光谱仪的使用方法解析

合集下载

光谱分析仪安全操作规程(2篇)

光谱分析仪安全操作规程(2篇)

光谱分析仪安全操作规程光谱分析仪是一种常用的仪器设备,在科研、生产和实验场合都经常使用。

为了确保使用过程中的安全和有效性,制定一套安全操作规程非常重要。

以下是光谱分析仪的安全操作规程,用于指导用户正确使用光谱分析仪,防止操作错误导致的事故和损害。

一、操作前的准备1. 在使用光谱分析仪前,要先熟悉相关的操作手册和说明书,了解仪器的使用方法和功能。

2. 在操作之前,必须正确连接仪器的电源,并确保电源的稳定和可靠。

3. 预热和调零:根据仪器的要求,进行必要的预热和调零步骤,确保仪器正常工作。

二、操作时的注意事项1. 仪器有关操作时必须有专人操作,不得擅自更改设备参数或设置。

2. 操作者需要佩戴防护眼镜和手套,以防止溅射物或意外事故对视觉和手部造成伤害。

3. 仪器上部的离子容器和样品盛放处,不得随意开启或取下,以防止电离辐射和化学液体泄漏。

4. 使用过程中,操作者不得将手部或其他物体靠近分析装置的光源,以免对眼睛和皮肤造成伤害。

5. 必要时,可以将光谱分析仪的工作区域设置为限制进入的区域,以防止未经授权的人员靠近或干扰。

6. 操作者不得私自变动或调整仪器的电压、电流等参数,以避免发生电击或其他安全事故。

三、操作后的注意事项1. 操作结束后,要关闭光谱分析仪的电源,并拔掉电源插头。

2. 清洁操作台面和仪器表面的残留物,保持干净整洁。

3. 将仪器恢复到初始状态,整理并妥善保存仪器的部件和附件。

4. 定期维护和检修仪器,根据仪器的使用寿命和技术要求进行相应的保养和维修。

5. 如发现仪器出现故障或异常情况,应及时停止使用,并通知相关的技术人员进行维修。

四、应急处理1. 如果发生仪器故障、泄漏或其他危险情况,应立即停止使用,并采取相应的应急措施,如通风、隔离、紧急关机等。

2. 在应急处理过程中要冷静应对,迅速采取措施确保自身安全,并尽可能避免进一步损失和伤害。

3. 及时向仪器厂家或相关安全部门报告事故情况,并按照其指示进行后续处理。

傅里叶红外光谱操作说明

傅里叶红外光谱操作说明

傅里叶红外光谱操作说明傅里叶红外光谱(Fourier Transform Infrared Spectroscopy,简称 FTIR)是一种广泛应用于化学、材料科学、生物学等领域的非破坏性分析技术。

它基于样品对红外光的吸收特性,通过测量不同波数下样品所吸收的红外辐射能量,来确定样品的化学成分和结构。

下面是傅里叶红外光谱的操作说明,包括样品准备、仪器调节和实验数据处理等方面的内容。

一、样品准备1.确定所需测试的样品类型,如固体、液体、气体等,并准备相应的样品。

2.对于固体样品,通常需要将其制备成均匀的薄膜或粉末样品,并将其放置在透明的红外透射窗口上。

确保样品的均匀性和透明性。

3.对于液体样品,取适量样品倒入红外吸收池。

注意避免空气中的水分对样品的影响。

4.对于气体样品,将气体引入光谱仪,需要使用特定的采样装置和气体密封系统。

二、仪器调节1.打开傅里叶红外光谱仪,并进行预热,通常需要预热20-30分钟。

2.调节光谱仪的偏振器以确保样品能够吸收穿过样品的平行或垂直入射的光。

3.校正仪器的基线,确保仪器的零点和灵敏度能够准确显示。

4.调节光谱仪的干涉仪以获得所需的光谱范围和分辨率。

5.根据样品的特性和预期的光谱范围,选择适当的光源和检测器。

三、实验操作1.将样品放入光谱仪的样品池中,并将其固定在适当的位置。

2.设置所需的光谱参数,例如扫描范围、信号平均次数和扫描速度等。

3.点击仪器软件上的"开始"按钮,开始数据采集。

4.采集完整的红外光谱数据。

通常每个波数点需要进行多次光谱扫描并取平均值,以提高数据的准确性。

5.完成数据采集后,保存数据并进行后续分析。

四、数据处理1.使用专业的光谱分析软件打开采集到的数据文件。

2.对数据进行基线校正,去除仪器背景所导致的扰动。

3.进行光谱峰的识别和解析。

与标准光谱数据库进行比对,确定样品的成分和结构。

4.如果需要,可以对数据进行定量分析,例如计算样品中其中一种成分的相对含量。

傅里叶变换红外光谱操作使用说明书解析

傅里叶变换红外光谱操作使用说明书解析

Nicolet 670 FTIR傅里叶变换红外光谱操作使用说明书注意事项:1.保持测试环境的干燥和清洁。

2.不可在计算机上进行与实验无关的操作。

3.拷贝数据请使用新软盘。

4.认真填写实验记录、红外光谱基本原理红外光谱(Infrared Spectrometry IR)又称为振动转动光谱,是一种分子吸收光谱。

当分子受到红外光的辐射,产生振动能级(同时伴随转动能级)的跃迁,在振动(转动) 时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱。

用红外光谱法可进行物质的定性和定量分析(以定性分析为主),从分子的特征吸收可以鉴定化合物的分子结构。

傅里叶变换红外光谱仪(简称FTIR)和其它类型红外光谱仪一样,都是用来获得物质的红外吸收光谱,但测定原理有所不同。

在色散型红外光谱仪中,光源发出的光先照射试样,而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得吸收光谱。

但在傅里叶变换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品,经检测器获得干涉图,由计算机把干涉图进行傅里叶变换而得到吸收光谱。

红外光谱根据不同的波数范围分为近红外区( 13330-4000 cm-)、中红外区(4000-650 cm-)和远红外区(650-10 cm-)。

Nicolet 670 FTIR光谱仪提供中红外区的分测试。

、试样的制备1.对试样的要求(1)试样应是单一组分的纯物质;(2)试样中不应含有游离水;(3)试样的浓度或测试厚度应合适。

2 •制样方法(1)气态试样使用气体池,先将池内空气抽走,然后吸入待测气体试样。

(2)液体试样常用的方法有液膜法和液体池法。

液膜法:沸点较高的试样,可直接滴在两片KBr盐片之间形成液膜进行测试。

取两片KBr盐片,用丙酮棉花清洗其表面并晾干。

在一盐片上滴1滴试样,另一盐片压于其上,装入到可拆式液体样品测试架中进行测定。

扫描完毕,取出盐片,用丙酮棉花清洁干净后,放回保干器内保存。

光谱仪的使用方法解析

光谱仪的使用方法解析

光谱仪的使用方法解析光谱仪是一种常用的光学仪器,用于分析物质的光谱特性。

它能够将可见光或其他电磁波的不同波长分离开来,并将其转化为可观察的光谱图。

在这篇文章中,我们将详细解析光谱仪的使用方法,包括准备工作、操作步骤和数据分析。

1.准备工作:a.确保光谱仪和相关设备都处于正常工作状态,例如光源、检测器等。

b.检查光谱仪的校准情况,确保其能够准确测量不同波长的光。

2.设置光源:a.选择合适的光源,如白炽灯、氘灯或钨灯等。

b.将光源放置在光路上的适当位置,并确保其正确连接到光谱仪。

3.调整光路:a.确保光路通畅,没有任何干扰物,如灰尘或污渍。

b.根据光源的特性和实验需求,调整光路,如使用凹面反射镜或透镜来聚焦或分散光线。

4.选择适当的光谱范围:a.确定所需分析的光谱范围,如可见光、红外光等。

b.根据光谱范围选择合适的光栅或棱镜,并安装在光谱仪上。

5.设置和调整光谱仪参数:a.打开光谱仪的软件或控制面板,并将仪器设置为所需的工作模式。

b.调整光谱仪的参数,如曝光时间、增益、光谱分辨率等,以满足实验要求。

6.进行测量:a.将样品或待测物放置在光谱仪的光路上,并确保样品与光路成直角。

b.观察光谱仪的指示器或软件界面,确认信号的稳定后,开始记录光谱数据。

7.数据分析:a. 将光谱数据导入分析软件,如Excel、Origin等,进行数据处理和图表绘制。

b.分析光谱特征,如峰值、波长位置、光强等,并与已知的光谱进行比较和识别。

8.实验控制和重复测量:a.对光谱仪进行空白测试,以消除不同元件造成的背景信号。

b.根据实验需求,控制光源强度、样品浓度等参数进行重复测量,以提高数据的可靠性和准确性。

总结:。

傅里叶变换红外光谱仪解析

傅里叶变换红外光谱仪解析

傅里叶变换红外光谱仪解析仪器分析综述系别:生物科学与技术系班级:09食品2 姓名:欧阳凡学号:091304251傅里叶变换红外光谱仪前言随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器--傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR ,简称为傅里叶红外光谱仪。

它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。

可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。

正文傅里叶变换红外光谱仪分光光度计由光学检测系统、计算机书籍处理系统、计算机接口、电子线路系统组成。

光源发出的光被分束器(类似半透半反镜)分为两束,一束经反射到达动镜,另一束经透射到达定镜。

两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。

干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。

光学检测系统由迈克逊干涉仪、光源、检测器组成、迈克逊干涉仪内有两个相垂直的平面反射镜M1、M2和一个与两镜成45度角的分束器,M1可沿镜轴方向前后移动。

自光源发出的红外光经准直镜M3反射后变为平行光束,照在分束器上后变成两束光。

其中一束被反射到可动镜头M1后又被M1反射回分束器,并在分束器上再次分城反射光和透射光,透射光部分照在举聚光镜M4上,然后到到达探测器,另一束光透过分束器,射在固定镜M2上,并被M2反射回分束器,在分束器上再次发生反射和透射,反射部分照在聚光镜M4上,最后也到达探测器。

地物光谱仪在野外光谱测量中的使用解析

地物光谱仪在野外光谱测量中的使用解析

地物光谱仪在野外光谱测量中的使用(一)论文关键词地物光谱仪;野外测量;工作规范论文摘要在遥感技术中,为了更精确地判读多光谱图像,掌握地面上各种地物的光谱辐射特性是十分重要的。

介绍FieldSpec?悖HandHeld手持便携式光谱分析仪的测量原理方法、工作规范及注意事项,概要地说明了影响光谱测量的因素。

在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。

对野外地物光谱进行测量,我们使用的是美国 ASD公司FieldSpec?悖HandHeld手持便携式光谱分析仪。

其主要技术指标为:波长范围为 300~1100nm光谱采样间隔为1.6nm, 灵敏度线性:土1% FieldSpec?悖HandHeld手持便携式光谱分析仪可用于户外目标可见一近红外波段的光谱辐射测量。

该光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度;利用漫反射参考板对比测量,可获得目标的反射率光谱信息;通过对经过标定的漫反射参考板的测量,可获得地面的总照度以及直射、漫射照度光谱信息;利用特定的辅助测量机械装置,可获得地面目标的BRDF(方向反射因子)光谱信息参数。

为了使地物光谱数据可靠和高的质量,使数据便于对比和应用,有必要提出地物光谱测试规范和测量要求。

1仪器的标准和标定1.1光谱分辨率实用分辨宽度对0.04~1.10卩m小于5nm 1.1~2.5卩m小于15nm。

对于FieldSpec?悖HandHeld手持便携式光谱分析仪,起始波长为325nm终止波长为1075nm波长步长为1nm则光谱分辨率取3nm1.2线性标定线性动态范围有3个量级,最大信号对应为0.8~1.0,太阳常数照明的白板(V 90%)峰值响应输出。

线性误差小于 3%(回归误差)。

1.3光谱响应度的标定反射率小于、等于15%(大于1%)的目标,信噪比应大于10。

紫外可见光谱仪的使用方法

紫外可见光谱仪的使用方法

紫外可见光谱仪的使用方法紫外可见光谱仪是一种广泛应用于化学、生物、药学等领域的分析仪器,它能够通过测量样品对紫外和可见光的吸收或反射来获取样品的信息。

在实验室中,正确使用紫外可见光谱仪对于获得准确的实验数据至关重要。

本文将介绍紫外可见光谱仪的使用方法,帮助您正确、高效地操作这一仪器。

首先,使用紫外可见光谱仪前,需要对仪器进行预热。

通常情况下,预热时间为15-30分钟,具体时间取决于仪器型号和规格。

预热的目的是使仪器内部各部件温度均匀,确保测试结果的准确性。

接下来,准备样品。

将待测样品溶解或悬浮于适当的溶剂中,然后将样品倒入样品池中。

在操作过程中,要尽量避免样品与外界光线接触,以免影响测试结果。

调整仪器参数。

根据待测样品的特性,选择合适的波长范围和检测模式。

一般来说,紫外可见光谱仪的波长范围为190-1100纳米,可以根据需要选择紫外光区或可见光区进行测试。

在选择波长范围后,还需要设置光谱扫描速度、积分时间等参数,以确保测试结果的准确性。

进行测试。

将样品池放入仪器中,启动测试程序。

在测试过程中,要注意观察仪器显示屏上的光谱曲线,确保测试过程正常进行。

同时,还要注意记录测试过程中的各项参数,以备后续分析和比对。

测试结束后,及时清洁仪器。

将样品池和其他使用过的部件进行清洗,确保下次使用时不会受到污染。

此外,还需要关闭仪器电源,做好仪器的保养工作,以延长仪器的使用寿命。

总结,正确使用紫外可见光谱仪对于获得准确的实验数据至关重要。

在使用过程中,需要注意仪器的预热、样品的准备、参数的调整、测试的进行以及仪器的清洁和保养。

只有严格按照操作规程进行操作,才能确保测试结果的准确性和可靠性。

希望本文能够对您正确使用紫外可见光谱仪有所帮助。

红外光谱仪的操作方法和光谱解析技巧

红外光谱仪的操作方法和光谱解析技巧

红外光谱仪的操作方法和光谱解析技巧红外光谱仪作为一种常用的分析仪器,广泛应用于化学、生物、材料等领域的研究与实验中。

它通过检测物质分子吸收红外辐射的特征波长,可以获得物质的结构、组成以及化学键的类型等信息。

本文将介绍红外光谱仪的操作方法和光谱解析技巧,帮助读者更好地理解和应用这一重要的分析技术。

一、红外光谱仪的操作方法1. 样品制备在进行红外光谱测试前,首先需要将待测样品制备成适合于测试的形式。

常见的方法包括将样品制成固体片、涂在红外透明晶体上、溶解在透明溶剂中等。

制备好的样品应注意避免杂质污染和其他外界因素的干扰。

2. 仪器准备在使用红外光谱仪前,需要对仪器进行一系列的准备工作。

这包括检查光谱仪的光源、光学器件、检测器等部件是否正常,是否需要进行校准和调试。

此外,仪器所需的气体、溶剂和试剂也需要提前准备好,以确保测试的顺利进行。

3. 基线扫描在进行具体的样品测试前,需要进行基线扫描。

基线扫描是指在没有样品的情况下,检测仪器的背景信号并进行调整。

通过基线扫描可以消除仪器本身的漂移和背景噪声,确保后续测试的准确性和可靠性。

4. 样品测试样品测试是红外光谱仪的核心步骤。

在进行测试前,需要将待测样品放置在仪器的透明样品室中,并确保样品与光路的光线垂直相交。

然后,启动仪器进行光谱扫描。

在扫描过程中,可以选择适当的扫描速度和光谱范围,以满足实验的需求。

完成测试后,应将样品从样品室中取出,并妥善保存或处理。

5. 数据处理在测试结束后,需要对获得的红外光谱数据进行处理和分析。

常见的数据处理方法包括光谱峰位计算、光谱峰面积计算、光谱峰强度比较等。

这些分析方法可以帮助我们进一步了解样品的结构与组成信息,并提取关键的光谱特征。

二、光谱解析技巧1. 动态范围选择光谱的动态范围是指仪器可以测量的最大和最小吸光度差值。

在进行光谱测量时,应根据样品的吸光度水平选择合适的动态范围。

若动态范围过大,可能导致样品信号过饱和;而动态范围过小,则可能无法准确测量低吸光度物质的信号。

如何进行红外光谱解析

如何进行红外光谱解析

如何进行红外光谱解析红外光谱解析是一种广泛应用于化学、生物、材料科学等领域的测试技术,通过分析物质在红外光波段的吸收和散射特性,可以获得物质的结构信息、成分组成以及其他相关性质。

本文将介绍红外光谱解析的基本原理、实验操作步骤以及数据分析方法,帮助读者了解如何进行红外光谱解析。

一、基本原理红外光谱解析的基本原理是物质分子在吸收红外光时,会发生振动和转动,并发生状态之间的转变。

这些振动和转动产生的谐振频率,与分子内部的键长、键角等结构参数有关,因此可以通过测量红外光谱图谱来了解物质的结构特征。

二、实验操作步骤1. 仪器准备:将红外光谱仪连接电源并打开。

根据待测物的性质,选择适当的样品盒(液态或固态)和检测模式(透射或反射)。

2. 样品处理:对于液态样品,取少量样品加入透射池中,移除气泡并将其密封;对于固态样品,将样品压制成片或粉碎并放置在反射盒中。

3. 启动仪器:根据仪器操作手册,进行光谱仪的启动和样品检测参数的设置。

4. 开始检测:点击仪器软件上的“开始”按钮,红外光谱仪开始发送红外光,并通过探测器接收返回的信号。

5. 数据采集:红外光谱仪会将接收到的信号转化为电信号,并通过数据采集软件记录下来。

采集过程通常需要数秒至数分钟。

6. 数据处理:获取红外光谱图谱后,使用特定的数据处理软件进行谱图展示和数据分析。

三、数据分析方法1. 谱图展示:使用数据处理软件将红外光谱图谱进行展示,在横轴上表示波数,纵轴表示吸收强度。

确保谱图的分辨率和信噪比足够高,以保证后续的数据分析准确性。

2. 峰值鉴定:根据谱图上的吸收峰,确定物质的各种官能团或键的存在。

通过比对已知物质的红外光谱数据库,寻找吸收峰的对应官能团或键。

3. 定量分析:利用谱图上的吸收峰的强度,可以进行物质的定量分析。

通过校正曲线或比色法等方法,计算物质的浓度或含量。

4. 结构确定:根据红外吸收峰的波数和强度,可以获得物质的结构信息。

通过对比不同官能团或键的红外吸收谱图,推测和确认物质的结构特征。

傅里叶变换红外光谱仪的操作流程

傅里叶变换红外光谱仪的操作流程

傅里叶变换红外光谱仪的操作流程傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR)是一种高精度的仪器,广泛应用于化学、材料科学、生物学等领域。

本文将介绍傅里叶变换红外光谱仪的详细操作流程,包括样品准备、仪器调试和数据处理等内容。

一、样品准备1. 样品选择:根据实验目的和要测定的物质类型选择合适的样品。

确保样品表面干净、平整,无粉尘、氧化物或其他杂质。

2. 样品制备:对于固体样品,可以将其研磨成细粉末或压制成片。

对于液体样品,应在无水环境下准备。

确保样品的浓度适中,以避免信号过强或过弱。

二、仪器调试1. 仪器开机:按照仪器说明书的要求,正确开启傅里叶变换红外光谱仪。

2. 仪器校准:进行仪器的校准操作,以确保仪器系统的准确性。

校准包括光源和检测器的校准,以及仪器零点和基线的校准。

3. 系统延迟时间测定:根据仪器要求进行系统延迟时间测定,以确定信号的起点和终点位置。

4. 谱图采集参数设置:根据样品的性质和实验需求,设置光谱仪的参数,包括扫描范围、扫描速度、采样点数等。

5. 程序选择:从傅里叶变换红外光谱仪的程序库中选择适当的实验程序,以获取所需的光谱信息。

三、样品测量1. 样品安装:将样品台放置在样品槽中,调整样品位置使其与红外光线垂直。

确保样品与红外光线之间没有干扰物。

2. 标样测量:先测量适当的标准样品,以校正仪器,并确保仪器正常工作。

3. 样品测量:将待测样品放置在样品台上,保持样品的稳定。

开始测量前,确保光谱仪已经稳定,信噪比符合要求。

4. 多次测量:根据需要,可以多次测量同一样品,以提高数据的可靠性和重复性。

四、数据处理与分析1. 光谱原始数据导出:将测得的原始数据导出到计算机中,保存为适当的格式,如txt或csv文件。

2. 背景扣除与基线校正:对原始数据进行背景扣除和基线校正操作,以消除仪器本底和噪音的影响。

3. 傅里叶变换:应用傅里叶变换算法,将时域信号转换为频域信号,并得到光谱图像。

红外光谱解析方法

红外光谱解析方法

红外光谱解析方法红外光谱解析方法是一种常用的分析化学方法,可以用于对化合物的结构进行研究和鉴定。

红外光谱解析方法主要利用化合物在红外光的作用下,不同官能团的振动与转动引起红外光吸收的特性来分析化合物的结构。

本文将介绍一些常用的红外光谱解析方法,并给出一些结构分析实例。

首先,红外光谱解析方法通常是通过红外光谱仪测量化合物在特定波数范围内的光谱图像,然后根据不同官能团的振动频率和光谱峰的位置、强度等特征来进行结构分析。

以下是一些常用的红外光谱解析方法:1. 官能团峰位置分析法:不同官能团具有不同的红外光谱吸收特点,可以通过观察红外光谱图中各个官能团的吸收峰的位置来判断化合物中存在的官能团。

例如,羧酸官能团的C=O振动通常在1700-1725 cm^-1之间,酮和酰胺官能团的C=O振动通常在1650-1750 cm^-1之间。

2.官能团峰强度分析法:通过观察红外光谱图中各个官能团的吸收峰的强度可以推测化合物中该官能团的相对含量。

例如,苯环的C-H伸缩振动通常表现为较强的峰,而取代基的C-H伸缩振动通常较弱。

3.官能团复合分析法:化合物通常由多个官能团组成,各个官能团的振动频率和位置可以相互影响。

通过综合分析化合物中多个官能团的吸收峰的位置、强度等特征,可以进一步确定化合物的结构。

例如,当化合物同时含有羟基和羧基时,其红外光谱图中会出现OH和CO的吸收峰,它们的相对位置和强度可以提供更多的结构信息。

下面给出一个红外光谱解析的实例:假设有一个未知化合物,它的分子式为C5H10O,并测得其红外光谱图如下:(图略)根据红外光谱图,我们可以进行如下的结构分析:从红外光谱图中我们可以观察到两个很强的特征峰,一个位于2750-2850 cm^-1之间,一个位于1725-1740 cm^-1之间。

根据我们的经验,2750-2850 cm^-1之间的峰通常是C-H的伸缩振动,而1725-1740 cm^-1之间的峰通常是C=O的伸缩振动。

解析赛默飞原子吸收光谱仪的使用方法原理

解析赛默飞原子吸收光谱仪的使用方法原理

解析赛默飞原子吸收光谱仪的使用方法原理赛默飞原子吸收光谱仪是基于从光源发射的待测元素的特征辐射通过样品蒸气时,被蒸气中待测元素的基态原子所吸收,根据辐射强度的减弱程度以求得样品中待测元素的含量。

通常情况下,原子处于基态。

当相当于原子中的电子由基态跃迁到激发态所需要的辐射频率通过原子蒸气,原子就能从入射辐射中吸收能量,产生共振吸收,从而产生吸收光谱。

原子吸收分析就是利用基态原子对特征辐射的吸收程度的,常使用Z强吸收线作为分析线。

赛默飞原子吸收光谱仪的方法原理:原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。

当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。

基态原子吸收了能量,外层的电子产生跃迁,从低能态跃迁到激发态。

原子吸收光谱根据郎伯-比尔定律来确定样品中化合物的含量。

已知所需样品元素的吸收光谱和摩尔吸光度,以及每种元素都将优先吸收特定波长的光,因为每种元素需要消耗一定的能量使其从基态变成激发态。

检测过程中,基态原子吸收特征辐射,通过测定基态原子对特征辐射的吸收程度,从而测量待测元素含量。

原子吸收光谱仪的性能特点:1、四灯位、六灯位、八灯位可选,自动三维切换、能量平衡、多灯位同时预热节约等待时间,具有氘灯扣背景与自吸扣背景功能。

2、独特的火焰原子化器与石墨炉原子化器一体化设计,实现自动切换与手动切换双模式。

3、仪器设置条件自动优化记忆功能、一键完成扫描寻峰、能量平衡。

4、数据报告多格式保存及打印输出,方便数据查询及对比。

5、仪器软件采用单界面多功能视窗设计,让操作更简单、实时监测数据变化、支持主流Windows操作系统、支持远程操控及校准、中/英版本可选、具有全面质量控制(QC)功能。

6、先进可靠的多重安全保护系统,自动检测、报警、如压力不足、漏气、熄火等异常情况。

7、国内先进的石墨炉GFTV可视系统,CCD摄像头对石墨炉原子化器实时监控,延长石墨管使用寿命。

牛津仪器 Lab-X3500 能量色散 X 射线荧光光谱仪 使用手册说明书

牛津仪器 Lab-X3500 能量色散 X 射线荧光光谱仪 使用手册说明书

X射线荧光光谱仪X射线硫含量试验仪Lab-X3500SClGB/T 17040ASTM D4294、D6445、D6481X 射线荧光 (XRF) 仪器的工作原理是将样品通过X荧光射线进行激发,样品吸收 X 射线能量,进入激发状态,然后发射出二次 X 射线。

每个化学元素发射出的 X 射线都有其特有的能量。

通过测量由此发射的 X 射线强度和特征能量,一台 X 射线荧光光谱仪 (XRF) 能够对被测材料的物质成分进行定性和定量分析。

牛津仪器 (Oxford Instruments) 所提供的全套产品系列包括手持式和台式 X 射线荧光光谱仪。

X-MET 型手持式 X 射线荧光光谱仪专为材料可靠性鉴定、合金分析和鉴定及有害物质分析(RoHS 指令)而设计。

这些光谱仪也可用于分析污染土地和矿物中含有的重金属。

X-Supreme8000、Lab-X 和 MDX1000 XRF 实验室分析仪可供各种常规化学分析,应用范围广泛。

从成品油中的硫到石灰岩分析均可使用,我们可根据客户的需求提供最优化的解决方案。

利用 XRF 技术分析样品具有很多优势,例如:只需少量或无需样品制备,快速无损分析,操作简单,可由生产人员操作,不会产生有害的化学物质,浓度范围从 ppm 到 % ,元素分析范围由元素周期表中的钠到铀。

分析的样品种类有:固体、液体、粉末、糊状物、油脂、薄膜等。

Lab-X3500:移动式和实验室型的能量色散型 X 射线荧光光谱仪MDX1000:结合波长色散和能量色散技术的 X 射线荧光光谱仪,配有可选的 72 位自动样品器 X-Supreme8000:带有多样品杯操作台的实验式型 X 射线荧光光谱仪Lab-X3500(X射线荧光光谱仪)2000年8月,在Lab-X3000取得巨大成功的基础上,牛津仪器公司推出最新型的台式能量色散X射线荧光光谱仪Lab-X3500。

它把牛津仪器多年来设计生产X射线荧光光谱仪的经验和最新的硬件、软件技术的进展结合起来,是一种独特的、高性能的多元素台式X射线荧光光谱仪。

英国拉曼光谱仪操作方法步骤-概述说明以及解释

英国拉曼光谱仪操作方法步骤-概述说明以及解释

英国拉曼光谱仪操作方法步骤-概述说明以及解释1.引言1.1 概述英国拉曼光谱仪是一种用于分析物质样品的科学仪器。

它基于拉曼散射原理,通过照射物质样品并检测样品散射光子的频率变化,从而可以获取有关样品分子的结构、成分以及态信息。

随着技术的不断发展,英国拉曼光谱仪在材料科学、化学、生物学等领域的应用日益广泛。

本文将详细介绍英国拉曼光谱仪的操作方法步骤,以帮助读者更好地理解和掌握该仪器的使用技巧。

通过本文的指导,读者将能够迅速上手操作英国拉曼光谱仪,并且在实际应用中取得准确、可靠的数据结果。

接下来的章节将分别介绍英国拉曼光谱仪的基本原理、仪器结构和主要组成部分,以及详细的操作步骤。

在操作方法步骤部分,我们将逐步引导读者从样品准备、仪器调试到数据采集和分析的整个过程,确保读者能够顺利完成实验并获得可靠的结果。

希望通过本文的阅读能够使读者对英国拉曼光谱仪有一个全面的了解,掌握其操作方法并能够灵活应用于实际研究中。

同时,希望读者能够进一步挖掘和拓展该仪器在不同领域的应用潜力,为科研工作和学术研究做出更大的贡献。

1.2 文章结构文章结构部分的内容可以包括以下信息:文章结构主要分为引言、正文和结论三个部分。

引言部分主要概述了文章的背景和目的,通过简要介绍拉曼光谱仪操作方法步骤的意义,引起读者的兴趣。

同时,文章结构部分也要说明本文的篇幅和组织方式,以帮助读者更好地理解和阅读全文。

正文部分是本文的重点,主要包括了拉曼光谱仪简介和操作方法步骤两个部分。

首先,通过介绍拉曼光谱仪的原理、构造和应用领域等方面的内容,读者能够了解拉曼光谱仪的基本知识,为后续的操作方法步骤做好准备。

其次,通过详细列举每个步骤的操作方法和注意事项,指导读者如何正确使用拉曼光谱仪,确保实验结果的准确性和可靠性。

结论部分主要对文章的内容进行总结,回顾了拉曼光谱仪操作方法步骤的重要性和实际应用意义。

同时,还可以展望拉曼光谱仪操作方法步骤的未来发展方向,为读者提供一些思考和探索的空间。

傅里叶变换红外光谱仪操作步骤解析

傅里叶变换红外光谱仪操作步骤解析

傅里叶变换红外光谱仪操作步骤
1.顺序打开计算机和红外光谱仪主机电源。

2.双击OMINC图标——进入工作界面。

3.点“采集”下拉菜单中的“实验设置”,检查“Y轴格式”应为Absorbance,
“背景光谱管理”应为:已选采集样品前采集背景,其它参数为默认。

4.点“光学台”——Max 为8左右,表示仪器稳定。

点“确定”。

5.点左起第3个图标“采集样品(s)”——点“确定”,先采背景,等待扫描完
成,看左下角五个菱形图标全黑,出现对话框“准备样品采集”,快速将样品插入样品架,关好窗门,点“确定”,开始样品采集。

出现对话框,输入谱图标题,点“确定”,采集完成点“是”。

6.出现红外吸收光谱图——点“自动基线校正”图标——点“数据处理”下拉
菜单中的“%透过率”——将原吸收曲线点红,按Ctrl + Delete键,删除原图。

7.点“标峰”图标——点谱图右上角“替代”——点“满刻度显示”图标。


要增加峰波数标注,点左下工具栏T键,光标移至要标注的峰处,按住鼠标左键选取合适位置,标注完后,点工具栏箭头状图标。

8.点“谱图分析”——“检索设置”,选“HR Aldrich FT-IR Collection Edition I”
——点“加入”——点“确定”。

回到样品红外图谱,点“检索”图标,出现检索结果。

9.实验结束时,先关闭工作界面,再顺序关闭红外光谱仪主机和计算机电源。

红外光谱仪的使用

红外光谱仪的使用

红外吸收光谱的使用一、实验目的(1) 了解红外光谱仪的基本结构和工作原理;(2) 学习红外光谱仪的样品制备方法;(3) 学习红外光谱仪的操作;(4) 掌握红外光谱的分析二、红外吸收光谱仪的基本结构和工作原理2.1 分子振动振动光谱是指物质因受光的作用,引起分子或原子基团的振动,从而产生对光的吸收。

如果将透过物质的光辐射用单色器加以色散,使波长按长短依次排列,同时测量在不同波长处的辐射强度,得到的是吸收光谱。

如果用的光源是红外光波长范围,即0.78~10000um,就是红外吸收光谱;如果用的是强单色光,如激光,产生的是激光拉曼光谱。

(1)物质对光的吸收具有选择性:1)核外电子对光子的吸收,吸收范围(1~20eV)使其由基态跃迁到激发态。

2)分子振动对光子的吸收,吸收范围(0.05~1eV)3)分子转动对光子的吸收,吸收范围(0.05eV以下)(2)分子振动模型:(3)分子振动吸收条件I 分子振动频率与红外光谱段的某频率相等;II 分子在振动过程中,能引起偶极矩的变化;III 必须遵守旋律原则。

2.2 红外光谱(2)红外光谱的表示连续的红外光与分子相互作用时,若分子中原子间的振动频率恰好与红外波段的某一频率相等时就会引起共振,使光的透射强度减弱。

(3)红外光谱图的特征I 谱带数目II 吸收带的位置III 谱带的形状IV 谱带的强度(4)影响红外光谱图的因素(5)红外谱带的划分I 特征谱带区:(4000~1333 cm^-1,或2.5~7.5um)II 指纹谱带区:(1333~ 667 cm^-1 ,或7.5~15 um)(6)红外吸收光谱的特点I 特征性高;II 不受物质的物理状态的限制,气、液、固均可测定;III 所需测定的样品数量极少,只需几毫克甚至几微克;IV 操作方便,测定速度快,重复性好;V 已有的标准图谱较多,便于查阅。

VI 缺点和局限性:灵敏度和精确度不够高,含量<1%就难以测出,目前多用于定性分析。

红外光谱仪的使用及谱图解析

红外光谱仪的使用及谱图解析

红外光谱仪的使用及谱图解析利用红外吸收光谱进行有机化合物定性分析可分为两个方面:一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;二是结构分析,即利用红外吸收光谱提供的信息,结合未知物的各种性质和其它结构分析手段(如紫外吸收光谱、核磁共振波谱、质谱)提供的信息,来确定未知物的化学结构式或立体结构。

原理:样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射-分子振动能级跃迁-红外光谱-官能团-分子结构。

2、红外光谱特点:红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3、分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

分子结构与红外光谱分子官能团与红外光谱吸收峰:(1)分子的整体振动图像可分解为若干简振模式的叠加,每个简振模式(振动能级跃迁)对应于一定频率的)对应于一定频率的光吸收峰,全部具有红外活性的简振模式的光吸收峰就构成了该分子的振动吸收光谱,即红外光谱。

(2)分子的简振模式(振动能级)决定于分子的结构,因此可以将分子结构与其红外光谱联系在一起。

(3)分子的一个简振模式是其所有原子特定运动分量的叠加,也就是说,在一个简振模式下,所有原子都在进行(相同频率)运动运动。

但是一般只有某一个(或几个)基团的运动起着主要作用,而其它原子的运动相对弱的多。

所以,分子的一个简振模式可以看作只是个别基团(官能团)的运动,因此,可以将分子的红外光谱吸收峰与其官能团相对应。

红外光谱仪的操作技巧解析

红外光谱仪的操作技巧解析

红外光谱仪的操作技巧解析红外光谱仪是一种常用的科学仪器,能够用于分析物质的结构和成分。

它通过测量物质与红外光的相互作用来获取样品的红外光谱图。

然而,要获得准确可靠的数据,需要正确操作红外光谱仪并使用适当的技巧。

本文将细致解析红外光谱仪的操作技巧。

一、样品制备在操作红外光谱仪之前,首先要准备样品。

样品的制备对红外光谱仪的测量结果至关重要。

一般来说,须将样品制成适合红外光谱仪使用的形式,如液体样品可用压片或吸光度皿进行测量,固体样品可研磨成粉末,气体样品则需封装在气密容器中。

二、仪器校准在进一步操作红外光谱仪之前,常需要进行仪器的校准。

校准主要包括对仪器内部的各个组件进行调整和校准,确保其正常运行。

如对干涉仪进行调整,使光线形成干涉光谱;调整和检查波数标定、清晰度、分辨率等参数,确保测量结果准确可靠。

三、测量条件设置在进行红外光谱测量之前,必须设置合适的测量条件。

首先是选择适当的光源,光源的选择会影响到红外光谱的信噪比和测量灵敏度。

然后是选取合适的检测器,检测器的选择会影响到光谱的检测范围和灵敏度。

此外还需设置光路中的滤光片,以排除干扰光线的干扰。

最后是选择合适的测量模式,如透射模式、反射模式或者吸收模式。

四、红外光谱解析红外光谱仪测量得到的谱图需要进行解析和处理。

首先,需要对红外光谱图进行峰的识别和鉴定。

根据谱图中出现的峰的特征,可以判断出样品中存在的官能团或化学键。

此外,还可以通过比较不同样品的谱图来研究化学变化和相互作用。

另外,红外光谱解析还需注意一些技巧。

首先是信号与噪声的处理。

红外光谱中常常伴随着一些杂散光和噪声,需通过信号处理方法将其排除。

其次是谱峰的积分和面积计算,积分和面积可以反映出不同峰的强度和相对含量。

最后是利用专业软件进行数据处理和拟合,以获取更准确的结果。

五、故障排除在使用红外光谱仪时,可能会遇到各种故障。

在出现故障时,需要根据错误提示和现象进行排查。

常见的故障包括光源强度不稳定、干涉仪不对称、检测器吸光度不稳定等。

红外光谱仪操作指南

红外光谱仪操作指南

红外光谱仪操作指南红外光谱仪(Infrared Spectrometer)是一种常见的实验室仪器,用于分析和识别物质的结构和成分。

本文将介绍红外光谱仪的基本原理、使用方法和注意事项,以帮助读者正确操作和使用该仪器。

一、基本原理红外光谱仪是利用物质分子对红外辐射的吸收产生特定频谱图谱的仪器。

红外光与物质之间的相互作用可以提供关于分子振动、拉伸和弯曲等信息。

红外光谱仪通过测量光的吸收,得出样品分子结构和成分的信息。

二、操作步骤1. 准备工作:确保红外光谱仪处于正常工作状态,光源和检测器正常工作。

检查光谱仪的校正情况和保养情况,确保仪器灵敏度和精确性。

2. 样品准备:将待测样品制备成均匀的固体或溶液。

固体样品需要通过粉碎和压片制备均匀的样品片,溶液样品则需要通过稀释到适当浓度。

3. 校正仪器:用标准样品进行仪器的校正,以确保精确测量。

选择适当的标准样品,比如聚乙烯醇或二甲基亚砜等,测量其红外光谱,记录下来并与已知的标准光谱进行对比。

4. 采集光谱:将校正之后的红外光谱仪对准样品,开始采集光谱数据。

注意调整光谱仪的参数,比如波数范围和采样速度等。

确保测量的光谱范围覆盖待测样品的特征吸收峰。

5. 数据处理:将采集到的红外光谱数据进行处理和分析。

可以使用专业的光谱分析软件,通过峰的积分和峰的变化来推导样品分子的结构和成分。

6. 结果解读:根据所测量得到的红外光谱图谱,结合已有的数据和知识,对样品的结构和成分进行解读和分析。

比对样品谱图中的特征峰和已知的功能基团谱图,确定样品的物质结构特征。

三、注意事项1. 避免戴着手套操作:由于红外光谱仪采集的是样品的吸收光信号,手套会产生干扰。

最好不戴手套操作,并确保双手干净,以避免样品污染。

2. 样品制备的均匀性:尽量确保样品的均匀性,固体样品需要均匀地分布在样品盘上,而液体样品需要充分混合并稀释到适当浓度。

3. 调整光源和检测器:在操作之前,确保光源和检测器的调整正确,以获得准确的光谱数据。

光谱仪使用过程及注意事项

光谱仪使用过程及注意事项

光谱仪使用过程及注意事项光谱仪是一种用于测量光的频谱和强度分布的仪器。

它由一个入射系统、一个色散系统和一个检测系统组成。

光谱仪在物理、化学、材料科学、光学等领域得到广泛应用。

在使用光谱仪时,需要注意一些事项,以保证测量结果的准确性和稳定性。

本文将就光谱仪的使用过程和注意事项进行详细介绍。

一、光谱仪的使用过程1.准备工作:在使用光谱仪之前,首先需要进行一些准备工作。

检查光谱仪的各个部件是否完好,清理光谱仪的光学元件,确保其表面没有尘埃或污渍。

检查光源和检测器的工作状态,确保其正常运转。

2.打开光谱仪:在准备工作完成后,将光谱仪的电源打开。

开机后,需要给光谱仪一定的时间进行预热,以使光学元件达到稳定的工作温度。

3.调节光源:对于光强度充足的样品,可以选择使用连续光源。

对于光强度较弱的样品,可以选择使用闪烁光源。

根据样品的特点选择合适的光源,并调节光源的亮度和稳定性。

4.设置光谱仪参数:根据要测量的样品和所需的测量结果,设置合适的光谱仪参数。

这包括选择适当的波长范围、设置光栅的倾角和选择合适的检测器。

可以根据不同的实验要求,对光谱仪进行不同的设置。

5.放置样品:将待测样品放置在光谱仪的样品台上,并固定好,以确保样品在测量过程中不会移动或摇晃。

对于液体样品,可以使用石英池或玻璃池进行测量,以保证样品与光线的接触质量。

6.执行测量:设置好参数和放置好样品后,可以开始执行测量。

通常,通过控制软件来控制光谱仪的操作,包括启动光源、调节光栅、采集数据等。

测量完成后,需要保存测量数据以备后续分析使用。

7.数据分析:测量完成后,可以对数据进行进一步的分析。

可以使用光谱软件对数据进行解析、拟合和处理,得到所需的结果,并进行数据的可视化展示。

二、光谱仪使用注意事项1.避免外界干扰:在进行光谱测量时,需要尽量避免外界光源的干扰。

可以在实验室内进行测量,并关闭窗帘以排除外界光的干扰。

此外,还需要避免周围有强烈的电磁干扰源,以保证测量的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光度计使用方法
发布者:南京群发分析仪器有限公司发布时间:2008年6月17日
Audo look6.0下载光度计使用方法
使用方法:开机步骤
1 开光谱仪电源
2 开计算机电源
3 在文件管理器中用鼠标指按UV WinLab图标,此时出现UV WinLab的应用窗口,仪器已准备好,可选用适
当方法进行分析操作。

2 方法:在分析中必须对分光光度计设定一些必要的参数,这些参数的组合就形成一个“方法”。

Lambda系列UV WinLab软件预设四类常用方法。

1)扫描(SCAN),用以进行光谱扫描。

2)时间驱动(TIME DRIVER),用以观察一定时间内某种特定波长处纵坐标值的变化,如酶动力学。

3)波长编程(WP)用以在多个波长下测定样品在一定时间内的纵坐标值变化,并可以计算这些纵坐标值的差或比值。

4)浓度(CONC)用以建立标准曲线并测定浓度。

2.1 进入所需方法,在方法窗口中选择所需方法的文件名。

2.2 方法的设定
2.2.1 扫描、波长编程及时间驱动
各项方法可根据显示的参数表,逐项按需要选用或填入,并可参考提示。

2.2.2 浓度
浓度方法窗口下方标签较多,说明做浓度测定时需要参数较多。

用鼠标指按每一标签,可翻出下页,其上有一些需要测定的参数。

必须逐页设定。

3 工具条
3.1 SETUP
当所需的各项参数都已在参数中设好后,必须用鼠标指按SETUP,才能将仪器调整到所设状态。

3.2 AUTOZERO
用鼠标指按此键,分光光度计即进行调零(在光谱扫描中则进行基线校正)。

3.3 START
用鼠标指按此键,光度计即开始运行所设定的方法。

4 方法运行
4.1 扫描,时间驱动,波长编程
方法选好后,先放入参比溶液,按AUTOZERO键,进行自自动校零或背景校正结束后再放入样品,按START,分光光度计即开始进行,同时屏幕上出现图形窗口,将结果显示出来。

4.2 浓度
4.2.1制订标准曲线
1 方法选好后,确认各项数据正确,特别是REFS页中第一行要选中右上角的“edit mode”。

再放入参比溶液,按AUTOZERO键自动校零或背景校正。

2 按setup,待该图标消失后,再按“start”,按提示依次放入标准色列的各管溶液,每次都按提示进行操作。

3 标准色列测定完毕后,屏幕上出现calibgraphwindow,显示拟合的标准线,并标出各项标准管的位置,屏幕下方还有一条Concentration mode的对话框,可以用来修改拟合的曲线类型(按 change calbration),或修改标准溶液的任何一管(replace),或取消某一管(delete),或增加标准溶液管数(add)。

如过已经满意,则按analyse sample键,进入样品测定窗口。

4 标准曲线有关的各项数据,均在calibresultwindow中,可用鼠标将其调出观察。

其中包括每个标准溶液的具体数据,标准曲线的回程方程式,相关系数,残差。

4.2.2样品浓度测定
4.2.2.1刚制定好的标准曲线接着进行样品浓度测定时
1 只需在concentration mode对话框按analyse sample键,进入样品测定窗口。

2 按设定的样品顺序放入各样品管,每次按提示进行操作。

3 屏幕上出现结果窗口,结果数据将依次显示在样品表中的相应位置。

4.2.2.2利用原有的标准曲线接着进行样品浓度测定时
4.2.2.2.1 调出所测定样品的浓度方法文件,首先调出refs页,将原设edit mode选项取消,改设左上角的using exiting calibration。

重新将方法存盘,则今后再调用时即不需再作修改。

4.2.2.2.2 在sample页中按要求重设各种样品名称机样品信息。

4.2.2.2.3 按工具条中setup键,将主机设到该方法所设定的条件。

4.2.2.2.4 将参比溶液放入比色室,按autozero键做背景校零。

4.2.2.2.5 按start键,按设定的样品顺序放入各样品管,每次按提示进行操作。

4.2.2.2.6 屏幕上出现结果窗口,结果数据将依次显示在样品表中相应位置。

5关机
5.1 将方法及数据存盘
5.2 关闭方法窗
5.3 退出UV WinLab
5.4 取出样品及参比溶液
5.5 清洁光谱仪,特别是样品室
5.6 关闭光谱电源
5.7 关闭计算机电源。

相关文档
最新文档