二次函数基础练习题大全(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数基础练习题

练习一 二次函数

1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t 时间t (秒)

1 2 3 4 … 距离s (米) 2 8 18 32 …

写出用t 表示s 的函数关系式:

2、 下列函数:① 23y x =② ()21y x x x =-+;③ ()224y x x x =+-;④ 2

1y x x =+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c =

3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数

4、当____m =时,函数()2221m

m y m m x --=+是关于x 的二次函数 5、当____m =时,函数()256

4m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.

7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )

A 、一次函数关系

B 、正比例函数关系

C 、反比例函数关系

D 、二次函数关系

8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.

(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;

(2)当小正方形边长为3cm 时,求盒子的表面积.

9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,

那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式.

② 求当边长增加多少时,面积增加 8cm 2.

10、已知二次函数),0(2

≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,

求该函数解析式.

11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造

猪舍三间,如图,它们的平面图是一排大小相等的长方形.

(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样

的函数关系?

(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安

排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有

影响?怎样影响?

练习二 函数2ax y =的图像与性质

1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;

(2)抛物线22

1x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增

大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 .

3、抛物线 y =-x 2 不具有的性质是( )

A 、开口向下

B 、对称轴是 y 轴

C 、与 y 轴不相交

D 、最高点是原点

4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12

gt 2(g =9.8),则 s 与 t 的函数图像大致是( )

A B C D

5、函数2

ax y =与b ax y +-=的图像可能是( ) A . B .

C .

D . 6、已知函数24m m y mx

--=的图像是开口向下的抛物线,求m 的值. 7、二次函数12-=m

mx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值. 8、二次函数22

3x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:

(1) 满足条件的m 的值;

(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;

(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?

10、如果抛物线2

y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.

s t

O s t O

s t O s

t O

1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.

2、将抛物线23

1x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 . 3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下

判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .

4、将抛物线122

-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .

5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;

6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .

练习四 函数()2

h x a y -=的图象与性质 1、抛物线()232

1--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 . 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.

(1)右移2个单位;(2)左移

32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).

4、二次函数()2h x a y -=的图象如图:已知2

1=a ,OA=OC ,试求该抛物线的解析式.

5、抛物线2

)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.

6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.

7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.

相关文档
最新文档