲义一、什么是功能高分子材料在我们的日常生活和现代科技中,高分子材料扮演着至关重要的角色。
从常见的塑料制品到高科技领域中的精密部件,高分子材料无处不在。
然而,普通的高分子材料往往只是满足了基本的物理和化学性能要求。
随着科技的不断进步和人们对材料性能要求的日益提高,功能高分子材料应运而生。
那么,到底什么是功能高分子材料呢?简单来说,功能高分子材料是指那些具有特定的功能,如电学、光学、磁学、生物医学等性能,并且这些性能超出了传统材料范畴的高分子材料。
它们不仅具有高分子材料本身的特点,如质量轻、耐腐蚀、易加工等,还具备了独特的功能特性,能够满足各种复杂和特殊的应用需求。
二、功能高分子材料的分类为了更好地理解和研究功能高分子材料,我们可以将其按照不同的功能进行分类。
1、导电高分子材料导电高分子材料是一类具有良好导电性的高分子材料。
传统的高分子材料通常是绝缘体,但通过特殊的分子设计和合成方法,可以使某些高分子材料具有类似于金属的导电性。
这类材料在电子器件、防静电材料、传感器等领域有着广泛的应用。
2、高分子分离膜高分子分离膜是能够实现物质分离和提纯的功能高分子材料。
它们可以根据分子的大小、形状、电荷等特性,选择性地让某些物质通过,而阻止其他物质。
在海水淡化、污水处理、气体分离等方面发挥着重要作用。
3、高分子吸附剂高分子吸附剂具有对特定物质的吸附能力。
它们可以用于废水处理中的有害物质去除、药物分离与提纯、气体净化等领域。
4、生物医用高分子材料生物医用高分子材料是用于医疗领域的一类特殊功能高分子材料。
包括人造器官材料、药物载体、组织工程支架等。
这类材料需要具备良好的生物相容性和生物可降解性。
5、高分子液晶高分子液晶具有独特的光学和电学性能。
在显示技术、传感器、光学存储等领域有着潜在的应用价值。
三、功能高分子材料的制备方法功能高分子材料的制备通常需要采用特殊的方法和技术,以赋予材料特定的功能。
1、化学合成法通过化学反应将具有特定功能的单体聚合成为高分子材料。
两性离子在高分子膜改性及提高膜抗污染性中的研究进展
两性离子在高分子膜改性及提高膜抗污染性中的研究进展魏秀珍;孔新;王松雪;杨佳;陈金媛【摘要】In recent years,as a new type of anti-fouling material,the zwitterion has attracted more and more at-tentions.Zwitterionic polymer contains both cationic and anionic groups in the polymer molecules.The anti-fouling performance of zwitterionic polymer membranes was enhanced obviously due to the strong hydration and protein adhesion resistance in aqueous solution.This article reviews several typical zwitterions for the mem-branes modification and the improvement of anti-fouling performance in recent years.The current research,ex-isting problems and development trends of the membranes modification with zwitterions are also presented.%近年来,两性离子作为一种新型的抗污染材料逐渐受到研究者的重视。
两性离子聚合物是指在分子链中同时包含阳离子和阴离子基团的高分子,由于在水溶液中具有较强的水合能力与抑制蛋白质吸附性,两性离子高分子膜具有较好的抗污染性。
综述了近年来用于高分子膜改性及提高膜抗污染性的两性离子,总结了两性离子改性高分子膜的研究现状,指出了目前研究存在的问题,并对未来的发展趋势作了展望。
聚偏氟乙烯分离膜改性研究进展
功能 高分 子膜 分 离技 术 由于 在使 用 中具 有 能耗
低 、 离性 能好 、 分 无二 次污 染 等优 点 , 目前 已在 化 工 、 电子 、 医药 、 境 工 程 等 领 域 得 到 越 来 越 广 泛 的 应 环 用. 而选 择 性能 优 良的 膜 材 料 是 膜 分 离 技 术 研 究 中 至关重 要 的方 面 . 在众 多 的高 分 子膜 材料 中 , 聚偏 氟 乙烯 ( VD ) P F 已经 受 到研 究 者 的关 注 . V P DF是偏 氟 乙 烯 的 均 聚 物 ,聚 合 度 达 几 十 万 , 子 式 为 : 分
1 1 共 混相 容性 的 研 究 .
生 f制 药 { 二 食品饮 料 及水 净 化 等 水 相 分 离 体 系 的应
领 域 , 住的 突 出 问题 就是 膜 污 染 导 致 分 离 性 能 下降, 主要 原 因 由于 P F疏 水膜 表 面 与 水无 氢 键 VD 作用 , 当疏水 溶 质靠 近膜 表 面时 , 开水 是疏 水 表 面 排 脱水 过程 , 熵增 , 进 行 , 而膜 易 被 污 染 . 此 , 易 因 因 改
ቤተ መጻሕፍቲ ባይዱ
制 备共 混 膜 的首 要 问题 是共 混 聚 合物 问 的相 容 性 . 容性 是决定 共 混 物 能 否 成 膜 及成 暇 岳结 构 性 惆 质 的重 要 因素 . 有 完 全 相 容 性 的均 相 体 系共 混 物 具 的性 能往往 介 于各 组 分 单 独 存 在 时 的 性 能 之 , f 两 相 体 系 ( 分 相 容 ) 混 物 的性 能 则 有 可 能 超 出 部 共
磺 化 聚苯 乙烯 [ , 化 聚砜 ( P )B , 龙 6 “, ]磺 S S 尼 。 聚
高分子材料的膜分离性能与应用
高分子材料的膜分离性能与应用一、引言高分子材料是一类具有特殊结构和性质的化合物,广泛应用于日常生活和工业领域。
其中,高分子膜材料因其独特的分离性能受到了人们的广泛关注。
本文将探讨高分子膜材料的膜分离性能与应用,并进行分类和分析。
二、高分子材料的膜分离性能1.渗透性能高分子膜材料的渗透性能是评价其膜分离性能的重要指标之一。
渗透性能取决于高分子膜材料的孔隙结构和空间分布。
具有高孔隙率和合适孔径分布的膜材料,可实现溶剂和溶质的选择性渗透,从而实现分离作用。
2.选择性高分子膜材料的选择性是指该材料对不同溶剂或溶质的选择性渗透能力。
不同的高分子材料对不同的分子具有不同的选择性,如对有机物的选择性、离子的选择性等。
通过调节高分子材料的结构和成分,可以实现对目标组分的高选择性分离。
3.热稳定性高分子膜材料在分离过程中需要承受一定的温度和压力,因此其热稳定性也是一个重要的性能指标。
热稳定性不仅影响膜材料的使用寿命,还关系到其分离效果和稳定性。
提高高分子膜材料的热稳定性可以通过添加稳定剂、优化材料的组成和结构等方式来实现。
三、高分子材料膜分离应用的分类根据不同的分离机制,高分子材料膜分离应用可分为以下几类。
1.微滤分离微滤分离主要通过高分子膜材料的孔径,对不同粒径的微粒进行筛分。
其应用范围广泛,包括饮用水净化、食品加工、医药领域等。
高分子材料微滤膜能够有效去除悬浮固体、胶体和大分子物质等。
2.超滤分离超滤分离是利用高分子膜材料的分子筛效应,将溶液中的低分子物质、胶体颗粒等分离出来。
超滤膜广泛应用于饮用水净化、废水处理、制药工业等领域,具有高选择性和高通量的特点。
3.逆渗透分离逆渗透分离是指利用高分子逆渗透膜对水和溶质进行分离。
逆渗透膜对水分子具有高渗透性,但对大分子溶质具有较高的拒绝性。
逆渗透分离广泛应用于海水淡化、工业废水处理、饮用水净化等领域。
4.气体分离高分子膜材料在气体分离领域也有广泛应用。
例如,聚醚酯膜被广泛用于二氧化碳的分离,用于酸性气体和碱性气体的分离。
膜的改性
1.膜改性由于具有清洁、廉价、节能等特点,近年来得到快速发展,是解决膜污染的有效方法之一。
本文综合介绍了膜的基体改性、表面改性这两种改性类型和目前常用的改性方法包括表面涂覆、表面活性剂改性、化学修饰改性、仿生改性等等,并简单介绍了膜改性在环境领域的应用,探讨了膜改性今后的发展。
3. 膜改性类型膜的改性主要有两种方法,其一是基体改性,其二是表面改性。
3.1基体改性:3.1.1共混制膜是一种非常适用和常用的膜改性方法,这种方法是将传统制膜材料与另一种聚合物共混,改性在成膜过程中完成,不需要繁琐的后续处理步骤,很适合工业化生产。
所制备的膜既具有传统膜的物理、化学和机械性能,又具备所添加的共混物功能,取长补短,消除各单一聚合物组分性能上的弱点,获得综合性能较为理想的膜材料。
通常说来,共混膜是为了提高膜的亲水性能。
国外研究者关注于共混膜的性能、微观形态结构以及共混物质的相容性。
3.1.2共聚改性是指通过两种或者两种以上单体间的聚合反应改善膜材料的性能。
在制备过程中,各单体之间发生复杂的反应,形成最终的共聚膜。
目前,常见的共聚膜有聚合物膜的璜化如璜化聚砜,璜化聚丙烯腈,璜化聚苯乙烯,璜化聚醋酸乙烯酯等。
Hester J F等合成了一种以聚甲基丙烯酸甲酯为主链,聚乙二醇为支链的两亲性梳状聚合物P(MMA~r PEOM),并且提出了两亲性聚合物在相转化制膜过程中在膜表面的表面富集及自组装行为。
由于在成膜过程中膜和凝固浴之间存在水浓度梯度,两亲性聚合物向表面迁移,形成表面富集。
表面富集的程度与凝固浴的温度正相关,温度升高,富集现象明显,反之,则富集度下降。
依据这种原理,可以利用制膜过程中使用外加热源而达到表面富集的效果。
例如将膜置于热水中进行热处理,表面富集程度可以进一步提高。
另外,当膜的亲水性由于使用而遭到破坏时,可通过热处理使两亲性梳状聚合物亲水性侧链重新迁移到膜表面,从而使膜的亲水特性得以自我恢复。
Hester等还研究了PEO链长对膜性能的影响,发现随着链长的增加,膜的亲水性和抗污染能力进一步提高。
PVDF膜改性与及其在水处理中的应用
共混改性法
共混改性是将亲水性物质与PVDF粉料物理共混,通过制膜工艺制膜引入亲水性官能团。 目前,PVDF的共混改性主要包括与高聚物共混改性和与无机小分子共混改性。
Nunes等研究了PMMA共混改性PVDF微孔膜。PMMA中的酯基与PVDF之间有较强的氧键作用,拉近了相互之间的溶解度
参数,因为PMMA与PVDF之间有很好的相容性。实验(shíyàn)表明,适当的共混比能大幅提高膜的亲水性,增加水
精品文档
精品文档
内容摘要
PVDF有机膜改性技术的研究进展。聚偏氟乙烯(Polyvinylidene fluoride,PVDF)是一种线型半结晶含氟聚合物,分子量一般为 40-80万,密度1.79g·cm-3左右,玻璃化温度-39℃,脆化温度-60℃ ,结晶熔点在 180℃以上,热分解温度高达 316℃,长期使用温度 范围为-50~150℃。由于 C-F 键长短,键能高(486KJ·mol-1), 故具有耐酸碱腐蚀性、抗紫外光辐照性、良好的化学稳定性和较 大的机械强度。表面涂覆或浸渍(jìnzì)是选用亲水性材料,如涂料、 表面活性剂、醇等,对基膜进行涂覆或浸渍(jìnzì),从而在膜表面引入 亲水性官能团,生成亲水性高分子层
pvdf结构式pvdfpvdf中空纤维膜2020226pvdf膜表面改性方法pvdf膜疏水性特别强在蛋白类药物富集提纯和油水分离及过程中应用时容易产生严重污染使膜的通量产生较大幅度的下降使其在相关领域的应用中受到的很大程度的限制pvdf膜改性分为膜表面改性和原材料改性表面涂覆或浸渍改性表面涂覆或浸渍是选用亲水性材料如涂料表面活性剂醇等对基膜进行涂覆或浸渍从而在膜表面引入亲水性官能团生成亲水性高分子层
饱和基团,进而(jìn ér)引入接基,膜表面的亲水性有明显的改善。
高分子膜材料在膜分离过程的应用
高分子膜材料在膜分离过程的应用王志斌,申静,高朝祥,周文(四川化工职业技术学院,四川泸州646005)摘要:介绍了常用高分子膜材料在膜分离过程中的应用,总结了高分子材料的改性方法,阐述了改性高分子材料膜的应用特性,提出了高分子膜材料的研究课题,并对膜分离过程的未来发展进行了展望。
关键词:高分子材料;膜改性;分离过程;应用中图分类号:TQ028.8文献标识码:A文献标识码:1005-8265(2010)02-0001-04收稿日期:2010-04-25基金项目:泸州市重点科技资助项目(2008-s-17-6/6)作者简介:王志斌(1963-),男,教授,博士,研究方向:过滤与分离(含膜分离).前言膜分离技术是一种新颖高效的分离技术,它是借助于外界能量或化学位的推动,对两组分或多组分的气体或液体进行分离、分级、提纯或富集[1]。
自从18世纪人类认识生物膜以来,在长达两百多年的时间里对膜分离技术积累了大量的理论基础研究,为后来的广泛应用提供了良好的基础。
目前膜分离技术在许多方面得到了广泛应用,而且在某些方面还应用得比较成熟。
与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,最适宜对热敏性物质和生物活性物质进行分离与浓缩,因而在化工、轻工、电子、纺织、冶金、污水处理等领域得到广泛应用。
在膜技术的发展中,膜材料的开发是极其重要的工作,而高分子材料在膜分离中占有重要地位,所以许多专家学者对高分子分离膜材料的制备、结构、改性及性能都进行了大量研究,而且取得了很多成果,在此对高分子材料制备膜及其改性的研究进展进行概述。
1高分子材料在膜制备中的应用高分子聚合物广泛的应用于各种膜分离过程中,膜材料的性能直接决定了膜分离过程性能的高低。
目前,市场销售的分离膜主要以高分子膜为主,它几乎覆盖了所有的膜过程。
高分子材料主要有以下几类。
1.1纤维素纤维素是资源丰富的天然高分子化合物,主要来源于植物细胞材料。
在纤维素材料中,醋酸纤维素(CA )一直是应用较广泛的膜材之一,Loeb 和Sourira -jan [2,3]在1960年制造出具有高脱盐率和高透水量的非对称醋酸纤维素反渗透膜,与均质醋酸纤维素反渗透膜相比,在保持同等高的脱盐率条件下,水的透过量增加了近10倍[4],虽然醋酸纤维素能用作膜材,但是由于分子链中的—COOR 在酸、碱作用下容易水解,且水解速率与温度和pH 值密切相关,因此单纯CA 材料的使用受到一定限制;但若与其它材料共混制备膜,则其使用广泛程度大大提高,如周金盛等选用CA 和三醋酸纤维素(CTA )共混材料,利用L-S 法制备的不对称纳滤膜,其截留分子量在200~600之间,在1MPa 下对1000mg/L 的Na 2SO 4水溶液截留率达到85%~98%。
高分子分离膜材料亲水改性及对膜性能的影响
的共 聚 、 枝 、 化 学 方 法 赋 予 亲 水 基 团 等 。其 中共 接 用 聚改 性 如 分 别 将 4 乙 基 吡 啶 与 丙 烯 腈 、 乙 烯 共 聚 一 苯 以 改 善 丙 烯 腈 、 乙烯 与 水 的 亲 和 性 _ 。 接 枝 也 是 苯 2 J 较 为 常 用 的一 种 膜 材 料 改 性 方 法 , 在 P D 如 V F分 子 上 接 枝 丙 烯 酸 _ 、 烯 酰 胺 _ 等 。 化 学 改 性 的方 法 3 丙 j 4 j 有在 原 有 膜 材 料 的 分 子 上 引 入 其 它 官 能 团 , 新 型 如 的 高 分 子 材 料 P SC、P K C 在 保 留 了 P S5、 E— E . E J P K 6原 有 性 能 的基 础 上 增 加 了 酞 基 基 团 , 高 了 E [ J 提 材 料 的 亲 水 性 ;V P C分 子 上 引 入 . N 7、C O 8; C j. O H_ 在 P F分 子 引 入 .0 H【 、C O [ j 基 团 ; 氧 化 剂 S S .O H 加 等 在 存在下用 强碱处理 P D V F引 入 亲 水 基 团 [ 改 变 C 1; 1 3 A 分 子 上 的 乙 酰 基 取 代 度 l 或 引 入 一 N n 基 团 ; 节 j C [ J 调
学 改 性 等 。膜 材 料 化 学 改 性 包 括 材 料 的共 聚 、 接枝 、 用化 学 方 法 赋 予 亲 水 基 团 等 。膜 材 料 物 理 改 性 , 即
膜材 料 与 其 它 聚合 物 实 施 物 理 共 混 , 过 共 混 的 方 通
高分子膜的功能化改性
高分子膜的功能化改性高分子膜是一种准二维的材料,其表面性质对其应用有着极大的影响。
而高分子膜的表面性质也可以通过功能化改性来进行调控,从而对其性能进行优化。
本文将介绍高分子膜的功能化改性的具体方法及其在不同领域的应用。
一、功能化改性的方法1. 表面包覆法表面包覆法是一种比较常见的高分子膜功能化改性方法。
其原理是将高分子膜表面包覆一层具有不同性质的物质,从而改变高分子膜的性质。
常用的包覆物质包括磁性材料、金属氧化物等。
例如,通过在聚丙烯膜表面包覆一层氧化铁颗粒,可以使膜具有磁性,方便其在磁场控制下被污染物吸附。
2. 表面修饰法表面修饰法是一种通过化学反应对高分子膜表面进行修饰的方法。
常见的化学修饰反应包括酯化、醚化、磺化等。
例如,通过聚合丙烯酸单体,再通过二巯基乙烷交联,可以制备一种具有较高渗透性的稳定超薄氢氧化铝涂层,降低了其在复杂环境中的酸碱性影响。
3. 表面改变法表面改变法是一种通过改变高分子膜表面的形态和结构来改变其性质的方法。
常见的表面改变方法包括表面纳米孔、表面浸润涂覆等。
例如,通过将纳米材料浸入聚合物薄膜中,可以形成纳米孔,起到过滤和分离分子的作用。
二、功能化改性的应用1. 微流控技术微流控技术在高分子膜的功能化改性中应用比较广泛。
通过在高分子膜表面修饰微米级别的功能性材料,可以实现高效的微流控分析。
例如,在聚丙烯膜表面修饰亲水性聚合物后,可用于油水分离和废水处理。
2. 生物医学领域高分子膜在医学领域的应用也越来越广泛,例如可用于制备人工血管、人工皮肤以及药物缓释系统等。
通过功能化改性可以改变膜的生物相容性和生物活性,使其能够有效地应用于生物医学领域。
3. 环境保护领域高分子膜的功能化改性还可应用于环境保护领域。
例如,通过在聚合物薄膜表面修饰金属氧化物,可用于处理水中的重金属离子污染物。
此外,在制备纳米复合膜方面也具有很大的应用前景。
通过表面修饰和包覆等技术,可以实现高效地去除溶液中的有机物、离子和微生物等。
高分子聚合物改性概述
高分子聚合物改性概述1概述高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。
然而.高分子材料又有诸多需要克服的缺点。
以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。
还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。
再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。
用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。
可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。
聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。
聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。
聚合物改性的目标如下。
1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。
2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。
3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。
而成为特种高分子材料。
4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。
5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。
高分子反渗透膜材料改性研究进展
接枝 、 化学 方 法赋 予膜 高 分子 材 料 某种 基 团使 其 用
收稿 日期 :07 0 — 0 20 — 第 l 4卷第 3期
化 工生 产与技 术
C e clP ou t n a d T c n l y hmia rd c o n e h oo i g
酮 , 具有 耐酸 、 且 碱水 解和 抗微生 物 降解 的性 能 。
还有 人研 究将 过 渡金属 加 入到 C 中得 到改 性 A
水 量 的非对 称 醋 酸纤 维 素 反渗 透膜 ”1 种 非对 称 2这 , 醋 酸纤 维 素 反 渗 透 膜 与 均质 醋 酸纤 维 素 反 渗 透 膜 相 比 , 保 持 了 同 等 高 的脱 盐 率 的条 件 下 , 的透 在 水 过量 增 加 了近 l [ 0世 纪 7 0倍 3 1 。2 0年 代 , aot Cdt e等 通 过 采用 复合 浇铸 、 面聚合 和等 离子 聚合 等 方 法 界
维普资讯
.
4. 0
一 一 ’ “
王 晓晖 等 高 分子 反渗透 膜材 料改 性研 究进 展
综述
一
…
L : 综 述 {
… …
高分 子反渗透膜材料 改性研究进展
王 晓 晖 刘 淑 萍
( 河北理 工 大学化工 生物技 术 学 院 , 山 河北 0 3 0 ) 唐 6 0 9
C A膜 , 钛醋 酸纤 维 素反 渗透 膜 、 如 乙酸 纤 维素 酞 酸 酯 ( AP 及 羟丙 基 甲基纤 维 素 酞酸 酯 ( P P 膜 , C ) H MC )
不 仅耐 高温 还具 有耐酸 性[ 7 1 。
也 有人 采用 接 枝单体 丙 烯腈 在 C A分 子链 接枝 共 聚 ,经 改性 后 的 C A膜 不仅 保 持 了 C A膜 高 通量 的优点 ,而 且还 扩 大 了其 p 使 用 范 围和提 高其 抗 H
膜科学与技术
高分子气体分离膜——自具微孔高分子气体分离膜高分子分离膜(polymeric membrane for separation),是由聚合物或高分子复合材料制得的具有分离流体混合物功能的薄膜。
自具微孔高分子(PIMs)是近年来出现的一种新型有机微孔材料,由含有扭曲结构的刚性单体聚合而成,因其具有优越的气体分离性能,吸引了众多研究者的关注,并得到快速发展。
下面将从PIMs及其在气体分离膜中的应用,PIMs 的结构调控以及PIMs改性方面的研究进展进行介绍。
PIMs多由刚性强的多卤代物与含有多个羟基的化合物发生双亲核取代反应得到。
研究表明,只要参加反应的刚性单体中有一个具有扭曲的结构,就可以通过形成苯并二氧六环的反应将具有这种特点的单体与另一种功能型单体连接起来,制备出具有扭曲结构的高分子。
这种主链呈阶梯状的高分子可阻止分子链间有效堆积,形成微孔材料。
PIMs的微孔结构由分子结构决定,不受热处理方式和加工过程的影响。
根据化学结构的差异可将PIMs分为网状PIMs和链状PIMs。
链状PIMs具有可溶解性及微孔结构,特别适用于制备气体分离膜。
链状PIMs由直链单体聚合而成,易溶于大部分溶剂。
因缩聚反应类型的不同,又可将其分为苯并二氧六环体系PIMs和聚酰亚胺体系PIMs。
2004年,RGHH 等成功合成出可溶的链状PIM1-6,其中比表面积最高的是PIM-1。
除PIM-6外,其他PIMs均易溶于极性非质子型溶剂。
首次用于气体分离膜制备的PIMs材料,是2005年Budd等用形成苯并二氧六环的反应合成的PIM-7。
对PIM-1和PIM-7进行气体分离性能测试表明,在所测试的8种气体中,CO2渗透系数最大,这主要取决于PIMs 分子链上的极性基团与CO2之间的相互作用。
PIM-1和PIM-7气体分离膜优越的气体分离性能吸引了更多的研究者投入到对新型链状PIMs的研究中,更多可用于制备链状PIMs的单体也因此得到开发,其中一些研究者致力于不同侧链取代基的PIMs的研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子分离膜的改性方法张爱娟(04300036)[摘要]:随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。
由于单一的膜材料很难同时具有良好的亲水性、成膜性、热稳定性、化学稳定性、耐酸碱性、耐微生物性侵蚀、耐氧化性和较好的机械强度等优点,因此采用膜材料改性或膜表面改性的方法来提高膜的性能,是解决这一问题的关键。
其中,化学改性可以通过膜材料和膜表面的化学改性来实现;而物理改性则主要是通过材料共混改性和表面涂覆或表面吸附来实现。
[关键词]:膜;改性;物理改性;化学改性一 引言膜分离技术具有设备简单,操作方便,无相变,无化学变化,处理效率高和节能等优点,作为一种单元操作日益受到重视,已在海水淡化、电子工业、食品工业、医药工业、环境保护和工程的领域得到广泛的应用。
然而,随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。
目前使用的大多数膜的材料是聚丙烯(PP)。
聚乙烯,聚偏氟乙烯、醋酸纤维素、聚砜、聚醚讽和聚氯乙烯等。
当这些膜与欲分离的物质相接触时,在膜表面和孔内的污染物聚集,使得膜通量随运行时间的延长而下将,特别时当聚合物膜材料用于生物医药领域中(如血液透析)时,在膜便面吸附的蛋白质加速纤维性和抗生素碎片在膜表面的聚集,导致一系列的生物反应,例如形成血栓及免疫反应。
即使当蛋白质对分离膜的影响可以忽略,膜基体材料的亲水性、荷电性及荷电密度等性质对蛋白质的吸附都会产生重要的影响。
因此,为了拓展分离膜的应用,通常需要对膜材料进行改性或改变膜表面的物理化学性能,赋予传统分离膜更多功能,增大膜的透水性,提高膜的抗污染性,改善膜的生物相容性。
对膜材料的改性的方法有物理改性,化学改性和表面生物改性。
二物理改性2.1 表面物理改性2.1.1 表面涂覆改性【1】以分离膜为支撑层,将表面活性剂涂覆在支撑层表面而达到改性的目的,表面活性剂可以是有机物或无机物。
但膜表面涂覆方法的改性效果并不十分理想,存在的最大问题是活性剂易从高分子表面脱离,不能得到永久的改性效果。
但这种方法显示了制备一系列具有不同截留率分离膜的可能性。
2.1.2 表面吸附改性【2】表面活性剂是由至少两种以上极性或亲媒性显著不同的官能团,如亲水基和疏水基所构成。
由于官能团的作用,在溶液与它相接的界面上形成选择性定向吸附,使界面的状态或性质发生显著变化。
表面活性剂在膜表面的吸附使膜表面形成一层亲水层,其带电特性又形成了对蛋白吸附的阻挡作用。
从而在增大膜的初始通量的同时又能降低使用过程中通量衰减和蛋白质的吸附。
韩式荆等[3]研究了多种表面活性剂对超滤膜分离性能的影响,认为表面活性剂的表面张力及其临界胶束浓度 (CMC) 值是影响膜分离性能的主要因素。
李伟等[4]将非离子表面活性剂作为第二添加剂加入聚砜超滤膜中,结果发现,它能明显改变成膜时的凝胶速度,因而改变所成膜的结构和性能,由此制得孔径均匀,分离性能优良的聚砜超滤膜。
同时由于表面活性剂在膜表面形成厚的致密亲水层而使水通量得到改善,这对低孔系率的超滤膜是很重要的。
2.2膜材料的物理改性2.2.1 高分子材料与高分子材料的的共混改性高分子材料的共混是指两种以上高分子混合,形成一种新材料,它除了综合原有材料本身性能外,还可克服原有材料中的各自缺陷,并产生原有材料中所没有的优异性能。
而聚合物间的相容性[5]直接影响着高分子共混膜的相分离孔的形成与结构,通过调节聚合物合金的相容性可以调节相分离孔的形成和结构,从而改变合金膜的表层结构和断面结构,达到提高膜的分离性能和渗透性能的目的。
高分子共混改性膜主要从以下3 个方面改善膜的性能:1、改善膜的亲水性能及聚合物的成膜性;2、改善膜的耐污染性;3、提高膜的物化稳定性 (提高膜的耐蚀性、耐热性和机械强度)。
[9]共混组分性质、合金比例、分子结构对膜的亲水性及其性能都有很大的影响。
以憎水性的PVC 为例,在一定的比例条件下,所选用共混组分的亲水性越强,膜的亲水性越好,膜的通量越大(见表1) 。
表1 P2 (第二聚合物) 对PVC/ P2 合金膜的亲水性及膜性能的影响膜材料 接触角/θ0纯水通量/ L·m- 2·h - 1PVC 66 61PVC/ PMMA 62 770PVC/ VC2co2Vac 57 482PVC/ VC-co-VAc-co-MIL 54 603[9]对于憎水性膜材料,混入含亲水基团的组分,亲水组分的含量对膜的亲水性及膜性能影响很大,随亲水组分的含量增加,膜的亲水性增强,水通量增大。
SPSF 是PSF 经磺化处理而生成的亲水性材料,这种材料与PSF 共混,材料性质相似,相容性好,对膜结构的影响也小。
但由于增强了膜的亲水性,膜的渗透性提高,随膜中SPSF 含量的增加,水通量增大(见表2) 。
相反,在CDA/ CTA 组成的合金脱盐膜中,憎水性CTA 含量的增加导致膜的透水率下降,脱盐率上升。
表2 PSF/ SPSF 合金组分的比例对膜性能的影响-----------------------------------------------------------------------材料比例水通量/ L·m- 2·h - 1 截留率---------------------------------------------------------------------------- 70∶30 8~14 79.965∶35 12~22 79.960∶40 6~28 79.7---------------------------------------------------------------------------[9]改变膜亲水性的另一个方法就是改变共混组分分子上取代基的含量。
在PSF/ CPSF 组成的共混体系中,CPSF 的羧基取代度为0.87 的合金膜,水的溶胀趋势明显高于取代度为0.45的膜。
梁国明研究了聚醚酮( PEK) / SPSAF 合金体系中SPSF 的SO3Na 基团的交换当量对合金膜的亲水性的影响,发现随SPSF 交换当量的增加,合金膜的纯水接触角减小,亲水性增加。
若共混组分分子上的取代基为憎水基团,则其取代度越高,合金膜的亲水性越弱,这种膜可获得较高的分离率。
醋酸纤维素脱盐膜随乙酰取代度的增加,材料的亲水性下降,其致密膜水蒸汽吸附顺序为CDA > CDA/ CTA > CTA ,因此通过改变醋酸纤维素的乙酰取代度可以在保持一定通量条件下,获得一个理想的脱盐率PS 是当前最为广泛应用的膜材料,它的憎水性也是人所皆知的,PS 超滤膜在保持一定截留率下其通量往往不够理想。
PS 与亲水性较强的材料PVA、CA (醋酸纤维素)、AN-Vac (丙烯腈-醋酸乙烯共聚物)、聚原酸酯-b-聚乙二醇嵌段共聚物等共混都不同程度地提高了PS的亲水性[6] 。
邱运仁等[7]用聚乙烯醇 (PVA)、CA、冰醋酸、水为制膜原料,用相转化法制备了PVA-CA 共混超滤膜。
在一定范围内研究了不同膜液组成对超滤膜性能的影响,得到了较佳的膜液配方。
制备的PVA-CA共混超滤膜在操作压力0.3MPa 下,处理质量浓度为1000mg/L 的水油型模拟含油乳化液,其渗透速率约40L/m2·h,除油率可达90%以上,并且,此超滤膜的耐水性和溶胀性均优于未改性的PVA 超滤膜。
裴广铃[8]等以聚砜/螯合树脂作为膜材料,用相转化法制备了孔径在5nm~60nm 之间的共混螯合平板超滤膜,通过增加树脂含量,延长膜的挥发时间使膜通量显著提高。
2.2.2 高聚物与陶瓷材料的共混改性有机高分子具有弹性高、韧性好,分离性能优良等优点,但存在透气率低、抗腐蚀性差及不耐高温等弱点。
虽然已合成了许多耐高温的高聚物,如聚四氟乙烯、聚硅氧烷、聚醚砜酮等,但这些耐高温的高聚物在成膜时大多需用支撑体,虽也可制成自支撑型膜,但由于膜较厚、透气率低,难以满足实用要求。
高聚物支撑体也面临着类似的弱点。
无机膜,尤其是陶瓷膜,则有许多独特的物理、化学性能,尤其在涉及高温以及有腐蚀性环境的分离过程中,有着高聚物膜材料所无可比拟的优势,但因受Knudsen扩散限制,分离性能很差。
在膜材料的研究过程中人们发现,将两种材料有效地结合在一起,得到一种新型的有机/无机复合材料,可以同时得到既具有优良的分离性能又能耐受较苛刻的环境条件的新型的超滤膜。
【10】赵梓年,等以聚氨酯为基质,添加二氧化硅及界面改性剂,通过湿法相转化法制备聚氨酯杂化超滤膜。
实验结果表明,二氧化硅可以显著改善膜孔的结构,膜水通量有较大幅度的提高,二氧化硅用量在一定范围内,截留率也有一定增加。
界面改性剂的加入可使二氧化硅在聚氨酯铸膜液中均匀分散,进一步增加聚氨酯与二氧化硅之间的界面微孔数量及细化微孔,使该膜的水通量和截留率进一步增加。
用扫描电镜对膜的结构形态进行了观察。
姜云鹏等[10]以PVA 和纳米SiO2 为原料,通过相转化法,制备出不同SiO2 含量的PVA/SiO2 共混均质膜。
通过示差量热扫描法 (DSC) 和力学性能测试表明,与PVA 膜相比,PVA/SiO2 膜具有更高的热稳定性和耐溶剂性,并具有较好的抗污染能力。
A. Bottino 等[11]以PVDF 和ZrO2 为原料制得了PVDF/ZrO2 共混超滤膜,并通过改变制备参数,如:PVDF 的溶剂、PVDF/ZrO2 比率等制备了一系列共混超滤膜,通过电镜观测和超滤性能测试,发现膜的结构和性能有了显著的改变。
张裕卿等人[12]则将亲水的Al2O3 添加到PS 铸膜液中,采用相转化法制备了PS/Al2O3 共混膜。
通过对该膜微观结构的分析发现,Al2O3 颗粒均匀地分布于整个膜中,同时Al2O3 和PS 之间存在的中间过度相使它们牢固地结合在一起,同时膜的亲水性得到改善。
高分子材料的合金化用于调节膜的亲水性及膜性能的方法简单、经济,膜材料的选择范围广,可调节的参数多,膜性能改善的幅度大,为膜材料的开发及膜性能的进一步完善开辟了一条新路,有着广阔的发展前景。
三化学改性3.1 膜表面化学改性与膜表面物理改性相比,膜表面化学改性使得功能基团以化学键与膜表面键合,从而不会在物质透过膜时被稀释,不会引起功能基团得流失,另外,接枝反应发生在聚合物表面,不会影响聚合物的内部结构。
这样,不仅可以赋予聚合物膜新的性质,而且不会降低原聚合物膜的力学性能。
接枝改性可以通过几种方法来实现,如紫外辐照、γ射线辐照接枝聚合、等离子体表面聚合改性、界面缩聚等方法。
3.1.1 等离子体改性等离子体是气体在电场作用下,部分气体分子发生电离,生成共存的电子及正离子、激发态分子及自由基,气体整体呈电中性,这就是物质存在的第4 种状态-等离子状态。