聚类分析Matlab代码

合集下载

matlab中kmeans代码

matlab中kmeans代码

一、前言在数据分析和机器学习领域,k-means算法是一种常用的聚类算法,它可以将数据集分成不同的簇,每个簇内的数据点彼此相似,而不同簇之间的数据点相似度较低。

在matlab中,可以利用其强大的数学计算功能来实现k-means聚类算法。

本文将介绍如何在matlab中编写k-means聚类算法的代码。

二、matlab中的k-means算法1. 初始化数据集需要准备好要进行聚类分析的数据集。

这些数据可以是一组二维或多维的点,代表不同的特征。

在matlab中,可以使用矩阵来表示这些数据集,每一行代表一个数据点,每一列代表一个特征。

2. 设置聚类数量在进行k-means聚类算法之前,需要先确定要分成的簇的数量。

这个数量可以根据业务需求或者领域知识来确定。

在matlab中,可以使用kmeans函数来执行聚类分析,该函数需要指定数据集和聚类数量。

3. 运行k-means算法一旦准备好了数据集和聚类数量,就可以调用matlab中的kmeans 函数来执行k-means算法。

该函数会根据数据集和聚类数量来计算出不同簇的中心点,并将每个数据点分配到最近的簇中。

4. 可视化聚类结果完成k-means算法之后,可以将聚类结果可视化出来,以便更直观地理解不同簇之间的分布情况。

在matlab中,可以使用plot函数来绘制数据点和聚类中心,以及不同簇的分布情况。

三、示例代码以下是一个简单的matlab代码示例,演示了如何使用kmeans函数来执行k-means聚类算法:```matlab读取数据data = load('data.txt');设置聚类数量k = 3;运行k-means算法[idx, centers] = kmeans(data, k);可视化聚类结果figure;gscatter(data(:,1), data(:,2), idx);hold on;plot(centers(:,1), centers(:,2), 'kx', 'MarkerSize', 15, 'LineWidth', 3); ```以上代码首先读取了名为data.txt的数据集,然后设置了聚类数量为3。

聚类分析MATLAB

聚类分析MATLAB

聚类分析MATLAB§8.利⽤Matlab和SPSS软件实现聚类分析1. ⽤Matlab编程实现运⽤Matlab中的⼀些基本矩阵计算⽅法,通过⾃⼰编程实现聚类算法,在此只讨论根据最短距离规则聚类的⽅法。

调⽤函数:min1.m——求矩阵最⼩值,返回最⼩值所在⾏和列以及值的⼤⼩min2.m——⽐较两数⼤⼩,返回较⼩值std1.m——⽤极差标准化法标准化矩阵ds1.m——⽤绝对值距离法求距离矩阵cluster.m——应⽤最短距离聚类法进⾏聚类分析print1.m——调⽤各⼦函数,显⽰聚类结果聚类分析算法假设距离矩阵为vector,a阶,矩阵中最⼤值为max,令矩阵上三⾓元素等于max聚类次数=a-1,以下步骤作a-1次循环:求改变后矩阵的阶数,计作c求矩阵最⼩值,返回最⼩值所在⾏e和列f以及值的⼤⼩gfor l=1:c,为vector(c+1,l)赋值,产⽣新类令第c+1列元素,第e⾏和第f⾏所有元素为,第e列和第f列所有元素为max源程序如下:%std1.m,⽤极差标准化法标准化矩阵function std=std1(vector)max=max(vector); %对列求最⼤值min=min(vector);[a,b]=size(vector); %矩阵⼤⼩,a为⾏数,b为列数for i=1:afor j=1:bstd(i,j)= (vector(i,j)-min(j))/(max(j)-min(j));endend%ds1.m,⽤绝对值法求距离function d=ds1(vector);[a,b]=size(vector);d=zeros(a);for i=1:afor j=1:afor k=1:bd(i,j)=d(i,j)+abs(vector(i,k)-vector(j,k));endendendfprintf('绝对值距离矩阵如下:\n');disp(d)%min1.m,求矩阵中最⼩值,并返回⾏列数及其值function [v1,v2,v3]=min1(vector);%v1为⾏数,v2为列数,v3为其值[v,v2]=min(min(vector'));[v,v1]=min(min(vector));v3=min(min(vector));%min2.m,⽐较两数⼤⼩,返回较⼩的值function v1=min(v2,v3);if v2>v3v1=v3;elsev1=v2;end%cluster.m,最短距离聚类法function result=cluster(vector);[a,b]=size(vector);max=max(max(vector));for i=1:afor j=i:bvector(i,j)=max;endend;for k=1:(b-1)[c,d]=size(vector);fprintf('第%g次聚类:\n',k);[e,f,g]=min1(vector);fprintf('最⼩值=%g,将第%g区和第%g区并为⼀类,记作G%g\n\n',g,e,f,c+1); for l=1:cif l<=min2(e,f)vector(c+1,l)=min2(vector(e,l),vector(f,l));elsevector(c+1,l)=min2(vector(l,e),vector(l,f));endend;vector(1:c+1,c+1)=max;vector(1:c+1,e)=max;vector(1:c+1,f)=max;vector(e,1:c+1)=max;vector(f,1:c+1)=max;end%print1,调⽤各⼦函数function print=print1(filename,a,b); %a为地区个数,b为指标数fid=fopen(filename,'r')vector=fscanf(fid,'%g',[a b]);fprintf('标准化结果如下:\n')v1=std1(vector)v2=ds1(v1);cluster(v2);%输出结果print1('fname',9,7)2.直接调⽤Matlab函数实现2.1调⽤函数层次聚类法(Hierarchical Clustering)的计算步骤:①计算n个样本两两间的距离{d ij},记D②构造n个类,每个类只包含⼀个样本;③合并距离最近的两类为⼀新类;④计算新类与当前各类的距离;若类的个数等于1,转到5);否则回3);⑤画聚类图;⑥决定类的个数和类;Matlab软件对系统聚类法的实现(调⽤函数说明):cluster 从连接输出(linkage)中创建聚类clusterdata 从数据集合(x)中创建聚类dendrogram 画系统树状图linkage 连接数据集中的⽬标为⼆元群的层次树pdist 计算数据集合中两两元素间的距离(向量) squareform 将距离的输出向量形式定格为矩阵形式zscore 对数据矩阵 X 进⾏标准化处理各种命令解释1、T = clusterdata(X, cutoff)其中X为数据矩阵,cutoff是创建聚类的临界值。

利用Matlab进行数据聚类与分类的方法

利用Matlab进行数据聚类与分类的方法

利用Matlab进行数据聚类与分类的方法导言在当今大数据时代,处理和分析庞大的数据成为许多领域的重要任务,而数据聚类与分类是其中重要的一环。

Matlab作为一种功能强大的编程语言和工具,在数据聚类与分类方面具有广泛的应用。

本文将介绍利用Matlab进行数据聚类与分类的常用方法和技巧。

一、数据聚类的概念与方法1.1 数据聚类的定义数据聚类是指将具有相似特征的数据对象自动分成若干组的过程,旨在将相似的数据归为一类,不相似的数据分开。

1.2 常用的数据聚类方法- K-means聚类算法:K-means是一种常见且简单的数据聚类方法,通过迭代优化的方式将数据划分成K个簇。

- 层次聚类算法:层次聚类是一种基于树形结构的聚类方法,它将数据逐步合并或分裂,直到得到最终的聚类结果。

- 密度聚类算法:密度聚类根据数据点的密度特征进行聚类,能够有效地发现任意形状和大小的聚类簇。

- 谱聚类算法:谱聚类结合图论的思想,通过计算数据的拉普拉斯矩阵特征向量,将数据聚类成多个划分。

二、利用Matlab进行数据聚类2.1 准备工作在使用Matlab进行数据聚类之前,需要准备好数据集。

通常,数据集需要进行预处理,包括数据清洗、特征选择和降维等步骤。

2.2 K-means聚类利用Matlab的统计工具箱,可以轻松实现K-means聚类算法。

首先,将数据集读入Matlab并进行必要的归一化处理。

然后,使用kmeans函数运行K-means聚类算法,指定聚类的簇数K和迭代次数等参数。

最后,根据聚类结果进行数据可视化或进一步的分析。

2.3 层次聚类Matlab中的cluster函数提供了层次聚类的功能。

将数据集转换为距离矩阵,然后调用cluster函数即可实现层次聚类。

该函数支持不同的聚类算法和距离度量方法,用户可以根据具体需求进行调整。

2.4 密度聚类实现密度聚类可以使用Matlab中的DBSCAN函数。

DBSCAN是一种基于密度的聚类算法,它通过确定数据点的领域密度来判定是否为核心对象,并通过核心对象的连接性将数据点分为不同的簇。

在Matlab中如何进行数据聚类分析

在Matlab中如何进行数据聚类分析

在Matlab中如何进行数据聚类分析数据聚类分析是一种常用的数据处理方法,在各个领域都有广泛的应用。

在Matlab中,数据聚类分析相对简单且易于实现。

本文将介绍在Matlab中如何进行数据聚类分析的基本步骤和常用的聚类算法,并通过实例演示其具体操作。

一、数据预处理在进行数据聚类分析之前,通常需要对原始数据进行预处理以保证聚类的准确性。

首先,要对数据进行标准化,使得不同维度的特征具有相同的范围和重要性。

常见的标准化方法有z-score标准化和min-max标准化。

其次,要对数据进行降维处理,以便对高维数据进行分析。

常见的降维方法有主成分分析(PCA)和线性判别分析(LDA)等。

最后,要对数据进行异常值处理,去除可能对聚类结果产生干扰的异常值。

二、选择聚类算法在Matlab中,有多种聚类算法可供选择,如K-means聚类、层次聚类、密度聚类等。

不同的聚类算法适用于不同的数据情况和分析目的。

在选择聚类算法时,应根据数据的特点、分析目的和算法的优缺点进行综合考虑。

下面将以K-means聚类算法为例进行演示。

三、K-means聚类算法实例演示K-means聚类算法是一种简单且常用的聚类算法。

其基本思想是通过迭代计算,将数据样本划分为K个簇,使得同一簇内的样本相似度较高,不同簇之间的相似度较低。

现假设有一组二维数据集,要对其进行聚类分析。

```matlab% 生成随机数据X = [randn(100,2)+ones(100,2); randn(100,2)-ones(100,2)];% K-means聚类K = 2; % 设置簇的个数[idx, C] = kmeans(X, K); % 进行聚类分析% 绘制聚类结果figure;plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12);hold on;plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12);plot(C(:,1),C(:,2),'kx','MarkerSize',15,'LineWidth',3);legend('Cluster 1','Cluster 2','Centroids','Location','NW');title 'Cluster Assignments and Centroids';hold off;```上述代码中,通过`randn`函数生成了一个含有200个样本的二维数据集X,然后利用`kmeans`函数进行聚类计算,得到了每个样本属于的簇的索引`idx`和簇的中心点坐标`C`。

网络分析(聚类系数、最短路径、效率)matlab代码汇总

网络分析(聚类系数、最短路径、效率)matlab代码汇总
D=eye(length(G)); n=1;
nPATH=G; L=(nPATH~=0);
while find(L,1); D=D+n.*L; n=n+1; nPATH=nPATH*G; L=(nPATH~=0).*(D==0);
end
D(~D)=inf; D=D-eye(length(G));
%n-path matrix %shortest n-path matrix
% %Mika Rubinov, UNSW, 2007 (last modified July 2008)
%See comments for clustering_coef_bd %The weighted modification is as follows: %- The numerator: adjacency matrix is replaced with weights matrix ^ 1/3 %- The denominator: no changes from the binary version % %The above reduces to symmetric and/or binary versions of the % clustering coefficient for respective graphs.
function C=clustering_coef_bu(G) %C=clustering_coef_bu(G); clustering coefficient C, for binary undirected graph G % %Reference: Watts and Strogatz, 1998, Nature 393:440-442 % %Mika Rubinov, UNSW, 2007 (last modified September 2008)

层次聚类 matlab

层次聚类 matlab

层次聚类matlabMatlab中的层次聚类算法层次聚类是一种无监督学习算法,它将数据集中的样本按照相似度进行分组。

Matlab提供了丰富的函数和工具箱来实现层次聚类算法。

本文将一步一步回答如何使用Matlab进行层次聚类,并介绍一些相关的概念和技术。

第一步:准备数据首先,我们需要准备要聚类的数据。

一般来说,数据可以是一个矩阵,其中每一行表示一个样本,每一列表示一个特征。

例如,我们可以有一个100x3的矩阵,其中有100个样本和3个特征。

第二步:计算相似度矩阵层次聚类需要通过计算样本之间的相似度来确定它们的聚类关系。

常见的相似度计算方法包括欧几里得距离、曼哈顿距离和相关系数等。

在Matlab中,可以利用pdist函数来计算样本之间的距离。

例如,使用欧几里得距离可以使用以下代码计算相似度矩阵:matlabdistMatrix = pdist(data, 'euclidean');这将返回一个距离矩阵,其中包含了样本之间的欧几里得距离。

第三步:构建聚类树在得到相似度矩阵之后,接下来需要使用linkage函数构建聚类树。

聚类树是一棵二叉树,每个节点表示一个聚类组合。

在Matlab中,聚类树可以通过以下方式构建:matlabtree = linkage(distMatrix);这将返回一个聚类树,其中包含了每个节点的连接关系和连接距离。

第四步:确定聚类结果最后,我们可以使用cluster函数来确定聚类结果。

Matlab中的cluster 函数可以根据给定的聚类树和聚类数量来划分样本。

例如,可以使用以下代码将数据分成3个聚类:matlabclusters = cluster(tree, 'maxclust', 3);这将返回一个向量,其中元素的值表示每个样本所属的聚类。

除了上述介绍的基本步骤之外,Matlab提供了更多高级功能和选项来定制层次聚类算法。

例如,我们可以选择不同的相似度度量方法、聚类算法、距离阈值等。

matlab kmeans聚类算法代码

matlab kmeans聚类算法代码

一、引言在机器学习和数据分析中,聚类是一种常用的数据分析技术,它可以帮助我们发现数据中的潜在模式和结构。

而k均值(k-means)聚类算法作为一种经典的聚类方法,被广泛应用于各种领域的数据分析和模式识别中。

本文将介绍matlab中k均值聚类算法的实现和代码编写。

二、k均值(k-means)聚类算法简介k均值聚类算法是一种基于距离的聚类算法,它通过迭代的方式将数据集划分为k个簇,每个簇内的数据点与该簇的中心点的距离之和最小。

其基本思想是通过不断调整簇的中心点,使得簇内的数据点与中心点的距离最小化,从而实现数据的聚类分布。

三、matlab实现k均值聚类算法步骤在matlab中,实现k均值聚类算法的步骤如下:1. 初始化k个簇的中心点,可以随机选择数据集中的k个点作为初始中心点。

2. 根据每个数据点与各个簇中心点的距离,将数据点分配给距离最近的簇。

3. 根据每个簇的数据点重新计算该簇的中心点。

4. 重复步骤2和步骤3,直到簇的中心点不再发生变化或者达到预定的迭代次数。

在matlab中,可以通过以下代码实现k均值聚类算法:```matlab设置参数k = 3; 设置簇的个数max_iter = 100; 最大迭代次数初始化k个簇的中心点centroids = datasample(data, k, 'Replace', false);for iter = 1:max_iterStep 1: 计算每个数据点与簇中心点的距离distances = pdist2(data, centroids);Step 2: 分配数据点给距离最近的簇[~, cluster_idx] = min(distances, [], 2);Step 3: 重新计算每个簇的中心点for i = 1:kcentroids(i, :) = mean(data(cluster_idx == i, :)); endend得到最终的聚类结果cluster_result = cluster_idx;```四、代码解释上述代码实现了k均值聚类算法的基本步骤,其中包括了参数设置、簇中心点的初始化、迭代过程中的数据点分配和中心点更新。

MATLAB做聚类

MATLAB做聚类

用matlab做聚类分析转载一:MATLAB提供了两种方法进行聚类分析:1、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;2、分步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,一般比较简单。

【clusterdata函数:调用格式:T=clusterdata(X,cutoff)等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,cutoff)】2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集metirc取值为:’euclidean’:欧氏距离(默认)‘seuclidean’:标准化欧氏距离;‘mahalanobis’:马氏距离… 】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。

这样可以缩小保存空间,不过,对于读者来说却是不好操作,因此,若想简单直观的表示,可以用squareform函数将其转化为方阵,其中x(i,j)表示第i个样本与第j个样本之的距离,对角线均为0.(2)用linkage函数来产生聚类树【linkage函数:调用格式:Z=linkage(Y,’method’)说明:Y为pdist函数返回的M*(M-1)/2个元素的行向量,method可取值:‘single’:最短距离法(默认);’complete’:最长距离法;‘average’:未加权平均距离法;’weighted’:加权平均法‘centroid’:质心距离法;‘median’:加权质心距离法;‘ward’:内平方距离法(最小方差算法)】返回的Z为一个(M-1)*3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。

模糊c均值聚类 FCM算法的MATLAB代码

模糊c均值聚类 FCM算法的MATLAB代码

模糊c均值聚类FCM算法的MATLAB代码我做毕业论文时需要模糊C-均值聚类,找了好长时间才找到这个,分享给大家:FCM算法的两种迭代形式的MA TLAB代码写于下,也许有的同学会用得着:m文件1/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm)% 模糊C 均值聚类FCM: 从随机初始化划分矩阵开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm)% 输入:% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集,% Data 的每一行为一个观测样本的特征矢量,S 为特征矢量% 的维数,N 为样本点的个数% C: 聚类数,1<C<N% plotflag: 聚类结果2D/3D 绘图标记,0 表示不绘图,为缺省值% M: 加权指数,缺省值为2% epsm: FCM 算法的迭代停止阈值,缺省值为1.0e-6% 输出:% U: C×N 型矩阵,FCM 的划分矩阵% P: C×S 型矩阵,FCM 的聚类中心,每一行对应一个聚类原型% Dist: C×N 型矩阵,FCM 各聚类中心到各样本点的距离,聚类中% 心i 到样本点j 的距离为Dist(i,j)% Cluster_Res: 聚类结果,共C 行,每一行对应一类% Obj_Fcn: 目标函数值% iter: FCM 算法迭代次数% See also: fuzzydist maxrowf fcmplotif nargin<5epsm=1.0e-6;endif nargin<4M=2;endif nargin<3plotflag=0;end[N,S]=size(Data);m=2/(M-1);iter=0;Dist(C,N)=0; U(C,N)=0; P(C,S)=0;% 随机初始化划分矩阵U0 = rand(C,N);U0=U0./(ones(C,1)*sum(U0));% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新聚类中心PUm=U0.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(U-U0,Inf)<epsmbreakendU0=U;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);endm文件2/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm2(Data,P0,plotflag,M,epsm) % 模糊C 均值聚类FCM: 从指定初始聚类中心开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm2(Data,P0,plotflag,M,epsm)% 输入: Data,plotflag,M,epsm: 见fuzzycm.m% P0: 初始聚类中心% 输出: U,P,Dist,Cluster_Res,Obj_Fcn,iter: 见fuzzycm.m% See also: fuzzycmif nargin<5epsm=1.0e-6;if nargin<4M=2;endif nargin<3plotflag=0;end[N,S] = size(Data); m = 2/(M-1); iter = 0;C=size(P0,1);Dist(C,N)=0;U(C,N)=0;P(C,S)=0;% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P0(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 更新聚类中心PUm=U.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(P-P0,Inf)<epsmbreakendP0=P;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);m文件3/7:function fcmplot(Data,U,P,Obj_Fcn)% FCM 结果绘图函数% See also: fuzzycm maxrowf ellipse[C,S] = size(P); res = maxrowf(U);str = 'po*x+d^v><.h';% 目标函数绘图figure(1),plot(Obj_Fcn)title('目标函数值变化曲线','fontsize',8)% 2D 绘图if S==2figure(2),plot(P(:,1),P(:,2),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot(v(:,1),v(:,2),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2,'r:') endgrid on,title('2D 聚类结果图','fontsize',8),hold off end% 3D 绘图if S>2figure(2),plot3(P(:,1),P(:,2),P(:,3),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot3(v(:,1),v(:,2),v(:,3),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2, ...'r:',(max(v(:,3))+min(v(:,3)))/2) endgrid on,title('3D 聚类结果图','fontsize',8),hold off endm文件4/7:function D=fuzzydist(A,B)% 模糊聚类分析: 样本间的距离% D = fuzzydist(A,B)D=norm(A-B);m文件5/7:function mr=maxrowf(U,c)% 求矩阵U 每列第c 大元素所在行,c 的缺省值为1% 调用格式: mr = maxrowf(U,c)% See also: addrif nargin<2c=1;endN=size(U,2);mr(1,N)=0;for j=1:Naj=addr(U(:,j),'descend');mr(j)=aj(c);endm文件6/7:function ellipse(a,b,center,style,c_3d)% 绘制一个椭圆% 调用: ellipse(a,b,center,style,c_3d)% 输入:% a: 椭圆的轴长(平行于x 轴)% b: 椭圆的轴长(平行于y 轴)% center: 椭圆的中心[x0,y0],缺省值为[0,0]% style: 绘制的线型和颜色,缺省值为实线蓝色% c_3d: 椭圆的中心在3D 空间中的z 轴坐标,可缺省if nargin<4style='b';endif nargin<3 | isempty(center)center=[0,0];endt=1:360;x=a/2*cosd(t)+center(1);y=b/2*sind(t)+center(2);if nargin>4plot3(x,y,ones(1,360)*c_3d,style)elseplot(x,y,style)endm文件7/7:function f = addr(a,strsort)% 返回向量升序或降序排列后各分量在原始向量中的索引% 函数调用:f = addr(a,strsort)% strsort: 'ascend' or 'descend'% default is 'ascend'% -------- example --------% addr([ 4 5 1 2 ]) returns ans:% [ 3 4 1 2 ]if nargin==1strsort='ascend';endsa=sort(a); ca=a;la=length(a);f(la)=0;for i=1:laf(i)=find(ca==sa(i),1);ca(f(i))=NaN;endif strcmp(strsort,'descend') f=fliplr(f);end几天前我还在这里发帖求助,可是很幸运在其他地方找到了,在这里和大家分享一下!function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类%% 用法:% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);%% 输入:% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值% N_cluster ---- 标量,表示聚合中心数目,即类别数% options ---- 4x1矩阵,其中% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)% options(2): 最大迭代次数(缺省值: 100)% options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5)% options(4): 每次迭代是否输出信息标志 (缺省值: 1)% 输出:% center ---- 聚类中心% U ---- 隶属度矩阵% obj_fcn ---- 目标函数值% Example:% data = rand(100,2);% [center,U,obj_fcn] = FCMClust(data,2);% plot(data(:,1), data(:,2),'o');% hold on;% maxU = max(U);% index1 = find(U(1,:) == maxU);% index2 = find(U(2,:) == maxU);% line(data(index1,1),data(index1,2),'marker','*','color',' g');% line(data(index2,1),data(index2,2),'marker','*','color',' r');% plot([center([1 2],1)],[center([1 2],2)],'*','color','k') % hold off;if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个error('Too many or too few input arguments!');enddata_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度% 默认操作参数default_options = [2; % 隶属度矩阵U的指数100; % 最大迭代次数1e-5; % 隶属度最小变化量,迭代终止条件1]; % 每次迭代是否输出信息标志if nargin == 2,options = default_options;else %分析有options做参数时候的情况% 如果输入参数个数是二那么就调用默认的option;if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;tmp = default_options;tmp(1:length(options)) = options;options = tmp;end% 返回options中是数的值为0(如NaN),不是数时为1nan_index = find(isnan(options)==1);%将denfault_options中对应位置的参数赋值给options中不是数的位置.options(nan_index) = default_options(nan_index);if options(1) <= 1, %如果模糊矩阵的指数小于等于1error('The exponent should be greater than 1!');endend%将options 中的分量分别赋值给四个变量;expo = options(1); % 隶属度矩阵U的指数max_iter = options(2); % 最大迭代次数min_impro = options(3); % 隶属度最小变化量,迭代终止条件display = options(4); % 每次迭代是否输出信息标志obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcnU = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,% Main loop 主要循环for i = 1:max_iter,%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);if display,fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));end% 终止条件判别if i > 1,if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,break;end,endenditer_n = i; % 实际迭代次数obj_fcn(iter_n+1:max_iter) = [];[center, U, obj_fcn] = FCMClust(Data,N_cluster,options)data=[94.4304 98 60 0 8592.8068 70 70 0 75.286.3522 100 75 24.87 91.580.5512 50 90 0 65.480.494 76 100 0 9888.1528 100 60 80 78.484.567 55 80 0 8587.722 30 60 0 4988.0056 95 70 46.459 45.885.948 100 60 0 55.683.9578 10 90 0 78.490.0822 5 60 0 58.876.7448 10 60 0 39.295.062 100 70 62.37 94.8];N_cluster=4;options(1)=[2];options(2)=[100];options(3)=[1e-5];options(4)=[1];。

dbscan聚类算法三维matlab代码

dbscan聚类算法三维matlab代码

dbscan聚类算法三维matlab代码以下是使用MATLAB实现的三维DBSCAN聚类算法的代码。

DBSCAN 是一种密度聚类算法,它可以将数据点分为具有高密度的簇和低密度的噪声点。

该算法的主要参数是epsilon和minPts,其中epsilon 表示半径,minPts表示簇的最小大小。

1. 数据准备我们首先准备一个三维数据集,该数据集包含1000个点,其中每个点都有三个坐标值。

我们使用rand函数生成随机值,并将其保存在名为“data”的变量中。

data = rand(1000,3);2. DBSCAN算法接下来,我们实现DBSCAN算法。

我们定义两个主要函数:dbscan 和regionQuery。

dbscan函数的输入参数包括数据集,epsilon和minPts。

该函数返回一个向量,其中包含每个点所属的簇的标签。

function [labels] = dbscan(data, epsilon, minPts)% Initialize labels as all unvisitedlabels = zeros(size(data,1),1);% Initialize cluster IDC = 0;% Loop through all pointsfor i = 1:size(data,1)% Check if point has already been visitedif labels(i)~=0continue;end% Mark point as visitedlabels(i) = 1;% Find neighboring pointsneighbors = regionQuery(data,i,epsilon);if length(neighbors)<minPts% Mark point as noiselabels(i) = -1;else% Expand clusterC = C+1;expandCluster(data,i,neighbors,C,epsilon,minPts,labels); endendendregionQuery函数的输入参数包括数据集,查询点的索引和epsilon值。

使用Matlab进行模糊聚类分析

使用Matlab进行模糊聚类分析

使用Matlab进行模糊聚类分析概述模糊聚类是一种非常有用的数据分析方法,它可以帮助我们在数据集中找到隐藏的模式和结构。

在本文中,我们将介绍如何使用Matlab进行模糊聚类分析,以及该方法的一些应用和局限性。

引言聚类分析是一种数据挖掘技术,其目的是将数据集中相似的数据点划分为不同的群组或簇。

而模糊聚类则是一种非常强大的聚类方法,它允许数据点属于不同的群组,以及具有不同的隶属度。

因此,模糊聚类可以更好地处理一些模糊性或不确定性的情况。

Matlab中的模糊聚类分析工具Matlab是一种功能强大的数值计算和数据分析软件,它提供了一些内置的模糊聚类分析工具,可以帮助我们进行模糊聚类分析。

其中最常用的是fcm函数(fuzzy c-means clustering)。

fcm函数是基于fuzzy c-means算法的,它使用隶属度矩阵来度量数据点与不同类之间的相似性。

该函数需要指定聚类的数量和迭代次数,然后根据数据点与聚类中心之间的距离来计算隶属度矩阵,并不断迭代更新聚类中心和隶属度矩阵,直到收敛为止。

例如,假设我们有一个包含N个数据点的数据集X,每个数据点包含M个特征。

我们可以使用fcm函数对该数据集进行模糊聚类分析,首先将数据集归一化,并指定聚类的数量(如3个聚类),迭代次数(如100次),并设置模糊指数(如2)。

然后,我们可以使用聚类中心来获得每个数据点的隶属度,并根据隶属度矩阵来进行进一步的数据分析或可视化。

应用实例模糊聚类分析在实际中有很多应用,下面我们将介绍其中两个常见的应用实例。

1. 图像分割图像分割是一种将图像的像素点划分为不同区域或对象的过程。

模糊聚类分析可以在图像分割中发挥重要作用,因为它可以通过考虑像素点与不同区域之间的隶属度来更好地处理图像的模糊性和纹理。

通过使用Matlab中的模糊聚类分析工具,我们可以将一张图像分割为不同的区域,并进一步进行对象识别或图像处理。

2. 数据分类在数据挖掘和机器学习中,数据分类是一个非常重要的任务,其目的是将数据点划分到不同的类别中。

matlab中cluster用法

matlab中cluster用法

matlab中cluster用法随着数据量不断增加,数据分析和处理成为了许多行业的重要工作。

聚类是其中一种重要的数据分析方法,其通过分组相似的样本来揭示数据的结构和规律。

在matlab中,cluster是一个常用的聚类函数,本文将深入介绍其使用方法。

一、导入数据在使用cluster之前,我们需要先将数据导入matlab。

可以使用load命令导入由tab或space分割的文本格式数据,也可以使用xlsread命令导入Excel表格数据。

如有自定义数据格式,可以使用fopen和fscanf函数读取。

读取数据后,建议使用unique函数去重,剔除相同的数据。

二、数据预处理聚类分析的结果往往受到数据的影响,因此在对数据进行聚类之前,需要对数据进行合理的预处理。

常用的预处理方法包括:1、中心化:将所有数据减去其平均值。

这将使得数据的均值为0。

2、标准化:将数据除以其标准差,这将使得数据的标准差为1。

3、归一化:将数据缩放到[0,1]区间内。

可以使用一个简单的公式实现:$$ \frac{x-min(x)}{max(x)-min(x)} $$其中,x为原始数据,min和max分别为x的最小值和最大值。

三、聚类在完成数据预处理后,可以使用cluster函数对数据进行聚类。

cluster函数的基本语法如下:idx = cluster(linkage(X, method), 'maxclust', k)其中,X为样本的特征矩阵,linkage为连接函数,method为连接方法,'maxclust'为将数据分为k个簇,idx为每个样本所属的簇的编号。

常用的连接函数有:single(最小值),complete(最大值),average(平均值)和ward(方差)等。

连接方法表示如何计算样本间的“距离”,不同的方法会影响聚类结果。

四、聚类结果可视化对聚类结果进行可视化有助于更好地理解数据结构。

用matlab做聚类分析

用matlab做聚类分析

用matlab做聚类分析MATLAB提供了两种方法进行聚类分析:一、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;二、步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenet函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,即Clusterdata函数调用了pdist、linkage和cluster,用来由原始样本数据矩阵X创建系统聚类,一般比较简单。

clusterdata函数的调用格式:T=clusterdata(X,cutoff)输出参数T是一个包含n个元素的列向量,其元素为相应观测所属类的类序号。

输入 的矩阵,矩阵的每一行对应一个观测(样品),每一列对应一个变量。

Cutoff 参数X是n p为阈值。

(1)当0<cutoff<2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,’cutoff’,cutoff) ;(‘cutoff’指定不一致系数或距离的阈值,参数值为正实数)(2)Cutoff>>2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z, ‘maxclust’,cutoff) ;(‘maxclust’指定最大类数,参数值为正整数)2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集‘seuclidean’:metirc取值为:’euclidean’:欧氏距离(默认)标准化欧氏距离;‘mahalanobis’:马氏距离;闵科夫斯基距离:‘ minkowski’;绝对值距离:‘ cityblock’…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。

用matlab做聚类分析

用matlab做聚类分析

用matlab做聚类分析MATLAB提供了两种方法进行聚类分析:一、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;二、步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenet函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,即Clusterdata函数调用了pdist、linkage和cluster,用来由原始样本数据矩阵X创建系统聚类,一般比较简单。

clusterdata函数的调用格式:T=clusterdata(X,cutoff)输出参数T是一个包含n个元素的列向量,其元素为相应观测所属类的类序号。

输入 的矩阵,矩阵的每一行对应一个观测(样品),每一列对应一个变量。

Cutoff 参数X是n p为阈值。

(1)当0<cutoff<2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,’cutoff’,cutoff) ;(‘cutoff’指定不一致系数或距离的阈值,参数值为正实数)(2)Cutoff>>2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z, ‘maxclust’,cutoff) ;(‘maxclust’指定最大类数,参数值为正整数)2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集‘seuclidean’:metirc取值为:’euclidean’:欧氏距离(默认)标准化欧氏距离;‘mahalanobis’:马氏距离;闵科夫斯基距离:‘ minkowski’;绝对值距离:‘ cityblock’…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。

abc kmeans算法matlab代码

abc kmeans算法matlab代码

abc kmeans算法matlab代码以下是一个简单的 MATLAB 代码实现 ABC KMeans 算法。

该算法是一种无监督学习算法,用于对数据集进行聚类。

```matlab% 加载数据集data = load("data.mat");% 设定聚类数为 kk = 3;% 随机选择 k 个样本作为初始聚类中心centers = zeros(size(data, 1), k);for i = 1:kcenters(i,:) = data(randperm(size(data, 1), k), :);end% 计算每个数据的聚类编号labels = find(clustering(data, centers) == i);% 更新聚类中心for i = 1:size(labels, 1)new_center = mean(centers(labels(i),:), 2);centers(labels(i),:) = new_center;end% 判断聚类效果coherence = mean(diff(centers));fprintf("聚类效果:%.2f", coherence);```代码中,首先加载数据集`data`。

然后,设定聚类数为`k`,并随机选择`k`个样本作为初始聚类中心。

接下来,计算每个数据的聚类编号,并更新聚类中心。

最后,计算聚类效果并输出结果。

该代码实现了 ABC KMeans 算法的基本思想,但在某些情况下可能会导致聚类效果不理想。

因此,在实际应用中,需要根据具体情况进行调整和改进。

matlab k均值 聚类 实现

matlab k均值 聚类 实现

I. 导言在现代数据分析中,聚类是一种常用的数据挖掘技术。

K均值(K-means)聚类算法是最常用的聚类方法之一,它可以将一组数据划分为若干个不同的类别,使得同一类内的数据更加相似,不同类别之间的数据更加不同。

而MATLAB作为一个专门用于科学计算和数据分析的工具箱,提供了丰富的聚类算法实现方法,下面我们将介绍如何在MATLAB中使用K均值聚类算法进行数据分类。

II. K均值聚类算法的基本原理1. 初始化K个聚类中心:首先随机选择K个样本作为初始的聚类中心。

2. 分配样本到最近的聚类中心:对于每个样本,计算它与K个聚类中心的距离,将它分配到距离最近的聚类中心所代表的类别。

3. 更新聚类中心:对于每个类别,重新计算它们的聚类中心,即取该类别所有样本的平均值作为新的聚类中心。

4. 重复步骤2和步骤3,直到聚类中心不再发生变化或者达到最大迭代次数。

III. MATLAB中K均值聚类算法的实现在MATLAB中,K均值聚类算法的实现非常简单,可以通过以下几个步骤完成。

1. 准备数据我们需要准备待聚类的数据。

在MATLAB中,可以使用矩阵或者数据集来表示数据,假设我们有一个N维的数据集X,其中包含M个样本。

X = [x1, x2, ..., xm]2. 初始化K个聚类中心接下来,我们需要随机选择K个样本作为初始的聚类中心。

在MATLAB中,可以使用randperm函数来生成一个随机的样本索引序列,然后取前K个样本作为初始聚类中心。

idx = randperm(M, K);centroids = X(idx, :);3. 分配样本到最近的聚类中心我们需要计算每个样本与K个聚类中心的距离,并将每个样本分配到距离最近的聚类中心所代表的类别。

在MATLAB中,可以使用pdist2函数来计算样本与聚类中心之间的距禂,然后使用min函数找到每个样本距离最近的聚类中心。

distances = pdist2(X, centroids);[~, labels] = min(distances, [], 2);4. 更新聚类中心我们需要重新计算每个类别的聚类中心,即取每个类别所有样本的平均值作为新的聚类中心。

聚类分析代码-matlab程序-可运行

聚类分析代码-matlab程序-可运行
for i =1:3
clust = find(cidx3 == i);
plot(X(clust,1),X(clust,2),ptsymb{i},'MarkerSize',3,'MarkerFace',MarkFace{i},'MarkerEdgeColor','black');
plot(cmeans3(i,1),cmeans3(i,2),ptsymb{i},'MarkerSize',10,'MarkerFace',MarkFace{i});
[~,order] = sort(P(:,1));
plot(1:size(X,1),P(order,1),'r-',1:size(X,1),P(order,2),'b-',1:size(X,1),P(order,3),'y-');
legend({'Cluster 1 Score' 'Cluster 2 Score' 'Cluster 3 Score'},'location','NW');
cluster3 = (cidx3 == 2);
% 通过观察,K均值方法的第二类是gm的第三类
cluster2 = (cidx3 == 3);
% 计算分类概率
P = posterior(gm,X);
P8 = figure;clf
plot3(X(cluster1,1),X(cluster1,2),P(cluster1,1),'r.')
end
hold off
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档