希尔伯特-黄变换说明及程序
希尔伯特黄变换信号处理
![希尔伯特黄变换信号处理](https://img.taocdn.com/s3/m/0b65d4afd5d8d15abe23482fb4daa58da0111cc7.png)
希尔伯特黄变换信号处理
希尔伯特黄变换(Hilbert Huang Transform,简称HHT)是一个信
号处理的方法,常常用于分析非线性和非平稳信号。
它是由黄其炎教
授于1996年开发的,因此也叫做黄变换。
HHT的主要目的是将复杂的信号分解成数个瞬时频率相近的固有模态
函数(Intrinsic Mode Function,简称IMF)。
IMF是自然界中任何非线性现象的基本构建块,因此它们的分析在很多领域都非常重要。
HHT算法通常包括以下几个步骤:
1. 将待处理的信号(无论是时域信号还是频域信号)分解成数个组成
部分,即IMF。
2. 对每个IMF进行希尔伯特变换,得到复信号。
3. 计算每个复信号在复平面上的相位角和振幅。
4. 根据每个IMF在时域上的相位角和振幅,重建原信号的相位角和振幅。
5. 最后,将所有IMF的相位角和振幅相加得到原信号的相位角和振幅。
HHT的优点在于它不需要对信号做任何假设或模型。
它可以处理时域
和频域的信号,非常适合于分析非线性和非平稳信号,例如心电图、语音、天气数据和金融数据等。
HHT也有一些缺点,比如计算复杂度比较高,有时候需要选择合适的参数来得到比较准确的结果。
总的来说,希尔伯特黄变换是一个非常有用的信号处理方法,可以帮助我们了解自然界中复杂的现象。
它在科学、工程和医学等领域都得到了广泛应用。
emd 希尔伯特黄变换程序
![emd 希尔伯特黄变换程序](https://img.taocdn.com/s3/m/b57f8fcc89eb172ded63b765.png)
(一)简单的EMD程序function imf = emd(x)% Empiricial Mode Decomposition (Hilbert-Huang Transform)% imf = emd(x)% Func : findpeaksx = transpose(x(:));%转置imf = [];while ~ismonotonic(x) %当x不是单调函数,分解终止条件x1 = x;sd = Inf;%均值%直到x1满足IMF条件,得c1while (sd > 0.1) | ~isimf(x1) %当标准偏差系数sd大于0.1或x1不是固有模态函数时,分量终止条件s1 = getspline(x1);%上包络线s2 = -getspline(-x1);%下包络线x2 = x1-(s1+s2)/2;%此处的x2为文章中的hsd = sum((x1-x2).^2)/sum(x1.^2);x1 = x2;endimf{end+1} = x1;x = x-x1;endimf{end+1} = x;% FUNCTIONSfunction u = ismonotonic(x)%u=0表示x不是单调函数,u=1表示x为单调的u1 = length(findpeaks(x))*length(findpeaks(-x));if u1 > 0, u = 0;else, u = 1; endfunction u = isimf(x)%u=0表示x不是固有模式函数,u=1表示x是固有模式函数N = length(x);u1 = sum(x(1:N-1).*x(2:N) < 0);u2 = length(findpeaks(x))+length(findpeaks(-x));if abs(u1-u2) > 1, u = 0;else, u = 1; endfunction s = getspline(x)%三次样条函数拟合成元数据包络线N = length(x);p = findpeaks(x);s = spline([0 p N+1],[0 x(p) 0],1:N);-------------------------------------------------------------------------------- function n = findpeaks(x)% Find peaks.找到极值% n = findpeaks(x)n = find(diff(diff(x) > 0) < 0);u = find(x(n+1) > x(n));n(u) = n(u)+1;------------------------------------------------------------------------------------------ ---------------------------------------------------------------------------------------- function plot_hht00(x,Ts)% 双边带调幅信号的EMD分解% Plot the HHT.% plot_hht(x,Ts)%% :: Syntax% The array x is the input signal and Ts is the sampling period.% Example on use: [x,Fs] = wavread('Hum.wav');% plot_hht(x(1:6000),1/Fs);% Func : emd% Get HHT.clear all;close all;Ts=0.0005;t=0:Ts:1; % 采样率2000HZ% 调幅信号x=sin(2*pi*t).*sin(40*pi*t);s1 = getspline(x);%上包络线s2 = -getspline(-x);%上包络线x1 = (s1+s2)/2;%此处的x2为文章中的hfigure;plot(t,x);xlabel('Time'), ylabel('Amplitude');title('双边带调幅信号');hold on;plot(t,s1,'-r');plot(t,s2,'-r');plot(t,x1,'g');imf = emd(x);for k = 1:length(imf)b(k) = sum(imf{k}.*imf{k});th = angle(hilbert(imf{k}));d{k} = diff(th)/Ts/(2*pi);end[u,v] = sort(-b);b = 1-b/max(b);% Set time-frequency plots.N = length(x);c = linspace(0,(N-2)*Ts,N-1);%figure;for k = v(1:2)plot(c,d{k},'k.','Color',b([k k k]),'MarkerSize',3); hold on;set(gca,'FontSize',8,'XLim',[0 c(end)],'YLim',[0 50]);%设置x、y轴句柄xlabel('Time'), ylabel('Frequency');title('原信号时频图');end% Set IMF plots.M = length(imf);N = length(x);c = linspace(0,(N-1)*Ts,N);for k1 = 0:4:M-1figurefor k2 = 1:min(4,M-k1), subplot(4,1,k2), plot(c,imf{k1+k2});set(gca,'FontSize',8,'XLim',[0 c(end)]);title('EMD分解结果');endxlabel('Time');end(二)function imf = emd(x)% Empiricial Mode Decomposition (Hilbert-Huang Transform)% imf = emd(x)% Func : findpeaksx = transpose(x(:));%转置imf = [];while ~ismonotonic(x) %当x不是单调函数,分解终止条件x1 = x;sd = Inf;%均值%直到x1满足IMF条件,得c1while (sd > 0.1) | ~isimf(x1) %当标准偏差系数sd大于0.1或x1不是固有模态函数时,分量终止条件s1 = getspline(x1);%上包络线s2 = -getspline(-x1);%下包络线x2 = x1-(s1+s2)/2;%此处的x2为文章中的hsd = sum((x1-x2).^2)/sum(x1.^2);x1 = x2;endimf{end+1} = x1;x = x-x1;endimf{end+1} = x;% FUNCTIONSfunction u = ismonotonic(x)%u=0表示x不是单调函数,u=1表示x为单调的u1 = length(findpeaks(x))*length(findpeaks(-x));if u1 > 0, u = 0;else, u = 1; endfunction u = isimf(x)%u=0表示x不是固有模式函数,u=1表示x是固有模式函数N = length(x);u1 = sum(x(1:N-1).*x(2:N) < 0);u2 = length(findpeaks(x))+length(findpeaks(-x));if abs(u1-u2) > 1, u = 0;else, u = 1; endfunction s = getspline(x)%三次样条函数拟合成元数据包络线N = length(x);p = findpeaks(x);s = spline([0 p N+1],[0 x(p) 0],1:N);--------------------------------------------------------------------------------------------------------------------------------------------------------------- function n = findpeaks(x)% Find peaks.找到极值% n = findpeaks(x)n = find(diff(diff(x) > 0) < 0);u = find(x(n+1) > x(n));n(u) = n(u)+1;------------------------------------------------------------------------------------------ ---------------------------------------------------------------------------------------- function plot_hht00(x,Ts)% 双边带调幅信号的EMD分解% Plot the HHT.% plot_hht(x,Ts)%% :: Syntax% The array x is the input signal and Ts is the sampling period.% Example on use: [x,Fs] = wavread('Hum.wav');% plot_hht(x(1:6000),1/Fs);% Func : emd% Get HHT.clear all;close all;Ts=0.0005;t=0:Ts:1; % 采样率2000HZ% 调幅信号x=sin(2*pi*t).*sin(40*pi*t);s1 = getspline(x);%上包络线s2 = -getspline(-x);%上包络线x1 = (s1+s2)/2;%此处的x2为文章中的hfigure;plot(t,x);xlabel('Time'), ylabel('Amplitude');title('双边带调幅信号');hold on;plot(t,s1,'-r');plot(t,s2,'-r');plot(t,x1,'g');imf = emd(x);for k = 1:length(imf)b(k) = sum(imf{k}.*imf{k});th = angle(hilbert(imf{k}));d{k} = diff(th)/Ts/(2*pi);end[u,v] = sort(-b);b = 1-b/max(b);% Set time-frequency plots.N = length(x);c = linspace(0,(N-2)*Ts,N-1);%figure;for k = v(1:2)plot(c,d{k},'k.','Color',b([k k k]),'MarkerSize',3); hold on;set(gca,'FontSize',8,'XLim',[0 c(end)],'YLim',[0 50]);%设置x、y轴句柄xlabel('Time'), ylabel('Frequency');title('原信号时频图');end% Set IMF plots.M = length(imf);N = length(x);c = linspace(0,(N-1)*Ts,N);for k1 = 0:4:M-1figurefor k2 = 1:min(4,M-k1), subplot(4,1,k2), plot(c,imf{k1+k2}); set(gca,'FontSize',8,'XLim',[0 c(end)]);title('EMD分解结果');endxlabel('Time');endplot_hht00(x,Ts)只画出了时频图,没有三维图。
希尔伯特-黄变换说明及程序(标准程序)
![希尔伯特-黄变换说明及程序(标准程序)](https://img.taocdn.com/s3/m/d05eb61d6bd97f192279e95b.png)
目录∙ 1 本质模态函数(IMF)∙ 2 经验模态分解(EMD)∙ 3 结论∙ 4 相关条目∙ 5 参考文献∙ 6 外部链接[编辑]本质模态函数(IMF)任何一个资料,满足下列两个条件即可称作本质模态函数。
⒈局部极大值(local maxima)以及局部极小值(local minima)的数目之和必须与零交越点(zero crossing)的数目相等或是最多只能差1,也就是说一个极值后面必需马上接一个零交越点。
⒉在任何时间点,局部最大值所定义的上包络线(upper envelope)与局部极小值所定义的下包络线,取平均要接近为零。
因此,一个函数若属于IMF,代表其波形局部对称于零平均值。
此类函数类似于弦波(sinusoid-like),但是这些类似于弦波的部分其周期与振幅可以不是固定。
因为,可以直接使用希尔伯特转换,求得有意义的瞬时频率。
[编辑]经验模态分解(EMD)EMD算法流程图建立IMF是为了满足希尔伯特转换对于瞬时频率的限制条件之前置处理,也是一种转换的过程。
我们将IMF来做希尔伯特转换可以得到较良好的特性,不幸的是大部分的资料并不是IMF,而是由许多弦波所合成的一个组合。
如此一来,希尔伯特转换并不能得到正确的瞬时频率,我们便无法准确的分析资料。
为了解决非线性(non-linear)与非稳态(non-stationary)资料在分解成IMF时所遇到的困难,便发展出EMD。
经验模态分解是将讯号分解成IMF的组合。
经验模态分解是借着不断重复的筛选程序来逐步找出IMF。
以讯号为例,筛选程序的流程概述如下:步骤 1 : 找出中的所有局部极大值以及局部极小值,接着利用三次样条(cubic spline),分别将局部极大值串连成上包络线与局部极小值串连成下包络线。
步骤 2 : 求出上下包络线之平均,得到均值包络线。
步骤 3 : 原始信号与均值包络线相减,得到第一个分量。
步骤 4 : 检查是否符合IMF的条件。
希尔伯特黄变换获取时频谱, python
![希尔伯特黄变换获取时频谱, python](https://img.taocdn.com/s3/m/e171cff668dc5022aaea998fcc22bcd126ff4280.png)
希尔伯特黄变换(Hilbert-Huang Transform, HHT)是一种非线性、非平稳信号分析方法,能够有效地获取信号的时频谱信息。
在信号处理和振动分析领域,HHT被广泛应用于信号的时间-频率特征提取、故障诊断、模式识别等方面。
而Python作为一种功能强大的编程语言,为HHT的实现提供了便利条件。
下面将介绍希尔伯特黄变换的基本原理及其在Python中的实现。
1. 希尔伯特变换希尔伯特变换是对信号进行解析的一种数学方法,其核心是通过与原始信号相关的虚部信号来构建解析信号。
希尔伯特变换可以将实部信号与虚部信号相互转换,从而实现对信号的时域和频域分析。
希尔伯特变换的数学表示如下:\[H(x(t)) = P \left( \frac{1}{\pi t} \right) \ V \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d\tau \]其中,\(x(t)\)为原始信号,\[H(x(t))\]为对应的希尔伯特变换,\(P\)表示柯西主值,\(V\)表示广义积分。
在时频分析中,希尔伯特变换可以用于提取信号的振幅和相位信息,从而实现时域和频域特征的全面分析。
2. 黄变换黄变换是由我国科学家黄次寅于1998年提出的一种基于希尔伯特变换的信号分析方法。
与传统的傅立叶变换和小波变换相比,黄变换更适用于非线性和非平稳信号的分析。
黄变换包括两个核心步骤:经验模态分解(EMD)和希尔伯特谱分析。
EMD是将复杂信号分解成若干个本征模态函数(EMD),而希尔伯特谱分析是在每个本征模态函数上进行希尔伯特变换,从而获取每个本征模态函数的时频特征。
3. 希尔伯特黄变换希尔伯特黄变换是将希尔伯特变换与黄变换相结合的一种信号分析方法。
希尔伯特黄变换主要包括以下步骤:1) 对原始信号进行EMD分解,得到若干个本征模态函数;2) 对每个本征模态函数进行希尔伯特变换,得到每个本征模态函数的时频谱信息;3) 将每个本征模态函数的时频谱信息相加,得到原始信号的时频谱分布。
python希尔伯特黄变换的时频谱
![python希尔伯特黄变换的时频谱](https://img.taocdn.com/s3/m/e4ffc343cd1755270722192e453610661ed95a17.png)
Python希尔伯特黄变换(Python Hilbert-Huang Transform,简称HHT)是一种复杂非线性信号分析方法,结合了希尔伯特变换和黄变换的优势,能够有效地对非线性和非平稳信号进行时频谱分析。
本文将从HHT的原理、基本步骤和Python实现方法三个方面进行介绍。
一、HHT的原理1.希尔伯特变换希尔伯特变换是一种将实数信号转换为解析信号的数学方法,通过对原信号进行傅立叶变换得到频谱信息,再对频谱信息进行一定的处理得到解析频谱,从而实现信号的解析表示。
希尔伯特变换的核心是求出原信号的解析函数,即原信号的复数形式,其中实部是原信号本身,虚部是原信号的希尔伯特变换。
希尔伯特变换在信号处理领域有着广泛的应用,能够提取信号的瞬时特征,对非平稳信号进行时频分析具有很高的效果。
2.黄变换黄变换是一种局部线性和非线性信号分解方法,可以将非线性和非平稳信号分解成若干个固有模态函数(Intrinsic Mode Function,简称IMF)的线性组合。
黄变换首先对原信号进行极值点的提取,然后通过极值点之间的插值得到包络线,再将原信号减去包络线得到一维信号,并对得到的一维信号进行数据挑选和插值,最终得到IMF。
多次重复以上步骤,直到原信号能够被分解为若干个IMF,再通过IMF的线性组合得到原信号的近似表示。
3.HHT的结合HHT将希尔伯特变换和黄变换结合在一起,利用希尔伯特变换提取信号的瞬时特征,再通过黄变换将信号分解成若干个IMF,从而能够更准确地描述信号的时频特性。
HHT的优势在于能够适用于非线性和非平稳信号,对信号的局部特征具有很好的描述能力,因此在振动信号分析、生物医学信号处理等领域有着广泛的应用。
二、HHT的基本步骤1.信号分解HHT首先对原信号进行希尔伯特变换,得到信号的瞬时频率特征,然后通过黄变换将信号分解成若干个IMF。
2.IMF的提取针对得到的IMF,需要对每个IMF进行较为严格的判别,确定其是否符合IMF的特征:极值点交替出现、包络线对称、局部频率单调。
希尔伯特黄变换及其应用
![希尔伯特黄变换及其应用](https://img.taocdn.com/s3/m/57330685f021dd36a32d7375a417866fb84ac003.png)
希尔伯特黄变换及其应用希尔伯特黄变换及其应用希尔伯特黄变换(Hilbert-Huang Transform,HHT)是一种用于分析非线性和非平稳信号的方法,它由黄其森(Norden E. Huang)和希尔伯特(Hilbert)共同提出。
该方法通过将信号分解为一组固有模态函数(Intrinsic Mode Functions,IMF)来提取信号中的模式和趋势。
本文将介绍希尔伯特黄变换的应用,并详细讲解其中的几个应用领域。
应用一:信号处理•希尔伯特黄变换可以用于音频信号处理,通过提取信号的固有模态函数,可以分离出音频信号中的主要频率成分,从而实现去噪、降噪等处理。
•在图像处理中,希尔伯特黄变换可以用于边缘检测和纹理分析。
通过提取图像的固有模态函数,可以分离出图像中的纹理信息和边缘信息,从而实现图像增强和分割等操作。
应用二:地震学•地震学中的信号分析是一项重要的任务,希尔伯特黄变换可以用于地震信号的分析和处理。
通过将地震信号分解为固有模态函数,可以提取出地震信号中的地震波的时频特征,从而实现地震信号的分类和识别。
•希尔伯特黄变换还可以用于地震信号的时频谱分析,通过将地震信号分解为固有模态函数,并对每个分量进行傅里叶变换,可以得到地震信号的时频谱图,从而更好地理解地震信号的时频特性。
应用三:医学工程•在医学工程中,希尔伯特黄变换可以用于生物信号的分析和处理,如心电图(ECG)和脑电图(EEG)等。
通过将生物信号分解为固有模态函数,可以提取出信号中的重要特征,如心跳频率、脑电波的频率等,从而实现疾病的诊断和监测。
•希尔伯特黄变换还可以用于生物信号的时频谱分析,通过将生物信号分解为固有模态函数,并对每个分量进行傅里叶变换,可以得到信号的时频谱图,从而更好地分析信号的时频特性。
应用四:金融市场•在金融市场中,希尔伯特黄变换可以用于股票价格的分析和预测。
通过将股票价格分解为固有模态函数,可以提取出股票价格的趋势和周期成分,从而更好地预测股票价格的走势。
(完整版)希尔伯特-黄变换(Hilbert-HuangTransform,HHT)
![(完整版)希尔伯特-黄变换(Hilbert-HuangTransform,HHT)](https://img.taocdn.com/s3/m/209f8d78ba0d4a7303763a05.png)
希尔伯特-黄变换(Hilbert-Huang Transform,HHT)0 前言传统的数据分析方法都是基于线性和平稳信号的假设,然而对实际系统,无论是自然的还是人为建立的,数据最有可能是非线性、非平稳的。
希尔伯特-黄变换(Hilbert-Huang Transform,HHT)是一种经验数据分析方法,其扩展是自适应性的,所以它可以描述非线性、非平稳过程数据的物理意义。
1 HHT简介[贺礼平.希尔伯特-黄变换在电力谐波分析中的应用研究[D].湖南:中南大学,2009]HHT的发展。
1995年,Norden E.Huang为研究水表面波构思出一种所谓“EMD--HSA”的时间序列分析法,通过这种方法他发现水波的演化不是连续的,而是突变、离散、局部的。
1998年,Norden E.Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。
HHT是一种新的分析非线性非平稳信号的时频分析方法,由两部分组成:第一部分为经验模态分解(Empirical Mode Decomposition,EMD)(the sifting process,筛选过程),它是由Huang提出的,基于一个假设:任何复杂信号都可以分解为有限数目且具有一定物理定义的固有模态函数(Intrinsic Mode Function,IMF;也称作本征模态函数);EMD方法能根据信号的特点,自适应地将信号分解成从高到低不同频率的一系列IMF;该方法直接从信号本身获取基函数,因此具有自适应性,同时也存在计算量大和模态混叠的缺点。
第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,HSA),利用Hilbert变换求解每一阶IMF 的瞬时频率,从而得到信号的时频表示,即Hilbert谱。
希尔伯特黄变换和经验模态分解
![希尔伯特黄变换和经验模态分解](https://img.taocdn.com/s3/m/da676d6d182e453610661ed9ad51f01dc28157de.png)
希尔伯特黄变换和经验模态分解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!希尔伯特黄变换和经验模态分解:理论与应用导言希尔伯特黄变换(Hilbert-Huang Transform,HHT)和经验模态分解(Empirical Mode Decomposition,EMD)是近年来在信号处理领域备受关注的两大方法。
希尔伯特黄变换
![希尔伯特黄变换](https://img.taocdn.com/s3/m/7e9056fa58fb770bf68a55b8.png)
而且能够表示可变的频率。因此,新方法突破了傅立叶变
换的束缚。用Hilbert谱可以进一步定义边际谱为:
(12)
H H,tdt
这里由HHT得到的边际谱与Fourier频谱有相似之 处,从统计观点上来看,它表示了该频率上振幅 (能量)在时间上的累加,能够反映各频率上的能 量分布,但因为瞬时频率定义为时间的函数,不 同以往Fourier等需要完整的振荡波周期来定义局 部的频率值,而且求取的能量值不是全局定义的 。因此对信号的局部特征反映更准确,在这方面 优于Fourier谱。尤其是在分析非平稳信号时,这 种
2.4 Hilbert谱和边际谱
• 在IMF定义和EMD的基础上,Huang等人系统地
提出了一种分析信号的新理论或新方法。它包
括两个大组成部分,EMD和与之相应的Hilben
谱分析方法。即首先用EMD将任意信号s(t)分解
成有限个IMF的和
n
s(t)cjtrnt
j1
然后分别对每一个IMF分量用Hilbert变换进行谱 分析。最后得到信号的瞬时频率表示:
2.2时间特征尺度
• 现在有三种测量时间尺度的方法:相邻两过零点间隔 的时间尺度,相邻两极值点间隔的时间尺度,相邻两 曲率极值点间隔的时间尺度。三种情况中,时间间隔 都是用来局部测量事物时间变化的。局部极值时间间 隔和曲率时间间隔尺度代表了整个波形,无论波形是 否穿过零线。Huang等人分析认为,时间尺度代表了 信号的局部震荡尺度,并且仅表示一种震荡模式。这 种震荡从一个极值点到另一个相反的极值点,因此时 间尺度是震荡本身所隐含的尺度,称为特征时间尺度。 EMD方法使用的时间尺度是极值点间隔,它当然提供 了一个很好的对时间尺度测量的方法。所谓的局部是 特征尺度是指信号重量邻近极大值点或者极小值点的 时间间隔。HHT分析方法是通过对信号本身的局部特 征进行分析,从局部特征时间尺度入手,获得不同时 间尺度特征的有限个IMF分量。
希尔伯特·黄变换
![希尔伯特·黄变换](https://img.taocdn.com/s3/m/75812e3ea32d7375a41780ac.png)
HHT-希尔伯特·黄变换1998年,Norden E. Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。
HHT主要内容包含两部分,第一部分为经验模态分解(Empirical Mode Decomposition,简称EMD),它是由Huang提出的;第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,简称HAS)。
简单说来,HHT处理非平稳信号的基本过程是:首先利用EMD方法将给定的信号分解为若干固有模态函数(以Intrinsic Mode Function或IMF表示,也称作本征模态函数),这些IMF是满足一定条件的分量;然后,对每一个IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的Hilbert谱。
与传统的信号或数据处理方法相比,HHT具有如下特点:(1)HHT能分析非线性非平稳信号。
传统的数据处理方法,如傅立叶变换只能处理线性非平稳的信号,小波变换虽然在理论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。
历史上还出现过不少信号处理方法,然而它们不是受线性束缚,就是受平稳性束缚,并不能完全意义上处理非线性非平稳信号。
HHT则不同于这些传统方法,它彻底摆脱了线性和平稳性束缚,其适用于分析非线性非平稳信号。
(2)HHT具有完全自适应性。
HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。
这点不同于傅立叶变换和小波变换。
傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小波基,小波基也是预先选定的。
在实际工程中,如何选择小波基不是一件容易的事,选择不同的小波基可能产生不同的处理结果。
希尔伯特黄变换
![希尔伯特黄变换](https://img.taocdn.com/s3/m/f34134c202020740bf1e9b22.png)
(1)由IMF分量的一系列瞬时频率 (k=0,1,2,…,n),
可以充分反映出 u(t) 的瞬时频率特征。
(2)基于IMF分量的展开,可以得到一个可变幅度与 可变频率的信号描述方法,从而打破固定幅度与固定 频率的傅里叶级数展开的限制。
(3)与传统信号分解算法相比,最大的优点是其自适 应性。EMD 方法将信号分解为若干个IMF 以及一个余 项的和,各IMF 代表了原信号的合乎物理特征的时频 结构,且IMF 是在分解过程中根据原信号的固有属性 自适应地产生,而非在分解之前预先指定,EMD 方法 不但在时间和频率具有局部自适应性,作为表示的基 的IMFs 的结构也是自适应的。
[5]罗奇峰, 石春香. Hilbert—Huang 变换理论及其计算 中的问题[J]. 同济大学学报: 自然科学版, 2003, 31(6): 637-640.
EMD优缺点
EMD优点 EMD存在的问题
EMD算法改进 模态混叠 基本模式分量筛分停止条件 端点效应
EMD的优点
EMD有以下优点:
k
当物体以角速度沿半径作绕原点的圆周运动时, 其在直径上投影P的运动是一简谐运动:
s t =a0 cos t =a0 cost
而实际中,物体绕原点运动的半径往往不为 常数,运动的角速度也不均匀,则投影P的表达 式变为:
s t =a tcos t
其瞬时频率为: f t = t 1 d t
狭义平稳:随机过程的任何n维分布函数或概率密度函数与时间起 点无关。 对任意正整数n和任意实数τ, n维概率密度函数满足:
f n x1 , x2 , xn ;t1 , t2 ,tn f n x1 , xn ;t1 , t2 ,tn
平稳过程的统计特性不随时间的推移而不同。
几种时频分析方法综述2——希尔伯特黄变换
![几种时频分析方法综述2——希尔伯特黄变换](https://img.taocdn.com/s3/m/39bdbb5dfbd6195f312b3169a45177232f60e4dc.png)
几种时频分析方法综述2——希尔伯特黄变换EMD是希尔伯特-黄变换的第一步,它是一种数据驱动的自适应信号处理方法。
EMD将非平稳信号分解为一组努力总体分量(Intrinsic Mode Functions,IMFs),每个IMF均满足以下两个条件:1.在整个信号时域上的局部振动特征呈现出类似正弦波的形状。
2.任意一对相邻IMFs的频率没有任何交叉。
EMD的具体过程如下:1.对于给定的非平稳信号,从中提取出包含极值与香农熵最大的分量,并称之为第一IMF。
2.将第一IMF从原信号中去除,得到原信号的一个残差。
3.对残差信号重复步骤1和步骤2,直到得到一组IMF。
EMD的特点在于它不依赖于任何先验知识或设定的基函数,而是根据信号本身的特性进行自适应分解。
这使得EMD可以较好地适应具有非线性和非平稳特性的信号。
在得到一组IMFs后,就可以进行下一步的希尔伯特谱分析。
HSA使用希尔伯特变换来计算每个IMF的瞬时频率和瞬时振幅。
希尔伯特变换是将信号从时域转换到时频域的一种方法,其中每个频率的成分均具有固定的相位。
希尔伯特谱分析的具体步骤如下:1.对每个IMF进行希尔伯特变换,得到每个IMF的解析信号。
2.通过解析信号计算每个IMF的瞬时频率和瞬时振幅。
瞬时频率是指在每个时间点上信号的主要振动频率,瞬时振幅是指信号在每个时间点上的能量大小。
通过对每个IMF的瞬时频率和瞬时振幅进行时频分析,可以得到信号的能量随时间和频率变化的情况。
希尔伯特-黄变换在许多领域都有广泛的应用,例如信号处理、振动分析、气象预测等。
它可以有效地揭示非平稳信号中的时频特性,提供更准确的时频分析结果。
然而,希尔伯特-黄变换也存在一些问题。
例如,EMD方法对于噪声敏感,噪声可能会引入额外的IMF。
此外,EMD方法的计算量较大,对于较长的信号会消耗较长的时间。
综上所述,希尔伯特-黄变换是一种非平稳信号时频分析方法,通过经验模态分解和希尔伯特谱分析实现时域和频域的联合分析。
希尔伯特黄变换及其应用
![希尔伯特黄变换及其应用](https://img.taocdn.com/s3/m/40d9aeb2d1d233d4b14e852458fb770bf78a3bd6.png)
希尔伯特黄变换及其应用1. 应用背景希尔伯特黄变换(Hilbert-Huang Transform,HHT)是一种用于非平稳和非线性信号分析的方法,由中国科学家黄钧提出。
传统的傅里叶变换等线性方法仅适用于平稳信号,而在实际应用中,许多信号都是非平稳的,因此需要一种更加灵活和准确的分析方法。
希尔伯特黄变换结合了经验模态分解(Empirical Mode Decomposition,EMD)和希尔伯特变换(Hilbert Transform),能够有效地分解非平稳信号,并提取出其局部特征。
2. 应用过程希尔伯特黄变换的应用过程主要包括以下几个步骤:2.1 数据采集与预处理首先需要采集到待分析的非平稳信号,并进行预处理。
预处理包括去除噪声、滤波等操作,以提高信号的质量和准确性。
2.2 经验模态分解(Empirical Mode Decomposition,EMD)经验模态分解是希尔伯特黄变换的核心步骤,用于将非平稳信号分解成一系列固有模态函数(Intrinsic Mode Functions,IMF)。
IMF是一组具有局部特征的函数,它们能够准确地描述信号的本质。
经验模态分解的具体步骤如下: - 将信号的极大值点和极小值点连接起来,得到信号的上包络线和下包络线; - 计算信号的局部平均值(上包络线加下包络线的平均值),得到信号的均值函数; - 用原始信号减去均值函数,得到第一次分解得到的第一固有模态函数(IMF1); - 对IMF1进行局部极值点的连接和平均值的计算,得到IMF1的上包络线和下包络线; - 用IMF1减去上包络线和下包络线的平均值,得到第二次分解得到的第二个固有模态函数(IMF2); - 重复以上步骤,直到最后得到的IMF满足一定的停止准则。
2.3 希尔伯特变换(Hilbert Transform)希尔伯特变换是一种用于计算信号的分析信号的方法,可以将实数信号转换为复数信号,并提取出信号的相位信息。
希尔伯特—黄变换方法的仿真研究
![希尔伯特—黄变换方法的仿真研究](https://img.taocdn.com/s3/m/0b2a52567f21af45b307e87101f69e314332fafd.png)
希尔伯特—黄变换方法的仿真研究希尔伯特—黄变换(Hilbert-Huang Transform,简称HHT)是一种广泛应用于信号处理领域的方法。
该方法由希尔伯特空间和黄-恩博特变换(EMD,Empirical Mode Decomposition)两部分组成。
HHT 方法能够适应非线性、非平稳信号的特点,将信号分解为固有模态函数(Intrinsic Mode Functions,简称IMF),并计算出每个IMF的瞬时频率和振幅。
本文将介绍HHT方法的原理和算法实现,并对其进行仿真研究。
HHT方法的第一步是EMD,它可以将复杂的信号分解为多个IMF。
每个IMF都是信号的局部特征表现,具有非线性和非平稳性。
EMD算法的基本步骤是:将输入信号x(t)进行平滑处理,得到信号x'(t)。
找到信号x'(t)的局部极大值和极小值点,将它们分别连接成上包络线和下包络线。
对上、下包络线进行拟合,得到信号x''(t)。
将x''(t)与x'(t)相减,得到一个残差信号r(t)。
将残差信号r(t)作为新的输入信号,重复步骤1-4,直到r(t)成为一个IMF。
得到IMF后,可以利用希尔伯特变换对每个IMF进行包络线和瞬时相位计算,进而得到IMF的瞬时频率和振幅。
希尔伯特变换算法如下:计算IMF'的导数,得到瞬时相位p(t)。
对瞬时相位进行积分,得到瞬时频率f(t)。
利用IMF和瞬时频率、瞬时相位,计算出希尔伯特变换的结果。
为了验证HHT方法的可行性,我们进行了一系列仿真实验。
实验平台为MATLAB R2021a,实验数据为合成信号和实际信号。
合成信号由多个正弦波和随机噪声组成,实际信号为心电图信号。
实验步骤如下:将合成信号和实际信号作为输入,进行EMD分解,得到多个IMF。
对每个IMF进行希尔伯特变换,得到瞬时频率和振幅。
对瞬时频率和振幅进行绘图,以便观察和分析。
用希尔伯特黄变换(HHT)求时频谱和边际谱
![用希尔伯特黄变换(HHT)求时频谱和边际谱](https://img.taocdn.com/s3/m/031d17ac910ef12d2af9e7f7.png)
用希尔伯特黄变换(HHT)求时频谱和边际谱1.什么是HHT?HHT就是先将信号进行经验模态分解(EMD分解),然后将分解后的每个IMF分量进行Hilbert 变换,得到信号的时频属性的一种时频分析方法。
2.EMD分解的步骤。
EMD分解的流程图如下:3.实例演示。
给定频率分别为10Hz和35Hz的两个正弦信号相叠加的复合信号,采样频率fs=2048Hz的信号,表达式如下:y=5sin(2*pi*10t)+5*sin(2*pi*35t)(1)为了对比,先用fft对求上述信号的幅频和相频曲线。
function fftfenxiclear;clc;N=2048;%fft默认计算的信号是从0开始的t=linspace(1,2,N);deta=t(2)-t(1);1/detax=5*sin(2*pi*10*t)+5*sin(2*pi*35*t);% N1=256;N2=512;w1=0.2*2*pi;w2=0.3*2*pi;w3=0.4*2*pi;%x=(t>=-200&t<=-200+N1*deta).*sin(w1*t)+(t>-200+N1*deta&t<=-200+N2*deta).*sin(w2*t)+(t>-200+N2*deta&t<=200).*sin(w3*t);y = x;m=0:N-1;f=1./(N*deta)*m;%可以查看课本就是这样定义横坐标频率范围的%下面计算的Y就是x(t)的傅里叶变换数值%Y=exp(i*4*pi*f).*fft(y)%将计算出来的频谱乘以exp(i*4*pi*f)得到频移后[-2,2]之间的频谱值Y=fft(y);z=sqrt(Y.*conj(Y));plot(f(1:100),z(1:100));title('幅频曲线')xiangwei=angle(Y);figure(2)plot(f,xiangwei)title('相频曲线')figure(3)plot(t,y,'r')%axis([-2,2,0,1.2])title('原始信号')复制代码(2)用Hilbert变换直接求该信号的瞬时频率clear;clc;clf;%假设待分析的函数是z=t^3N=2048;%fft默认计算的信号是从0开始的t=linspace(1,2,N);deta=t(2)-t(1);fs=1/deta;x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t);z=x;hx=hilbert(z);xr=real(hx);xi=imag(hx);%计算瞬时振幅sz=sqrt(xr.^2+xi.^2);%计算瞬时相位sx=angle(hx);%计算瞬时频率dt=diff(t);dx=diff(sx);sp=dx./dt;plot(t(1:N-1),sp)title('瞬时频率')复制代码小结:傅里叶变换不能得到瞬时频率,即不能得到某个时刻的频率值。
Hilbert-HuangTransform:matlab希尔伯特-黄变换:matlab实现
![Hilbert-HuangTransform:matlab希尔伯特-黄变换:matlab实现](https://img.taocdn.com/s3/m/d3cd9b355627a5e9856a561252d380eb629423dd.png)
Hilbert-HuangTransform:matlab希尔伯特-黄变换:matlab实现关于Hilbert-Huang的matlab实现,材料汇总,⽐较杂...感谢所有⽹络上的贡献者们:)核⼼:以下代码计算HHT边际谱及其对应频率⼯具包要求:G-Rilling EMD Toolbox,TFTB Toolbox附:黄锷先⽣课题组开发的⼯具包(可以在找到),这⾥并未⽤到。
% Empirical mode decomposition, resulting in intrinc mode functions.% Without parameter 'MAXMODES' the process may be seriously delayed by% decompose original signals into too many IMFs (not necessary, 9 is% enough generally)imfs = emd(oriSig, 'MAXMODES', 9);% HHT spectrum: hhtS[A, f, t] = hhspectrum(imfs);[hhtS, ~, fCent] = toimage(A, f, t);% Marginal hilbert spectrum: hhtMS, xf: correspondig frequencyfor k = 1 : size(hhtS, 1)hhtMS(k) = sum(hhtS(k, : )) * 1 / fs;endxf = fCent(1, :) .* fs;简单来说,设置好路径之后输⼊install_emd即可。
hhspectrum 函数说明(8楼:⽼⽼的学⽣)% [A,f,tt] = HHSPECTRUM(imf,t,l,aff)% Input:%- imf : matrix with one IMF per row % 将emd分解得到的IMF代⼊就可以,就是你的程序中写的c变量,不⽤加最后⼀⾏的趋势项%- t : time instants % 瞬时时间或持续时间??(写[1:信号长度]就可以,真实的时间可以根据采样率转换%- l : estimation parameter for instfreq % 瞬时频率的估计参数??(写1就可以,决定瞬时频率估计时的边界从第⼏个点开始%- aff : if 1, displays the computation evolution % 显⽰计算进程选项,不想显⽰写0就可以%% Output:% - A : amplitudes of IMF rows% - f : instantaneous frequencies% - tt : truncated time instants % 截⽌时间??(截断时间,返回的是瞬时频率对应的时间,要⽐原来信号的时间按短,由前⾯的l值决定)%% calls:% - hilbert : computes the analytic signal% - instfreq : computes the instantaneous frequency % 瞬时频率%% Example:[A,f,tt] = hhspectrum(c(1:end-1,:),[1:n],1,0);[im,tt,ff] = toimage(A,f,tt,512);disp_hhs(im,tt,[],fs);9楼:⽼⽼的学⽣关于时频图的概念,我认为是与诸如⼩波,gabor等联合时频分析⽅法联系在⼀起的。
HHT(黄-希尔伯特变换)
![HHT(黄-希尔伯特变换)](https://img.taocdn.com/s3/m/eac66bc65fbfc77da269b12f.png)
希爾伯特黃轉換簡介(Hilbert Huang Transform)高雄海洋大學助理教授謝志敏Chih-Min Hsieh2007/7/12前言在訊號處理與頻譜分析的目的是要描述信號的頻譜含量在時間上變化,以便能在時間和頻譜上同時表示信號的能量或者強度。
time傅立業頻譜並沒有告訴我們哪些頻率在什麼時候出現。
此一方法無法表現出也無法表現資料的時變性黃鍔博士(Norden E. Huang) 簡介1937 年出生于湖北新竹中學畢業1960 年從臺灣大學土木系畢業1962 年進入美國約翰.霍普金斯大學力學系華盛頓大學海洋地理學系研究員北卡羅來納州立大學海洋地理學系副教授1975 年起進入美國太空總署(NASA)加州理工學院(CIT) 客座教授;哈佛醫學院客座研究員美國國家工程學院院士2003 年美國NASA 發明獎2004 中央研究院院士(第二十五屆)希爾伯特-黃轉換(Hilbert Huang Transform)理論簡介Hilbert-Huang (HHT) 轉換方法是黃鍔根據近代知名數學家Hilbert 的數學理論設計,做爲分析非穩定或非線性的訊號Comparisons among the Fourier, marginalHilbert and wavelet spectraFourierHHTwaveletspectraFrequency (Hz)應用範圍哈佛醫學院用HHT 來測量心律不整約翰霍普金斯公共衛生學院用它來測量登革熱的擴散美國聯邦調查局用HHT 來辨識發言者的身分海軍用它來探測潛艇聯邦公路管理局研究中心測量公路、橋梁的安全地震工程、地球物理探測、衛星資料分析潛艇設計、結構損害偵測血壓變化和心律不整潮汐、波浪場等各項研究希爾伯特-黃轉換處理架構流程圖E mpirical M ode D ecomposition, EMD=j1EMD 過程(E mpirical M ode D ecomposition,EMD)簡介11)(h m t X =−IMF1IMF2IMF3IMF n 0123..……k IMF11111h m h =−121211h m h =−131312h m h =−kk k h m h 11)1(1=−−11c h k =11)(r c t X =−)(t X 221h m r =−21212h m h =−222221h m h =−232322h m h =−kk k h m h 22)1(2=−−22c h k =221r c r =−332h m r =−31313h m h =−323231h m h =−333332h m h =−kk k h m h 33)1(3=−−33c h k =nnk c h =112−−−=−n n n r c r n n n h m r =−−111n n n h m h =−221n n n h m h =−332n n n h m h =−nknk k n h m h =−−)1(11)(h m t X =−原始訊號EMD過程EMD過程EMD過程EMD過程EMD過程EMD過程EMD過程EMD過程1.51EMD過程EMD過程EMD過程EMD過程EMD過程EMD過程EMD過程1EMD過程EMD過程EMD過程E mpirical M ode D ecomposition IMF1IMF2IMF3IMF4IMF5IMF6IMF7EMD過程EMD過程希爾伯特頻譜(Hilbert Spectrum)將原訊號藉由內部模態函數分解IMF 分量,藉由希爾伯特轉換而得到希爾伯特頻譜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质模态函数(IMF)
任何一个资料,满足下列两个条件即可称作本质模态函数。
⒈局部极大值(local maxima)以及局部极小值(local minima)的数目之和必须与零交越点(zero crossing)的数目相等或是最多只能差1,也就是说一个极值后面必需马上接一个零交越点。
⒉在任何时间点,局部最大值所定义的上包络线(upper envelope)与局部极小值所定义的下包络线,取平均要接近为零。
因此,一个函数若属于IMF,代表其波形局部对称于零平均值。
此类函数类似于弦波(sinusoid-like),但是这些类似于弦波的部分其周期与振幅可以不是固定。
因为,可以直接使用希尔伯特转换,求得有意义的瞬时频率。
经验模态分解(EMD)
EMD算法流程图
建立IMF是为了满足希尔伯特转换对于瞬时频率的限制条件之前置处理,也是一种转换的过程。
我们将IMF来做希尔伯特转换可以得到较良好的特性,不幸的是大部分的资料并不是IMF,而是由许多弦波所合成的一个组合。
如此一来,希尔伯特转换并不能得到正确的瞬时频率,我们便无法准确的分析资料。
为了解决非
线性(non-linear)与非稳态(non-stationary)资料在分解成IMF时所遇到的困难,便发展出EMD。
经验模态分解是将讯号分解成IMF的组合。
经验模态分解是借着不断重复的筛选程序来逐步找出IMF。
以讯号为例,筛选程序的流程概述如下:
步骤 1 : 找出中的所有局部极大值以及局部极小值,接着利用三次样条
(cubic spline),分别将局部极大值串连成上包络线与局部极小值串连成下包络线。
步骤 2 : 求出上下包络线之平均,得到均值包络线。
步骤 3 : 原始信号与均值包络线相减,得到第一个分量。
步骤 4 : 检查是否符合IMF的条件。
如果不符合,则回到步骤1并且将
当作原始讯号,进行第二次的筛选。
亦即
重复筛选次
直到符合IMF的条件,即得到第一个IMF分量,亦即
步骤 5 : 原始讯号减去可得到剩余量,表示如下式
步骤 6 : 将当作新的资料,重新执行步骤1至步骤5,得到新的剩余量。
如此重复次
.
.
.
当第个剩余量已成为单调函数(monotonic function),将无法再分解IMF 时,整个EMD的分解过程完成。
原始讯号可以表示成个IMF分量与一个平均趋势(mean trend)分量的组合,亦即
如此一来,原始资料便分解成n个IMF和一个趋势函数,我们便可将IMF做希尔伯特转换来进行瞬时频率的分析。
结论
傅立叶变换是将一个讯号分解成无限多个弦波来分析资料,但是希尔伯特-黄转换则是将一个讯号分解成数个近似于弦波的讯号(周期、振幅不固定)和一个趋势函数来做分析。
两者各有其优缺点,整理如下
优点:
1.避免复杂的数学运算
2.可分析频率会随时间变化的讯号
3.较适于分析气候、经济等具有趋势的资料
4.可以找出一个函数的趋势
缺点:
1.缺乏严谨的物理意义
2.需要复杂的递回,运算时间反而比短时距傅立叶变换要长
3.希尔伯特转换未必能正确计算出本质模态函数之瞬时频率
4.无法使用快速傅立叶变换
5.只有在特例(组合较简单的资料)时使用希尔伯特-黄转换较快
2.Matlab代码
/matlabcentral/fileexchange/19681
2.1 EMD分解代码(emd.m)
function imf = emd(x)
% Empiricial Mode Decomposition (Hilbert-Huang Transform) % imf = emd(x)
% Func : findpeaks
x = transpose(x(:));
imf = [];
while ~ismonotonic(x)
x1 = x;
sd = Inf;
while (sd > 0.1) | ~isimf(x1)
s1 = getspline(x1);
s2 = -getspline(-x1);
x2 = x1-(s1+s2)/2;
sd = sum((x1-x2).^2)/sum(x1.^2);
x1 = x2;
end
imf{end+1} = x1;
x = x-x1;
end
imf{end+1} = x;
% FUNCTIONS
function u = ismonotonic(x)
u1 = length(findpeaks(x))*length(findpeaks(-x));
if u1 > 0, u = 0;
else, u = 1; end
function u = isimf(x)
N = length(x);
u1 = sum(x(1:N-1).*x(2:N) < 0);
u2 = length(findpeaks(x))+length(findpeaks(-x));
if abs(u1-u2) > 1, u = 0;
else, u = 1; end
function s = getspline(x)
N = length(x);
p = findpeaks(x);
s = spline([0 p N+1],[0 x(p) 0],1:N);
2.2 找极值代码(findpeaks.m)
function n = findpeaks(x)
% Find peaks.
% n = findpeaks(x)
n = find(diff(diff(x) > 0) < 0);
u = find(x(n+1) > x(n));
n(u) = n(u)+1;
2.3 绘制时-频曲线以及尺度分解代码(plot_hht.m)
function plot_hht(x,Ts)
% Plot the HHT.
% plot_hht(x,Ts)
% Ts :time interval (sec)
% :: Syntax
% The array x is the input signal and Ts is the sampling period.
% Func : emd
% Get HHT.
imf = emd(x);
for k = 1:length(imf)
b(k) = sum(imf{k}.*imf{k});
th = angle(hilbert(imf{k}));
d{k} = diff(th)/Ts/(2*pi);
end
[u,v] = sort(-b);
b = 1-b/max(b);
% Set time-frequency plots.
N = length(x);
c = linspace(0,(N-2)*Ts,N-1);
for k = v(1:2)
figure, plot(c,d{k},'k.','Color',b([k k k]),'MarkerSize',3); set(gca,'FontSize',8,'XLim',[0 c(end)],'YLim',[0 1/2/Ts]); xlabel('Time'), ylabel('Frequency');
end
% Set IMF plots.
M = length(imf);
N = length(x);
c = linspace(0,(N-1)*Ts,N);
for k1 = 0:4:M-1
figure
for k2 = 1:min(4,M-k1), subplot(4,1,k2), plot(c,imf{k1+k2}); set(gca,'FontSize',8,'XLim',[0 c(end)]); end
xlabel('Time');
end。