数字信号处理实验

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理综合实验

数字信号处理综合实验

数字信号处理综合实验一、实验目的本实验旨在通过数字信号处理技术的综合应用,加深对数字信号处理原理和方法的理解,提高学生的实际操作能力和问题解决能力。

二、实验原理数字信号处理是利用数字计算机对摹拟信号进行采样、量化和编码,然后进行数字运算和处理的技术。

本实验主要涉及以下几个方面的内容:1. 信号采集与预处理:通过摹拟信号采集电路将摹拟信号转换为数字信号,然后进行预处理,如滤波、降噪等。

2. 数字滤波器设计:设计和实现数字滤波器,包括FIR滤波器和IIR滤波器,可以对信号进行滤波处理,提取感兴趣的频率成份。

3. 时域和频域分析:对采集到的信号进行时域和频域分析,如时域波形显示、功率谱密度估计等,可以了解信号的时域和频域特性。

4. 信号重构与恢复:通过信号重构算法对采集到的信号进行恢复,如插值、外推等,可以还原信号的原始特征。

三、实验内容根据实验原理,本实验的具体内容包括以下几个部份:1. 信号采集与预处理a. 使用摹拟信号采集电路将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

b. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

2. 数字滤波器设计a. 设计并实现FIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

b. 设计并实现IIR滤波器,选择合适的滤波器类型和参数,对采集到的信号进行滤波处理。

3. 时域和频域分析a. 对采集到的信号进行时域分析,绘制信号的时域波形图,并计算信号的均值、方差等统计指标。

b. 对采集到的信号进行频域分析,绘制信号的功率谱密度图,并计算信号的频域特性。

4. 信号重构与恢复a. 使用插值算法对采集到的信号进行重构,恢复信号的原始特征。

b. 使用外推算法对采集到的信号进行恢复,还原信号的原始特征。

四、实验步骤1. 搭建信号采集电路,将摹拟信号转换为数字信号,并通过示波器显示采集到的信号波形。

2. 对采集到的信号进行预处理,如去除噪声、滤波等,确保信号质量。

数字信号处理实验4

数字信号处理实验4

实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。

二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。

三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMzN a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。

如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。

格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。

其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。

zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。

②roots 函数。

用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。

2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。

数字信号处理实验

数字信号处理实验

数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。

2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。

b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。

c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。

计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。

观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。

f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。

加深对采样定理的理解。

g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。

数字信号处理实验(民航无线电监测关键技术研究)

数字信号处理实验(民航无线电监测关键技术研究)

《数字信号处理》实验报告实验名称数字信号处理实验(民航无线电监测关键技术研究)实验时间一、实验目的:通过实验,理解和掌握民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术,培养学生对数字信号处理技术的兴趣,并提高学生基于数字信号处理技术的工程应用能力。

二、实验环境:Matlab三、实验原理、内容与分析(包括实验内容、MATLAB程序、实验结果与分析)实验总体框图如上图所示,主要实现民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术。

1.有限长单位脉冲(FIR)滤波器的设计FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:系统传递函数可表达为:N-1 为FIR 滤波器的阶数。

在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。

为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。

这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为:由上可见FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n)输出,因此,FIR 实际上是一种乘法累加运算。

而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。

2.AM 调制解调AM 调制解调过程如下:3.多采样率数字信号处理一般认为,在满足采样定理的前提下,首先将以采样率F1 采集的数字信号进行D/A 转换, 变成模拟信号,再按采样率F2 进行A/D 变换,从而实现从F1 到F2 的采样率转换。

但这样较麻烦,且易使信号受到损伤,所以实际上改变采样率是在数字域实现的。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

重邮课程实验报告

重邮课程实验报告

一、实验名称数字信号处理实验二、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握数字滤波器的设计方法及其应用。

3. 熟悉数字信号处理软件的使用,提高实验技能。

三、实验原理数字信号处理(Digital Signal Processing,DSP)是研究数字信号的产生、处理、分析和应用的科学。

本实验主要涉及以下几个方面:1. 数字滤波器的基本概念:数字滤波器是一种对数字信号进行频率选择的装置,可以用于信号的滤波、增强、抑制等。

2. 滤波器的设计方法:主要包括有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器的设计方法。

3. 数字信号处理软件的使用:利用MATLAB等软件进行数字信号处理实验,提高实验效率。

四、实验器材1. 实验计算机2. MATLAB软件3. 实验指导书五、实验步骤1. 实验一:FIR滤波器设计(1)打开MATLAB软件,创建一个新的脚本文件。

(2)根据实验指导书的要求,输入FIR滤波器的参数,如滤波器的阶数、截止频率等。

(3)运行脚本文件,观察滤波器的频率响应曲线。

(4)根据实验结果,分析滤波器的性能。

2. 实验二:IIR滤波器设计(1)打开MATLAB软件,创建一个新的脚本文件。

(2)根据实验指导书的要求,输入IIR滤波器的参数,如滤波器的阶数、截止频率等。

(3)运行脚本文件,观察滤波器的频率响应曲线。

(4)根据实验结果,分析滤波器的性能。

3. 实验三:数字信号处理软件的使用(1)打开MATLAB软件,创建一个新的脚本文件。

(2)根据实验指导书的要求,输入信号处理的参数,如采样频率、滤波器类型等。

(3)运行脚本文件,观察信号处理的结果。

(4)根据实验结果,分析数字信号处理软件的应用。

六、实验结果与分析1. 实验一:FIR滤波器设计实验结果表明,所设计的FIR滤波器具有较好的频率选择性,滤波效果符合预期。

2. 实验二:IIR滤波器设计实验结果表明,所设计的IIR滤波器具有较好的频率选择性,滤波效果符合预期。

【精品】数字信号处理实验报告

【精品】数字信号处理实验报告

【精品】数字信号处理实验报告
1 实验目的
本次实验的目的是在MATLAB软件环境中运用数字信号处理理论,通过实验操作来检验用于数字信号处理的算法的正确性,以便明确数字信号处理理论在实际应用中的重要作用。

2 实验原理
数字信号处理实验的原理是使用MATLAB进行数字信号处理算法实验,首先,设置一些用于数字信号处理的参数,如传输函数、离散时间区间、采样频率、滤波器类型等;其次,按照信号处理的算法进行编程实现,搭建一个数字信号处理系统,在MATLAB下对信号进行处理,包括采样、滤波和量化等;最后,对处理后的信号进行数字分析,监测数字信号处理后的变化趋势,验证数字信号处理算法的正确性。

3 实验步骤
(1) 建立信号处理实验系统:选择一个常见的信号处理算法,运用MATLAB软件分别编写信号发生程序、信号采样程序、滤波程序和信号量化程序;
(2) 运行实验程序:实验同学可以自行设置参数,如传输函数、离散时间区间、采样频率、滤波器类型等,调整完毕后,点击“run”,运行实验程序;
(3) 观察实验结果:运行完毕后,可以观察MATLAB的图形结果,以此来分析信号处理算法的性能;
(4) 对结果进行分析:经过上述实验操作后,可以根据所得到的实验结果来判断信号处理算法的性能,如输出信号的噪声抑制能力、良好的时域和频域性能等,从而验证信号处理理论在实际应用中的价值。

4 总结。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

dsp实验报告

dsp实验报告

dsp实验报告DSP实验报告一、引言数字信号处理(Digital Signal Processing,DSP)是一种对数字信号进行处理和分析的技术。

它在许多领域中被广泛应用,如通信、音频处理、图像处理等。

本实验旨在通过实际操作,探索和理解DSP的基本原理和应用。

二、实验目的1. 理解数字信号处理的基本概念和原理;2. 掌握DSP实验平台的使用方法;3. 进行一系列DSP实验,加深对DSP技术的理解。

三、实验器材和软件1. DSP开发板;2. 电脑;3. DSP开发软件。

四、实验内容1. 实验一:信号采集与重构在此实验中,我们将通过DSP开发板采集模拟信号,并将其转换为数字信号进行处理。

首先,我们需要连接信号源和开发板,然后设置采样频率和采样时间。

接下来,我们将对采集到的信号进行重构,还原出原始模拟信号,并进行观察和分析。

2. 实验二:滤波器设计与实现滤波器是DSP中常用的模块,用于去除或增强信号中的特定频率成分。

在此实验中,我们将学习滤波器的设计和实现方法。

首先,我们将选择合适的滤波器类型和参数,然后使用DSP开发软件进行滤波器设计。

最后,我们将将设计好的滤波器加载到DSP开发板上,并进行实时滤波处理。

3. 实验三:频谱分析与频域处理频谱分析是DSP中常用的方法,用于分析信号的频率成分和能量分布。

在此实验中,我们将学习频谱分析的基本原理和方法,并进行实际操作。

我们将采集一个包含多个频率成分的信号,并使用FFT算法进行频谱分析。

然后,我们将对频谱进行处理,如频率选择、频率域滤波等,并观察处理后的效果。

4. 实验四:音频处理与效果实现音频处理是DSP中的重要应用之一。

在此实验中,我们将学习音频信号的处理方法,并实现一些常见的音频效果。

例如,均衡器、混响、合唱等。

我们将使用DSP开发软件进行算法设计,并将设计好的算法加载到DSP开发板上进行实时处理。

五、实验结果与分析通过以上实验,我们成功完成了信号采集与重构、滤波器设计与实现、频谱分析与频域处理以及音频处理与效果实现等一系列实验。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。

在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。

在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。

通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。

接着,我们进行了数字信号滤波的实验。

滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。

在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。

除了滤波,我们还进行了数字信号变换的实验。

数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。

在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。

我们进行了数字信号解调的实验。

数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。

在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。

总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。

数字信号处理实验三

数字信号处理实验三

数字信号处理实验三数字信号处理实验三是针对数字信号处理课程的一项实践性任务。

本实验旨在通过实际操作,加深对数字信号处理理论的理解,并培养学生的实验能力和问题解决能力。

在本实验中,我们将学习和实践以下内容:1. 实验目的本实验的目的是通过使用MATLAB软件进行数字信号处理,加深对数字信号处理基本概念和算法的理解,掌握数字信号的采样、量化、滤波等基本操作。

2. 实验器材在本实验中,我们将使用以下器材:- 个人计算机- MATLAB软件3. 实验步骤本实验的具体步骤如下:步骤一:信号生成首先,我们需要生成一个模拟信号,可以是正弦信号、方波信号或其他类型的信号。

在MATLAB中,我们可以使用相关函数生成这些信号。

生成信号的目的是为了后续的数字信号处理操作提供输入。

步骤二:信号采样在本步骤中,我们将对生成的模拟信号进行采样。

采样是指在一定的时间间隔内对信号进行离散化处理,得到离散时间上的信号序列。

在MATLAB中,我们可以使用采样函数对信号进行采样。

步骤三:信号量化在本步骤中,我们将对采样后的信号进行量化。

量化是指将连续的信号离散化为一组离散的幅值。

在MATLAB中,我们可以使用量化函数对信号进行量化。

步骤四:信号滤波在本步骤中,我们将对量化后的信号进行滤波。

滤波是指通过一系列滤波器对信号进行处理,以去除不需要的频率成分或噪声。

在MATLAB中,我们可以使用滤波函数对信号进行滤波。

步骤五:信号重构在本步骤中,我们将对滤波后的信号进行重构。

重构是指将离散化的信号恢复为连续的信号。

在MATLAB中,我们可以使用重构函数对信号进行重构。

步骤六:信号分析在本步骤中,我们将对重构后的信号进行分析。

分析是指对信号的频谱、功率等特性进行分析,以了解信号的特点和性能。

在MATLAB中,我们可以使用分析函数对信号进行分析。

4. 实验结果在完成以上步骤后,我们可以得到经过数字信号处理的结果。

这些结果可以是经过采样、量化、滤波和重构后的信号波形,也可以是信号的频谱、功率等特性。

数字信号处理实验

数字信号处理实验

数字信号处理实验数字信号处理实验讲义前⾔ (2)实验⼀MATLAB简介 (3)实验⼆⽤FFT实现信号的谱分析 (5)实验三IIR数字巴特沃思滤波器的设计 (8)实验四FIR数字滤波器的设计 (9)前⾔信号处理与计算机的应⽤紧密结合。

⽬前⼴泛应⽤的MA TLAB⼯具软件包,以其强⼤的分析、开发及扩展功能为信号处理提供了强有⼒的⽀持。

在数字信号处理实验中,我们主要应⽤MA TLAB的信号处理⼯具箱及其灵活、便捷的编程⼯具,通过上机实验,帮助学⽣学习、掌握和应⽤MA TLAB软件对信号处理所学的内容加以分析、计算,加深对信号处理基本算法的理解。

实验⼀ MATLAB 简介实验⽬的1.熟悉MATLAB 软件的使⽤⽅法; 2.MA TLAB 的绘图功能;3.⽤MA TLAB 语句实现信号的描述及变换。

实验原理1.在MA TLAB 下编辑和运⾏程序在MA TLAB 中,对于简单问题可以在命令窗(command windows )直接输⼊命令,得到结果;对于⽐较复杂的问题则可以将多个命令放在⼀个脚本⽂件中,这个脚本⽂件是以m 为扩展名的,所以称之为M ⽂件。

⽤M ⽂件进⾏程序的编辑和运⾏步骤如下:(1)打开MA TLAB ,进⼊其基本界⾯;(2)在菜单栏的File 项中选择新建⼀个M ⽂件;(3)在M ⽂件编辑窗⼝编写程序;(4)完成之后,可以在编辑窗⼝利⽤Debug ⼯具调试运⾏程序,在命令窗⼝查看输出结果;也可以将此⽂件保存在某个⽬录中,在MATLAB 的基本窗⼝中的File 项中选择Run The Script ,然后选择你所要运⾏的脚本⽂件及其路径,即可得出结果;也可以将此⽂件保存在当前⽬录中,在MA TLAB 命令窗⼝,“>>”提⽰符后直接输⼊⽂件名。

2.MA TLAB 的绘图功能plot(x,y) 基本绘图函数,绘制 x 和y 之间的坐标图。

figure(n ) 开设⼀个图形窗⼝nsubplot(m,n,N) 分割图形窗⼝的MATLAB 函数,⽤于在⼀个窗⼝中显⽰多个图形,将图形窗⼝分为m ⾏n 列,在第N 个窗⼝内绘制图形。

《数字信号处理》信号卷积实验

《数字信号处理》信号卷积实验

《数字信号处理》信号卷积实验一、实验目的1. 理解卷积的概念及物理意义;2. 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、实验设备1. 信号与系统实验箱 1台2. 双踪示波器1台3. 铆孔连接线 若干二、实验原理说明卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)(*)()(t h t x t y =()()x t h t d ττ∞-∞=-⎰。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为:()()()12f t f t f t d ττ∞-∞=-⎰=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

1. 两个矩形脉冲信号的卷积过程两信号)t (x 与)t (h 都为矩形脉冲信号,如图10-1所示。

下面由图解的方法(图10-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。

0≤<∞-t210≤≤t 1≤≤t 41≤≤t ∞<≤t 2124τ(b)(a)(c)(d)(e)(f)(g)(h)(i)2卷积结果图10-1 两矩形脉冲的卷积积分的运算过程与结果2. 矩形脉冲信号与锯齿波信号的卷积信号)t (f 1为矩形脉冲信号,)t (f 2为锯齿波信号,如图10-2所示。

根据卷积积分的运算方法得到)t (f 1和)t (f 2的卷积积分结果)t (f ,如图10-2(c)所示。

)t (f 1111tt)t (f 212)t (f *)t (f )t (f 21 (a)(b)(c)t100.5图10-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果3. 本实验进行的卷积运算的实现方法在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。

二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。

其主要内容包括采样、量化、滤波、变换分析、重建等。

其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。

频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。

采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。

三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。

采集的信号包括噪声信号、含有正弦波和方波的混合信号等。

2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。

这一步通常通过ADC(模数转换器)实现。

3.滤波处理:将量化后的数字信号输入到数字滤波器中。

我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。

4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。

5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。

我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。

四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。

这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。

2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。

在频域分析中,我们可以更清楚地看到信号的频率特性。

例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。

数字信号的实验报告总结

数字信号的实验报告总结

一、实验背景数字信号处理是现代通信、电子技术、计算机科学等领域的重要基础。

随着科技的不断发展,数字信号处理技术已经广泛应用于各个领域。

为了更好地理解和掌握数字信号处理技术,我们进行了数字信号实验,通过实验加深对数字信号处理理论知识的理解和实际应用。

二、实验目的1. 理解数字信号与模拟信号的区别,掌握数字信号的基本特性。

2. 掌握数字信号的采样、量化、编码等基本过程。

3. 熟悉数字信号处理的基本方法,如滤波、变换等。

4. 提高动手实践能力,培养创新意识。

三、实验内容1. 数字信号的产生与观察首先,我们通过实验软件生成了一些基本的数字信号,如正弦波、方波、三角波等。

然后,观察这些信号在时域和频域上的特性,并与模拟信号进行对比。

2. 数字信号的采样与量化根据奈奎斯特采样定理,我们选取合适的采样频率对模拟信号进行采样。

在实验中,我们设置了不同的采样频率,观察信号在时域和频域上的变化,验证采样定理的正确性。

同时,我们还对采样信号进行了量化,观察量化误差对信号的影响。

3. 数字信号的编码与解码为了便于信号的传输和存储,我们对数字信号进行了编码。

在实验中,我们采用了两种编码方式:脉冲编码调制(PCM)和非归一化脉冲编码调制(A律PCM)。

然后,我们对编码后的信号进行解码,观察解码后的信号是否与原始信号一致。

4. 数字信号的滤波与变换数字滤波是数字信号处理中的重要环节。

在实验中,我们分别实现了低通滤波、高通滤波、带通滤波和带阻滤波。

通过对滤波前后信号的观察,我们了解了滤波器的作用和性能。

此外,我们还进行了离散傅里叶变换(DFT)和快速傅里叶变换(FFT)实验,掌握了信号在频域上的特性。

5. 实际应用案例分析为了更好地理解数字信号处理在实际中的应用,我们选取了两个实际案例进行分析。

第一个案例是数字音频处理,通过实验软件对音频信号进行滤波、压缩等处理。

第二个案例是数字图像处理,通过实验软件对图像进行边缘检测、图像增强等处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一: 系统及响应时域采样及频域采样1. 实验目的(1)掌握用卷积求系统响应及卷积定理的验证;(2)掌握连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。

(3)掌握频域采样引起时域周期化概念, 加深对频域采样定理的理解。

(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

3. 实验内容及步骤(1) 认真复习卷积定理、 时域采样和频域采样理论。

(2) 编制实验用主程序及相应子程序。

①系统单位脉冲响应序列产生子程序。

有限长序列线性卷积子程序,用于完成两个给定长度的序列的卷积。

可以直接调用MATLAB 语言中的卷积函数conv 。

conv 用于两个有限长度序列的卷积,它假定两个序列 都从n=0开始。

调用格式如下: y=conv (x, h) ② 卷积定理的验证。

(3)时域采样定理的验证:信号产生子程序, 用于产生实验中要用到的下列信号序列:x a (t)=Ae -at sin(Ω0t)u(t) 进行采样, 可得到采样序列x a (n)=x a (nT)=Ae -anT sin(Ω0nT)u(n), 0≤n<50其中A 为幅度因子, a 为衰减因子, Ω0是模拟角频率, T 为采样间隔。

这些参数都要在实验过程中由键盘输入, 产生不同的x a (t)和x a (n)。

>> %1时域采样序列分析 A=400;a=200;w=200; n=0:50-1;fs=1000;xa=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k;Xk=fft(xa,length(k));magX=abs(Xk);angX=angle(Xk); subplot(2,1,1);stem(n,xa,'.');xlabel('n');ylabel('xa(n)'); title('信号的类型');)()(10n R n h a =)3()2(5.2)1(5.2)()(-+-+-+=n n n n n h b δδδδ1,,2,1,0,)()()(-==M k e H e X e Y k k k j j a j ωωωsubplot(2,1,2);plot(w/pi,magX);xlabel('w/pi'); ylabel('|Yjw|');title('Y(|jw|)');5101520253035404550n x a (n )信号的类型-2.5-2-1.5-1-0.500.51 1.5205001000w/pi|Y j w |Y(|jw|)(4)频域采样定理的验证:>> %1时域采样序列分析fs=1000 A=400; a=200; w=200;;ts=64*10^(-3); fs=1000;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,1);stem(n,xn);xlabel('n,fs=1000Hz'); ylabel('xn');title('xn'); subplot(3,2,2);plot(n,abs(Xk));xlabel('k,fs=1000Hz'); title('|X(k)|');20406080n,fs=1000Hzx nxn2040608005001000k,fs=1000Hz|X (k)|51015n,fs=200Hzx nxn510150100200k,fs=200Hz |X(k)|10203040n,fs=500Hzx nxn102030400500k,fs=500Hz|X (k)|>> %频域采样定理验证M=26;N=32;n=0:M;n1=0:13;x1=n1+1; n2=14:26;x2=27-n2; x=[x1,x2];Xk=fft(x,512); X32k=fft(x,32);k=0:511;w=(pi/512)*k;subplot(321);stem(n,x);xlabel('n'); ylabel('xn');axis([0,31,0,15]);subplot(322);plot(w,abs(Xk));xlabel('k'); ylabel('|X(k)|');axis([0,1,0,200]) X16k=X32k(1:2:N);x32n=ifft(X32k);x16n=ifft(X16k,16); k1=0:31;k2=0:15;subplot(323);stem(k1,abs(X32k));xlabel('k'); ylabel('X32k');axis([0,31,0,200]);subplot(325);stem(k2,abs(X16k));xlabel('k'); ylabel('|X(k)|');axis([0,15,0,200]) n=0:31;subplot(324);stem(n,abs(x32n));xlabel('n'); ylabel('|x(n)|');axis([0,31,0,15]) n1=0:15;subplot(326);stem(n1,abs(x16n));xlabel('n'); ylabel('|x(n)|');axis([0,31,0,15])102030nx n0.51100200k|X (k )|kX 32kn|x (n )|k|X (k )|102030n|x (n )|实验二:用FFT作谱分析1.实验目的(1) 进一步加深DFT算法原理和基本性质的理解(因为FFT只是DFT的一种快速算法,所以FFT的运算结果必然满足DFT的基本性质)。

(2) 熟悉FFT算法原理和FFT子程序的应用。

(3) 学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。

2.实验步骤(1) 复习DFT的定义、性质和用DFT作谱分析的有关内容。

(2) 复习FFT算法原理与编程思想,并对照DIT-FFT运算流图和程序框图,读懂本实验提供的FFT子程序。

(3) 编制信号产生子程序,产生以下典型信号供谱分析用:(4) 编写程序。

(5) 按实验内容要求,上机实验,并写出实验报告。

>> %ex3main1.mx1=[1 1 1 1 0 0 0 0];x2=[1 2 3 4 4 3 2 1];x3=[4 3 2 1 1 2 3 4];x4=cos(0.25*pi*n);N=8;n=0:7;k=0:7;X1k=fft(x1,N);subplot(2,2,1);stem(n,x1,'.');xlabel('n');ylabel('|x1(n)|');subplot(2,2,2);stem(k,abs(X1k),'.');xlabel('k');ylabel('|X1(k)|');X2k=fft(x2,N);subplot(2,2,3);stem(n,x2,'.');xlabel('n');ylabel('|x2(n)|');subplot(2,2,4);stem(k,abs(X2k),'.');xlabel('k');ylabel('|X2(k)|');n|x 1(n )|k|X 1(k )|2468n|x 2(n )|k|X 2(k )|>> x1=[1 1 1 1 0 0 0 0]; x2=[1 2 3 4 4 3 2 1]; x3=[4 3 2 1 1 2 3 4]; x4=cos(0.25*pi*n); N=8;n=0:7;k=0:7; figure(2)X3k=fft(x3,N);subplot(2,2,1);stem(n,x3,'.'); xlabel('n');ylabel('|x3(n)|');subplot(2,2,2);stem(k,abs(X3k),'.'); xlabel('k');ylabel('|X3(k)|'); X2k=fft(x4,N);subplot(2,2,3);stem(n,x4,'.'); xlabel('n');ylabel('|x4(n)|');subplot(2,2,4);stem(k,abs(X2k),'.'); xlabel('k');ylabel('|X4(k)|');2468n|x 3(n )|k|X 3(k )|n|x 4(n )|k|X 4(k )|>> %ex3(2)main fs=64;N=16; n=0:N-1;k=n;x5=cos(n*pi/4)+cos(n*pi/8);x6=cos(8*pi*n/fs)+cos(16*pi*n/fs)+cos(20*pi*n/fs); X5k=fft(x5,N); X6k=fft(x6,N); figure(3)subplot(2,2,1);stem(n,x5,'.'); xlabel('n');ylabel('|x5(n)|');subplot(2,2,2);stem(abs(X5k),'.'); xlabel('k');ylabel('|X5(k)|'); subplot(2,2,3);stem(n,x6,'.'); xlabel('n');ylabel('|x6(n)|');subplot(2,2,4);stem(abs(X6k),'.'); xlabel('k');ylabel('|X6(k)|');51015n|x 5(n )|2468k|X 5(k )|51015n|x 6(n )|0510152051015k|X 6(k )|总结通过这次实验我学到了:1、MATLAB中程序的调试:M文件中,按下F5设置断点,然后F10运行就可以调试自己需要的程序了。

相关文档
最新文档