机械毕业设计英文外文翻译345起重机介绍
机床的介绍作文英文
机床的介绍作文英文英文:Introduction to Machine Tools。
As a mechanical engineer, I have had the opportunity to work with a variety of machine tools. Machine tools are devices that are used to shape, cut, drill, and finish materials such as metal, wood, and plastic. They are essential in the manufacturing industry and are used to produce a wide range of products, from small parts to large machines.There are many types of machine tools, each with its own specific function. Some of the most common machinetools include lathes, milling machines, drilling machines, and grinding machines. Lathes are used to createcylindrical shapes, while milling machines are used to remove material from a workpiece. Drilling machines are used to create holes, and grinding machines are used tosmooth and finish surfaces.One of the most important aspects of machine tools is their precision. Machine tools must be able to produce parts that meet tight tolerances and specifications. This requires careful calibration and maintenance of the machines, as well as skilled operators who can use the machines effectively.Machine tools have revolutionized the manufacturing industry, allowing for faster and more efficient production of goods. For example, the use of computer numericalcontrol (CNC) machines has greatly increased the speed and accuracy of machining processes. CNC machines use computer programs to control the movement of the cutting tool, resulting in precise and consistent cuts.In conclusion, machine tools are an essential part of the manufacturing industry. They allow for the production of a wide range of products and require skilled operators to use them effectively. The precision and efficiency of machine tools have greatly improved over the years, andthey continue to play a vital role in the manufacturing process.中文:机床介绍。
机床的介绍作文英文翻译
机床的介绍作文英文翻译下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copyexcerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!Machine tools are essential equipment in the manufacturing industry. They are used to shape and form metal and other materials into specific shapes and sizes. These machines are capable of performing a wide range of operations, including cutting, drilling, milling, and grinding.One of the most common types of machine tools is the lathe. Lathes are used to rotate a workpiece against a cutting tool to remove material and create cylindrical shapes. They are widely used in the production of components for machinery, automotive parts, and various other applications.Another important type of machine tool is the milling machine. Milling machines are used to remove material from a workpiece by feeding the workpiece against a rotating cutter. They are capable of producing a wide range of shapes, sizes, and surface finishes, making them versatiletools in the manufacturing industry.Grinding machines are also essential in the manufacturing industry. These machines are used to remove material from a workpiece by abrasion, using a grinding wheel. They are commonly used for producing high-precision components with tight tolerances, such as gears, bearings, and shafts.In addition to these common types of machine tools, there are many other specialized machines used in the manufacturing industry, such as drilling machines, boring machines, and shaping machines. Each type of machine tool has its own unique capabilities and applications, making them essential for the production of a wide range of products.Overall, machine tools play a crucial role in the manufacturing industry, enabling the production of a wide range of products with precision and efficiency. They are essential equipment for any manufacturing operation, andtheir versatility and capabilities make them indispensable in the modern industrial landscape.。
中英文翻译起重机发展史、分类及前景
毕业设计中英文翻译Crane history, classification and prospects起重机发展史、分类及前景Concept Crane (Crane) is a kind of lifting, Is a for loop Intermittent motion machinery. A work cycle, including: Extract plant extract to the items from the institute, Then move to the designated location lowered the level of items Then, the reverse movement, Back to extract device in situ for the next cycle.Usually by the crane hoisting mechanism (the items up and down movement), Operating agencies (the lifting movement), Luffing and slewing mechanism (the articles for the horizontal movement), Coupled with the metal body Power plant, Control and manipulation of a combination of the necessary auxiliary equipment. Type In the bridge used in the construction crane, According to its structure and properties of different Can be divided into light and small lifting equipment, Bridge type crane and jib type crane three categories. Small-sized lifting equipment such as: Jack, Gourd, Winch and so on. Such as the type of crane girder bridge cranes, Gantry cranes.Type of crane boom, such as fixed slewing cranes, Towercrane, Crane, Tires, Crawler cranes.Within a certain range to enhance the vertical and horizontal multi-action heavy lifting crane. Also known as the crane. Are material handlingmachinery. Crane's work is characterized by intermittent exercise to do, That is expected to take a work cycle, Migration, Unloading the corresponding body is alternately moves the work. Prototype crane Ancient Chinese irrigation of farmland is used orange prototype type cranes. The 14th century, Western Europe, human and animal-driven emergence of the rotation type cranes. Early 19th century, There bridge crane; Important wear parts such as crane shaft Spreader and other gear and began to use metal materials, and introducing the hydraulic drive. The late 19th century, Gradually replaced steam-driven crane crane with hydraulic drive. 20th century, 20's, the electrical industry and the rapid industrial development of internal combustion engines, To motor or internal combustion power plant basically formed of various cranes.Cranes include hoisting mechanism, Run institutions, Luffing, Slewing mechanism and metal structure. Crane hoisting mechanism is the basic working body Mostly formed by the hanging system and winch, Also lift heavy objects through the hydraulic system. Operating agencies to adjust the vertical or horizontal transport heavy cranes working position, Generally by the motor, Reducer, Brake and wheel components. Luffing jib crane in only with, the When looked up and boom amplitude and Bent over when the rate increases, Points amplitude balance both amplitude and non-equilibrium. Slewing mechanism for rotating the arm, By the drive and the rotary bearing device composition. Crane metal structure is the skeleton, Main bearing parts such as bridge, Arm and the door frame structure or for the box truss structure, but also for web structure, Some are available as supporting steel beams. Crane according to the structure of the different classification:Crane beam 1 Beam crane. Over a rectangular space in its operations, Used for workshops, Warehouse, Open yard loading and unloading of goods, etc., A beam crane, Crane, Gantrycranes, Crane, Carrying bridges.① beam crane: Beam cranes including single girder overhead crane and double girder overhead craneSingle girder overhead crane girder bridge of the word to use more steel or steel type and steel composite section. Crab often hand chain hoist, Hoist electric hoist or lifting mechanism as assembled parts.Supported by bridge type and the hanging of two. The former bridge crane beam along the orbit vehicles; The latter suspension bridge along the roof of the plant under the crane track. Single girder overhead crane points manually, Electric two. Manual single girder overhead crane operating speed of the lower body, Starting weight is also smaller, But their quality is small, Facilitate the organization of production, Low cost, When the power handling capacity fornon-small, Speed and productivity for less demanding applications.Manual Single-girder overhead crane with manual monorail car as a running car, Hand pull hoist as the lifting body Bridge from the main beam and side beams formed. Generally use the single main beam I-beam, End beam is bent shape with a steel or welded steel plate.Electric single girder overhead crane speed, Higher productivity than manual, From the weight as well. Electric single girder overhead crane by the bridge, Traveling mechanism, Electric hoist and electrical equipment components.② bridge crane:Overhead bridge crane is a bridge in the orbit of a bridge crane, Also known as the crane. The bridge crane lay along the elevated track in the vertical sides of runs Lifting trolley along the track laid on the bridge on the horizontal run The scope of work constitutes a rectangular, Can take full advantage of the space under the lifting bridge materials Ground equipment is not hindered.Bridge crane is widely used in indoor and outdoor storage, Plant, Pier and open storage yard, etc.. Overhead crane bridge crane can be divided into ordinary, simple beam bridge crane and metallurgical three special crane.General bridge crane lifting trolley generally, Bridge run institutions, Bridge the metal structures. Crab and the hoisting mechanism, Car run institutions and small frame of three parts.Lifting mechanism including motors, Brakes, Reducer, Reels and pulleys. Motor through reducer, Driven drum rotation, The rope around the drum or from the reel down, To lift heavy objects. Is supporting for small frame and installation of lifting the car to run institutions, agencies and chassis components, Usually welded structure.2 Cantilever crane (jib crane)Cantilever crane with high column, Wall, Three forms of balance crane.① is a cantilever crane cantilever column can be fixed around the column base fixed on the rotary, Column with the transfer or rigid cantilever, Together within the base support in the vertical center line of rotation relative to the columns and cantilever formed by the cantilever crane. It applies from the weight of small, Operating range of services to round or fan of the occasion. Generally used for machine tools and handling the workpiece chucking.Pillar jib cranes to use more electric chain hoist for lifting mechanism and operation of institutions, Less use of wire rope hoist and chain hoists. Rotation and horizontal movement to use more manual work, Only from the weight of the larger When using electric.② wall crane is secured to the wall on the cantilever crane, Or you can along the wall or other support structure on an elevated track running on the cantilever crane.Line where the wall using a crane to span a larger Large workshop building height or warehouse, Close to the wall near the lifting operation at the more frequent the most suitable. Multi-wall line and the top of the crane or bridge crane beam with the use of Near the wall at the service in a rectangular space, Responsible for the lifting of light and small objects, Large bridge crane from the beam or commitment.③ balance crane balance known as hoists, It is the principle of the use offour-bar linkage to balance the weight load and form a balanced system, Spreader using a variety of flexible and can easily load being lifted in the three-dimensional space. Balance crane lightweight and flexible, Is an ideal lifting small items of lifting equipment, Is widely used in factory floor machine loading and unloading, Process between Automatic line Production line of the workpiece, Sand box lifting, Parts assembly, And thestation, Terminals, Warehouse various occasions Crane organizationsdrive Can be divided into two main categories: One for focus driver That is driven by an electric motor on both sides of the active long-wheel shaft drive; The other for each driver, That is active on both sides of each wheel driven by an electric motor. In More frequent use of small crane brake, Gear and motor combined into one of the "triple play" Drive, From the weight of a large bridge crane for the general ease of installation and adjustment, Universal coupling drive is often used. Structure crane (crane) run institutions generally take the initiative and driven by four wheels, If the effect is very heavy, Commonly used methods to increase the wheel to reduce wheel pressure. When more than four wheels when Must be balanced with articulated frame device The crane's load evenly distributed throughout the wheel.Bridge's metal structure from the main beam and side beams composedof Divided into single-and dual-beam bridge girder bridge types. Single-girder bridge by a single span both sides of the main beam and in the end beam composition Double-beam bridge consists of two main beams and side beams formed.The main beam and side beams rigidly connected End beam at both ends with wheels, To support the elevated bridge in the running. The main beam welded track, For lifting the car running. Bridge girder type of structure more typical of a box structure, Four truss truss structure and fasting.Box structure can be divided into two-track box beams, Partial double-rail box beam, Partial rail box, such as several single main beam. Double-track box beam is widely used as a basic form From the main beam on Under both sides of the vertical flange and web components, Car rail arranged in the center of the flange on the line Its structure is simple, The convenience, Suitable for mass production, However, larger self.Partial double-rail box rail box beam and partial cross section of a single main beam are made on the Ranging from under the flange and web thickness of the main and auxiliary components, Arranged in the main web of rail carabove Cabinets can save short-stiffeners, One side rail box is a single main beam box girder flange width instead of two main beams, Weightless However, more complex manufacturing. Four from the four truss structure to form closed space plane truss structure Truss in the horizontal surface is paved walkway panels, light weight, Stiffness, But compared with other structures, Size large, Create more complex Lower fatigue strength, Have less production.Partial fasting truss structure similar to the rail box girder, Plate by the four form a closed structure, In addition to the main web is a real belly-section beams,the The remaining three pieces of steel plate cut into many windows in accordance with design requirements, The formation of a non-fasting truss diagonals, In the last, The surface of a horizontal truss walkway lined with boards, Crane agencies and electrical equipment installed in the bridge house, Lighter weight, Overall stiffness, This is a more widely used in China as a type.General bridge crane mainly electrically driven, Control room is usually the driver, There are remote control. From the weight of up to five hundred tons, Span of up to 60 meters.Simple beam bridge crane, also known as beam cranes, The structure and composition similar to ordinary bridge crane, Starting weight, Span and the pace of work are small.Bridge girder or other beam by beam and plate steel, consisting of a simple beam, Hand pull or electric hoist as the lifting hoist coupled with easy trolley car, the car is generally I-beam's bottom flange on the run. Bridge can be run along the elevated track, Can also be elevated along the suspension in the followingorbit This is called hanging beam crane cranes.Metallurgy crane in the steel production process to participate in a particular process operation, The basic structure and general overhead crane similar tothe However, lifting a small car is also equipped with a special working body or device. The cranes feature is the use of frequent Bad conditions High-level work. There are five types.Simple beam bridge crane type Casting crane Casting crane: For lifting hot metal into the mixer, Steel-making furnaces and the molten steel into a continuous ingot lifting equipment or ingot molds used. Master Sheng car lifting barrels, Sheng, deputy car to flip bucket and other auxiliary work.Tongs crane: Use tongs to heat ingot vertically lifted onto a soaking pit furnace, Or put it out into the car shipped spindles.Off ingot crane: Ingot from the ingot mold used in the extrusionforce. Small car off the tablets have a special device, Way off the ingot ingot mold according to the shape of the set: Some off the tablet press and hold the ingot rod Crane Yongxiang, Ingot mold with tongs lift; Some press and hold the ingot mold with tongs, Ingot with a small clamp lift.Charging crane: Added to the charge in the open hearth. Column with the bottom of the main car pick rod, And to stir it into the furnace hopper. The main column can turn around the vertical axis, Pick the rod can swing up and down and rotating. Vice-car heaters and other auxiliary operations for the repair.Forged Crane: Cooperation with the hydraulic press for forging a large workpiece. Special hook to hang the main car turned feeder, To support and flip the workpiece; Vice-car to lift the workpiece.Gantry cranes: bridge set the level of support legs form two gantry crane shape of a bridge. The crane on the ground orbit Mainly used in open storageyard, Dock, Power plants, Ports and railway stations and other places cargo handling and installation. Gantry crane hoisting mechanism, Car run institutions and bridge structures Basically the same with the bridge crane. The span, Crane bodies were driven mostly by way of To prevent the crane have skewing increased running resistance Even accidents. Gantry crane lifting trolley running on the bridge, Some crab is a type cranes. Bridge on both sides of the legs are generally rigid legs; Span of more than 30 meters, Side of the rigid legs often, While the other side of the bridge connection through the ball joints and flexible legs, The door frame to become statically determinate system, This prevents the outer lateral thrust loads caused by the additional stress Can also compensate for temperature deformation of vertical bridge gantry cranes wind area, to prevent thedecline in the strong wind lines or overturned, With wind instrument and with the operating agencies of the crane rail clamp interlock. Both ends of bridge can be no cantilever; Can also be one end or both ends of the cantilever cantilever, To extend the operating range. One end of a half bridge leg gantry crane, The other end without legs, Run directly on the high bench. Gantry cranes are divided into 4 types.① General gantry crane: The most versatile cranes, Can move into a variety of items and bulk materials, From the weight of 100 tons, a span of 4 to 35 meters. Common with the gantry crane grab a high-level work.② Hydropower Station Gantry Crane: mainly used for lifting and opening and closing gates, but also for the installation. 80 to 500 tons lifting capacity, small span, 8 to 16 meters; Lower lifting speed for 1 to 5 m / min. The lifting cranes, though not always, But once the work is very heavy use, So to improve the appropriate level.③ shipbuilding gantry crane: Berth assembly for the hull, Standing with two crab: There are two main hook one, Flange of the bridge on theorbit; Another has a main hook and a Vice-hook, In the bottom flange of the rail bridge run To flip and hoisting a large hull blocks. Weight is generally from 100 to 1500 tons; Span of 185 meters; Lifting speed of 2 to 15 m /min, There are 0.1 ~ 0.5 m / min micro speed.④ container gantry crane: For the container terminal. Trailer Bridge to Quay container carrying containers unloaded from the ship transported to the yard or the rear, by the stacking container gantry crane loading up or directly away, you can speed up the bridge or other crane container carrying turnover. Can be stacked high 3 to 4 layers 6 row wide container yard, General tire type, it also uses rail style. Container gantry cranes and container cross-car comparison The span and height of door frame on both sides of the larger. To meet the transportationneeds of the port, The higher level work crane. Lifting speed of 8 to 10 m / min; Across the span of the container needed to determine the number of rows, maximum of 60 meters corresponding to 20 feet, 30 feet, 40 feet long container from the weight of approximately 20 tons, 25 tons and 30 tons.④ carrying bridgeIncrease the span of the development by the gantry crane from a bridgecrane, Also known as the loading bridge. For open storage yard, Port and railway cargo terminals and other places. General delivery of large gantry crane bridge and a similar structure. Features are: ① mainly for handling large quantities of bulk materials; ② span, Generally more than 30meters, Some 170 meters; ③ jobs frequently, Highproductivity, Generally 500 to 1,500 tons / When Working speed is high, Lifting speed of 60 to 70 m / Points, Car speed is 100 ~ 350 m / Points, High-level work; ④ run institutions only carry the bridge to adjust the working position, Non-work institutions. When the span is large, The bridge of the bridge carrying on a rigid support legs and a flexible support legs. Bridge with two legs can be bolted connection; Connection with the flexible legs can also be ball joints or column joints, Relative to the flexible legs can have a range of skew bridge.Formed by the truss girder bridge, Crab in its winding rod or bottom chord of the track. Some cars with rotary boom, The equivalent of a run on the bridge type cranes.Container wharf in the port carrying the bridge is running, Is a special structure of large cranes, Dedicated to the ship's container handling work. Both sides of the generally rigid legs, The formation of a solid door frame, Bridge bearing fused with the door frame on the upper frame. With a container spreader (see cross-car) the car to run on the bridge. Long cantilever extending toward thesea is usually to pitch in. Non-operational state, Cantilever can be lifted at 80 °~ 85 °Elevation Department To carry over the bridge to the highest point on the ship. Operations cantilever flat. Also some cantilever is fixed.2. Double girder bridge craneDouble girder bridge crane from the straight track, Cranegirder, Crab, Power transmission systems and electrical controlsystem, Particularly suited to large hanging from the weight of the plane and large range of material handling.3 Type cranes. And over in the round ground operations, Used foropen-air loading and unloading and installation, etc., A crane, Floating cranes, Mast crane Wall line of cranes and deck cranes.4 Tower crane. Generally used in the site, Lifting supplies.5 Portal crane. Oh, generally used for the port. In addition, Cranes can also drive, Type of work, Mobility and use of such classification.Crane according to the different installation methods can be divided into:1 Truck Crane Truck CraneWill be installed in the general or special crane chassis of low disk performance is equivalent to the total weight of the truck the same vehicle, Meet the technical requirements for road vehicles, Thus the various types of road passage. Such cranes typically available on Off the two control rooms, Operations must be extended leg stable.Weight range from large, From 8 tons to 1,000 tons, Axle chassis number From 2 to 10. Is the largest output, The most widely used type of crane.2 Tire CraneLifting part of the pneumatic tire installed on a special cranechassis. Combined with an engine on and off, Speed is generally not more than 30KM / H, Vehicle width is wider, It is not appropriate long-distance driving on the highway. With no legs and hoists, traveling hoists features For the freight yard, Terminals, Move away from the site and other places with limited lifting operation.3 Off-road tire cranes are 70 developed a crane, Its function and tire hoist crane similar to Can also be carried out without legs and hoists, traveling hoists.The difference is the chassis structure and chassis by the unique structure brings improved driving performance. The engines are mounted on the crane chassis, the chassis has two axles and four large diameter off-road tire pattern. Four wheels are driving wheels and steering wheel, When the muddy uneven transfer station site, the Four wheels is transmitted power, The four-wheel drive, To improve through the muddy ground and uneven road ability. When the flat surface moving at a rapid pace, Front axle or rear axle with only two wheels driven To reduce energy consumption. Random file at the crane, Expressed by 4 × 4 wheel drive, 4 × 2, said four axles with two wheels in the wheel. The model for small venue work. Can achieve a continuous stepless variable speed, Resistance mutations in the case of the road will not turn off the engine, Thus a great convenience to the driver's operation. The off-road tires can be a performance extension of the crane, and Powerful and flexible tire crane.4 All Terrain CraneIs an off-road crane truck crane and both the characteristics of high performance products. It can not only transfer as fast as cranes, Long-distance travel, but also to meet in the narrow and bumpy or muddy field on the work request, The driving speed, Multi-bridge driver All-wheel steering, Three turnaround mode,ground clearance large High-climbing ability, No need for features such as lifting legs, Is a very promising product. But the price is higher, On the use and maintenance require a higher level.5 CraneA specific task to complete the development of special crane. For example: The implementation of tactical and technical safeguards to mechanized use, Off-road vehicles or armored personnel carriers mounted on the crane wheel rescue vehicle; To deal with road traffic accidents Wrecker, etc. Fall into this category.Crane Job Type: Refers to how busy the crane and load the parameters of degree of change.Busy work degree Crane for Means the total time in a year, The actual number of hours of crane operation and the ratio of total number of hours; Of institutions, Refers to an institution operating hours within a year and the ratio of total number of hours. In a working cycle of the crane, Agencies operating time percentage of Called the agency's duty cycle, By JC said.Degree of load changes, Designed by a crane rated capacity in actual operation, The load of the lifting crane is often less than the ratedcapacity. The degree of this change in load from the weight of the utilization factor k said. k = crane weight from the average of the actual year / crane's rated capacity.According cranes busy loading level and degree of change, Usually the type of cranes are: Light level, Intermediate, Heavy and Extra Heavy Grade 4 level.Cranes and lifting the types of work are two different concepts, Lifting capacity, May not be re-grade, From the weight of small, Not necessarilylight level. Such as hydropower capacity by the crane's lifting hundreds oftons, But the opportunity is rarely used, Only in the installation ofunits, When using the repair crew, Rest of the time stop there, So, although from very heavy, But still is light level. Another example is the use of the station yard gantry cranes, Although not from the weight, But the work is very busy Are heavy duty type of work.Crane safety performance of the types of work and has a very close relationship. Starting weight, Span The same crane lifting height, If the work of different types, In the design manufacture, Safety factor is not taken by the same That is, parts and components model, Size, Specifications vary. Such as wire rope, brake as a result of different types, Different safety factor (light-level security coefficient is small, Heavy duty safety factor) , The selected model is not the same. Then, as is the 10t bridge crane, For the intermediate type of work (JC = 25%) The lifting motor power N = 16KW, As for the heavy duty type of work (JC = 40%) Lifting motor power compared to N = 23. 5KW.From the above we can see that If the light level work crane type used in heavy duty type of work place Cranes will often faulty, Of safe production. Therefore, security checks, Crane should pay attention to the type of work and working conditions must be consistent.Crane characteristic curve: the carrying capacity of the crane structure, Boom lifting capacity and stability against overturning three whole envelope curve.Practice double girder bridge crane2.33. 1 Work agoa. On the brakes, Hook, Steel wire rope and safety devices and other components required by point inspection card check Abnormalphenomena Should be excluded.b. The operator must be sure to go when no one Taiwan, or track, Can close the main power supply. When the power circuit breaker or a sign on the lock when The people concerned should be removed before the original closing the main power supply. Crane safety devices which In order to ensure safe and reliable lifting operation, Crane with a better safety devices To accidental circumstances, Protects the device or to remind the operator attention To play a security role.1. Hydraulic system, the relief valve: Inhibit the abnormal high pressureloop, To prevent damage to hydraulic pumps and motors, And to prevent overload in the state.2. Luffing crane safety devices: When the unexpected incident occurs, Boom luffing cylinder high-pressure hose or loop or cut off when the pipeburst, Balancing valve in the hydraulic circuit to work, Lock chamber from the fuel tank of the work under the oil The boom will not fall To ensure job security.3. Telescopic crane safety devices: When the unexpected incidentoccurs, Telescopic boom cylinder high-pressure hose or loop or cut off when the pipe burst, Balancing valve in the hydraulic circuit to work, Lock chamber from the fuel tank of the work under the oil Retracted to hang on their own, To ensure job security.4. Height limit device: Rose from under hook height, Touch the limit hammer, Open limit switch, "over around" indicator light is bright, At the same time cut off the hook lifting, Boom out, V to the other movements the crane operation and ensure safety. Then as long as the manipulation of hookdrop Boom boom retracted or looked up (ie safe side operation) so thehandle, Lift the constraints that limit a heavy hammer, Returned to normal operation. For special occasions, If still needs to be over around the operation ofmicro, Press the release button on the meter box, The role of time limit will be lifted, But this time the operation must be very careful, In case something happensSo.5. Outrigger locking device: When the unexpected incident occurs, Leading to the leg vertical cylinder high-pressure hose or pipe rupture or cutting, Two-way hydraulic system hydraulic lock cylinder block to block the two legs of the pressureoil chamber, Indented or throw the legs, To ensure the safety of lifting operations.6. From the weight indicator: From the weight indicator set in the basic arm of the co-lateral side (right side of the control room), Control room operator can sit clearly observed, Can accurately indicate the condition of the crane, and the corresponding elevation to allow the rated capacity crane.7. Lifting characteristics table: In the control room set up under the siding on the front side, The table lists the various working range of arm length and rated under the weight and lifting height To operation inspection. Liftingoperations, Must not exceed the values specified in the table. In order to ensure safe and reliable lifting operation, Crane with a better safety devices To accidental circumstances, Protect or warn the operating personnel in mechanical, To play a security role.Lifting according to their functions and structural features of Can be divided into the following four categories.I. Small-sized lifting equipmentLight lifting equipment is characterized by a smalllight, Compact Movements are simple, Operating range projection of a point, Line-based. Light, Small lifting equipment, generally only one elevator, It only。
起重机中英文对照外文翻译文献
起重机中英⽂对照外⽂翻译⽂献中英⽂对照外⽂翻译(⽂档含英⽂原⽂和中⽂翻译)Control of Tower Cranes WithDouble-Pendulum Payload DynamicsAbstract:The usefulness of cranes is limited because the payload is supported by an overhead suspension cable that allows oscilation to occur during crane motion. Under certain conditions, the payload dynamics may introduce an additional oscillatory mode that creates a double pendulum. This paper presents an analysis of this effect on tower cranes. This paper also reviews a command generation technique to suppress the oscillatory dynamics with robustness to frequency changes. Experimental results are presented to verify that the proposed method can improve the ability of crane operators to drive a double-pendulum tower crane. The performance improvements occurred during both local and teleoperated control.Key words:Crane , input shaping , tower crane oscillation , vibrationI. INTRODUCTIONThe study of crane dynamics and advanced control methods has received significant attention. Cranes can roughly be divided into three categories based upontheir primary dynamic properties and the coordinate system that most naturally describes the location of the suspension cable connection point. The first category, bridge cranes, operate in Cartesian space, as shown in Fig. 1(a). The trolley moves along a bridge, whose motion is perpendicular to that of the trolley. Bridge cranes that can travel on a mobile base are often called gantry cranes. Bridge cranes are common in factories, warehouses, and shipyards.The second major category of cranes is boom cranes, such as the one sketched in Fig. 1(b). Boom cranes are best described in spherical coordinates, where a boom rotates aboutaxes both perpendicular and parallel to the ground. In Fig. 1(b), ψis the rotation aboutthe vertical, Z-axis, and θis the rotation about the horizontal, Y -axis. The payload is supported from a suspension cable at the end of the boom. Boom cranes are often placed on a mobile base that allows them to change their workspace.The third major category of cranes is tower cranes, like the one sketched in Fig. 1(c). These are most naturally described by cylindrical coordinates. A horizontal jib arm rotates around a vertical tower. The payload is supported by a cable from the trolley, which moves radially along the jib arm. Tower cranes are commonly used in the construction of multistory buildings and have the advantage of having a small footprint-to-workspace ratio. Primary disadvantages of tower and boom cranes, from a control design viewpoint, are the nonlinear dynamics due to the rotational nature of the cranes, in addition to the less intuitive natural coordinate systems.A common characteristic among all cranes is that the pay- load is supported via an overhead suspension cable. While this provides the hoisting functionality of the crane, it also presents several challenges, the primary of which is payload oscillation. Motion of the crane will often lead to large payload oscillations. These payload oscillations have many detrimental effects including degrading payload positioning accuracy, increasing task completion time, and decreasing safety. A large research effort has been directed at reducing oscillations. An overview of these efforts in crane control, concentrating mainly on feedback methods, is provided in [1]. Some researchers have proposed smooth commands to reduce excitation of system flexible modes [2]–[5]. Crane control methods based on command shaping are reviewed in [6]. Many researchers have focused on feedback methods, which necessitate the addition necessitate the addition of sensors to the crane and can prove difficult to use in conjunction with human operators. For example, some quayside cranes have been equipped with sophisticated feedback control systems to dampen payload sway. However, the motions induced by the computer control annoyed some of the human operators. As a result, the human operators disabled the feedback controllers. Given that the vast majority of cranes are driven by human operators and will never be equipped with computer-based feedback, feedback methods are not considered in this paper.Input shaping [7], [8] is one control method that dramatically reduces payload oscillation by intelligently shaping the commands generated by human operators [9], [10]. Using rough estimates of system natural frequencies and damping ratios, a series of impulses, called the input shaper, is designed. The convolution of the input shaper and the original command is then used to drive the system. This process is demonstrated with atwo-impulse input shaper and a step command in Fig. 2. Note that the rise time of the command is increased by the duration of the input shaper. This small increase in the rise time isnormally on the order of 0.5–1 periods of the dominant vibration mode.Fig. 1. Sketches of (a) bridge crane, (b) boom crane, (c) and tower crane.Fig. 2. Input-shaping process.Input shaping has been successfully implemented on many vibratory systems including bridge [11]–[13], tower [14]–[16], and boom [17], [18] cranes, coordinate measurement machines[19]–[21], robotic arms [8], [22], [23], demining robots [24], and micro-milling machines [25].Most input-shaping techniques are based upon linear system theory. However, some research efforts have examined the extension of input shaping to nonlinear systems [26], [14]. Input shapers that are effective despite system nonlinearities have been developed. These include input shapers for nonlinear actuator dynamics, friction, and dynamic nonlinearities [14], [27]–[31]. One method of dealing with nonlinearities is the use of adaptive or learning input shapers [32]–[34].Despite these efforts, the simplest and most common way to address system nonlinearities is to utilize a robust input shaper [35]. An input shaper that is more robust to changes in system parameters will generally be more robust to system nonlinearities that manifest themselves as changes in the linearized frequencies. In addition to designing robust shapers, input shapers can also be designed to suppress multiple modes of vibration [36]–[38].In Section II, the mobile tower crane used during experimental tests for this paper is presented. In Section III, planar and 3-D models of a tower crane are examined to highlight important dynamic effects. Section IV presents a method to design multimode input shapers with specified levels of robustness. InSection V, these methods are implemented on a tower crane with double-pendulum payload dynamics. Finally, in Section VI, the effect of the robust shapers on human operator performance is presented for both local and teleoperated control.II. MOBILE TOWER CRANEThe mobile tower crane, shown in Fig. 3, has teleoperation capabilities that allow it to be operated in real-time from anywhere in the world via the Internet [15]. The tower portion of the crane, shown in Fig. 3(a), is approximately 2 m tall with a 1 m jib arm. It is actuated by Siemens synchronous, AC servomotors. The jib is capable of 340°rotation about the tower. The trolley moves radially along the jib via a lead screw, and a hoisting motor controls the suspension cable length. Motor encoders are used for PD feedback control of trolley motion in the slewing and radial directions. A Siemens digital camera is mounted to the trolley and records the swing deflection of the hook at a sampling rate of 50 Hz [15].The measurement resolution of the camera depends on the suspension cable length. For the cable lengths used in this research, the resolution is approximately 0.08°. This is equivalent to a 1.4 mm hook displacement at a cable length of 1 m. In this work, the camera is not used for feedback control of the payload oscillation. The experimental results presented in this paper utilize encoder data to describe jib and trolley position and camera data to measure the deflection angles of the hook. Base mobility is provided by DC motors with omnidirectional wheels attached to each support leg, as shown in Fig. 3(b). The base is under PD control using two HiBot SH2-based microcontrollers, with feedback from motor-shaft-mounted encoders. The mobile base was kept stationary during all experiments presented in this paper. Therefore, the mobile tower crane operated as a standard tower crane.Table I summarizes the performance characteristics of the tower crane. It should be noted that most of these limits areenforced via software and are not the physical limitations of the system. These limitations are enforced to more closely match theoperational parameters of full-sized tower cranes.Fig. 3. Mobile, portable tower crane, (a) mobile tower crane, (b) mobile crane base.TABLE I MOBILE TOWER CRANE PERFORMANCE LIMITSFig. 4 Sketch of tower crane with a double-pendulum dynamics.III. TOWER CRANE MODELFig.4 shows a sketch of a tower crane with a double-pendulum payload configuration. The jib rotates by an angle around the vertical axis Z parallelto the tower column. The trolley moves radially along the jib; its position along the jib is described by r . The suspension cable length from the trolley to the hook is represented by an inflexible, massless cable of variable length 1l . The payload is connected to the hook via an inflexible, massless cable of length 2l . Both the hook and the payload are represented as point masses having masses h m and p m , respectively.The angles describing the position of the hook are shown in Fig. 5(a). The angle φrepresents a deflection in the radial direction, along the jib. The angle χ represents a tangential deflection, perpendicular to the jib. In Fig. 5(a), φ is in the plane of the page, and χ lies in a plane out of the page. The angles describing the payload position are shown in Fig. 5(b). Notice that these angles are defined relative to a line from the trolley to the hook. If there is no deflection of the hook, then the angleγ describes radial deflections, along the jib, and the angle α represents deflections perpendicular to the jib, in the tangential direction. The equations of motion for this model were derived using a commercial dynamics package, but they are too complex to show in their entirety here, as they are each over a page in length.To give some insight into the double-pendulum model, the position of the hook and payload within the Newtonian frame XYZ are written as —h q and —p q , respectivelyWhere -I , -J and -K are unit vectors in the X , Y , and Z directions. The Lagrangian may then be written asFig. 5. (a) Angles describing hook motion. (b) Angles describing payload motion.Fig. 6. Experimental and simulated responses of radial motion.(a) Hook responses (φ) for m 48.01=l ,(b) Hook responses for m 28.11=lThe motion of the trolley can be represented in terms of the system inputs. The position of the trolley —tr q in the Newtonian frame is described byThis position, or its derivatives, can be used as the input to any number of models of a spherical double-pendulum. More detailed discussion of the dynamics of spherical double pendulums can be found in [39]–[42].The addition of the second mass and resulting double-pendulum dramatically increases the complexity of the equations of motion beyond the more commonly used single-pendulum tower model [1], [16], [43]–[46]. This fact can been seen in the Lagrangian. In (3), the terms in the square brackets represent those that remain for the single-pendulum model; no —p q terms appear. This significantly reduces the complexity of the equations because —p q is a function of the inputs and all four angles shown in Fig. 5.It should be reiterated that such a complex dynamic model is not used to design the input-shaping controllers presented in later sections. The model was developed as a vehicle to evaluate the proposed control method over a variety of operating conditions and demonstrate its effectiveness. The controller is designed using a much simpler, planar model.A. Experimental V erification of the ModelThe full, nonlinear equations of motion were experimentally verified using several test cases. Fig.6 shows two cases involving only radial motion. The trolley was driven at maximum velocity for a distance of 0.30 m, with 2l =0.45m .The payload mass p m for both cases was 0.15 kg and the hook mass h m was approximately 0.105 kg. The two cases shown in Fig. 6 present extremes of suspension cable lengths 1l . In Fig. 6(a), 1l is 0.48 m , close to the minimum length that can be measured by the overhead camera. At this length, the double-pendulum effect is immediately noticeable. One can see that the experimental and simulated responses closely match. In Fig. 6(b), 1l is 1.28 m, the maximum length possible while keeping the payload from hitting the ground. At this length, the second mode of oscillation has much less effect on the response. The model closely matches the experimental response for this case as well. The responses for a linearized, planar model, which will be developed in Section III-B, are also shown in Fig. 6. The responses from this planar model closely match both the experimental results and the responses of the full, nonlinear model for both suspension cable lengths.Fig. 7. Hook responses to 20°jib rotation:(a) φ (radial) response;(b) χ (tangential) response.Fig. 8. Hook responses to 90°jib rotation:φ(radial) response;(b) χ(tangential) response.(a)If the trolley position is held constant and the jib is rotated, then the rotational and centripetal accelerations cause oscillation in both the radial and tangential directions. This can be seen in the simulation responses from the full nonlinear model in Figs. 7 and 8. In Fig. 7, the trolley is held at a fixed position of r = 0.75 m, while the jib is rotated 20°. This relatively small rotation only slightly excites oscillation in the radial direction, as shown in Fig. 7(a). The vibratory dynamics are dominated byoscillations in the tangential direction, χ, as shown in Fig. 7(b). If, however, a large angular displacement of the jib occurs, then significant oscillation will occur in both the radial and tangential directions, as shown in Fig. 8. In this case, the trolley was fixed at r = 0.75 m and the jib was rotated 90°. Figs. 7 and 8 show that the experimental responses closely match those predicted by the model for these rotational motions. Part of the deviation in Fig. 8(b) can be attributed to the unevenness of the floor on which the crane sits. After the 90°jib rotation the hook and payload oscillate about a slightly different equilibrium point, as measured by the overhead camera.Fig.9.Planardouble-pendulummodel.B.Dynamic AnalysisIf the motion of the tower crane is limited to trolley motion, like the responses shown in Fig. 6, then the model may be simplified to that shown in Fig. 9. This model simplifies the analysis of the system dynamics and provides simple estimates of the two natural frequencies of the double pendulum. These estimates will be used to develop input shapers for the double-pendulum tower crane.The crane is moved by applying a force )(t u to the trolley. A cable of length 1l hangs below the trolley and supports a hook, of mass h m , to which the payload is attached using rigging cables. The rigging and payload are modeled as a second cable, of length 2l and point mass p m . Assuming that the cable and rigging lengths do not change during the motion, the linearized equations of motion, assuming zero initial conditions, arewhere φ and γ describe the angles of the two pendulums, R is the ratio of the payload mass to the hook mass, and g is the acceleration due to gravity.The linearized frequencies of the double-pendulum dynamics modeled in (5) are [47]Where Note that the frequencies depend on the two cable lengths and the mass ratio.Fig. 10. Variation of first and second mode frequencies when m l l 8.121=+.。
汽车起重机毕业设计外文翻译
本科毕业设计(论文)外文翻译译文题目:使用智能液压缸增加起重机的稳定性学院:机电学院专业:机械设计制造及其自动化学生姓名:XXX学号:**********指导教师:XXX完成时间:2017年3月12日From:Hitchcox, Alan. Smart cylinders stabilize cranes[J]. Hydraulics & Pneumatics; Cleveland (Sep 12, 2013): n/a.Smart cylinders stabilize cranesHitchcox, Alan.ASM International, Penton Media, OTP Industrial Solutions(formerly Ohio Transmission & Pump Co)Abstract:It's not unusual for cranes to reach 100 ft or more into the air at major construction sites. Traditionally, cranes are transported to a work area and assembled on-site. More recently, as truck-mounted cranes become bigger and more powerful, they have found favor because they are quicker to set up than traditional cranes. Truck-mounted cranes have a telescoping hydraulic boom mounted on commercial truck chassis. Their portability and lower setup costs have led to their widespread use at construction and utility sites around the world. But as loads get heavier and lifting distances become higher, designers of truck-mounted cranes must provide the stability to ensure that safety remains the top priority.Truck-mounted cranes use outrigger systems to ensure stable operation. The outriggers extend from the main body of the truck and contact the ground several feet away from the truck. This distributes the crane's load over a much larger area, thereby increasing stability. Manitowoc Company Inc., Manitowoc, Wis., takes this a step further by using smart cylinders in the A-frame outrigger systems of its National Crane line of truck-mounted cranes. The crane's hydraulic system is driven from a power takeoff on the truck's transmission. The crane operator then runs all crane functions through a series of lever-operated valves at a control station.The ELA is an externally mounted LDT that uses Hall-effect technology to sense the location of a magnet embedded in the cylinder's piston through the cylinder's carbon steel barrel. A microprocessor then assigns an analog voltage to the magnet's corresponding absolute position. For example, when the cylinder is fully retracted; the voltage may be 0.55 V. As the cylinder extends, the voltage gradually increases until 4.5 V is reached at full extension.Accuracy of the transducer is typically +-0.5 mm (0.02 in.) - more than adequate for most mobile equipment. That position is then sent to the ECM and compared to the known maximum horizontal extension. After this, an indication is given to the operator about the outrigger state. The position update happens within milliseconds.Full TextIt's not unusual for cranes to reach 100 ft or more into the air at major construction sites. Traditionally, cranes are transported to a work area and assembled on-site. More recently, as truck-mounted cranes become bigger and more powerful, they have found favor because they are quicker to set up than traditional cranes. Truck-mounted cranes have a telescoping hydraulic boom mounted on commercial truck chassis. Their portability and lower setup costs have led to their widespread use at construction and utility sites around the world. But as loads get heavier and lifting distances become higher, designers of truck-mounted cranes must provide the stability to ensure that safety remains the top priority.Truck-mounted cranes use outrigger systems to ensure stable operation. The outriggers extend from the main body of the truck and contact the ground several feet away from the truck. This distributes the crane's load over a much larger area, thereby increasing stability. Manitowoc Company Inc., Manitowoc, Wis., takes this a step further by using smart cylinders in the A-frame outrigger systems of its National Crane line of truck-mounted cranes. The crane's hydraulic system is driven from a power takeoff on the truck's transmission. The crane operator then runs all crane functions through a series of lever-operated valves at a control station.An important function for lifting, moving, and lowering heavy loads is to ensure that outrigger beams are properly positioned. The outriggers are attached to the truck frame and are extended downward by hydraulic cylinders at an angle to create an A-frame structure that is wider at its base than at the top. This provides a stable framework to level and support the loaded and extended crane.Adding smarts to outriggersFor the past several years, National Crane has added outrigger-monitoring systems (OMSs) to its cranes. With the OMS, operators monitor the horizontal extension of the crane's outriggers at a control station. The OMS used with A-frame model cranes includes an ELAposition-sensing linear-displacement transducer (LDT) from Rota Engineering, Dallas, an electronic control module (ECM), and bicolor indication LEDs at each station.The ELA is an externally mounted LDT that uses Hall-effect technology to sense the location of a magnet embedded in the cylinder's piston through the cylinder's carbon steel barrel. A microprocessor then assigns an analog voltage to the magnet's corresponding absolute position. For example, when the cylinder is fully retracted; the voltage may be 0.55 V. As the cylinder extends, the voltage gradually increases until 4.5 V is reached at full extension. Accuracy of the transducer is typically +-0.5 mm (0.02 in.) - more than adequate for most mobile equipment. That position is then sent to the ECM and compared to the known maximum horizontal extension. After this, an indication is given to the operator about the outrigger state. The position update happens within milliseconds.Mark Hoffman, of Rota Engineering, pointed out that because mobile equipment has a human operator, position feedback from cylinders generally only needs to be within hundredths of an inch. Put simply, he says that magnetostrictive LDTs are overkill for most mobile-equipment applications. He suggests that an LDT with slightly less precision, but substantially lower cost, would enable designers to provide cylinder position feedback more often - not just for the most critical applications that justify high cost.Simple electronic displayThe electronic control module on the A-frame units serves only to monitor the position of the outriggers and provide feedback to the operator. As the analog voltage from the ELA transducer is read into the ECM, it sends a signal to a set of bicolor LEDs - one set per operator's station. The indications available are:Red for system error (sensor out of range, electrical short, etc.).Blinking red to indicate the operator is not at a valid working position as directed by the operation manual.Green to inform the operator that full horizontal extension has been accomplished. The ECM can be configured through the use of a service tool to also help diagnose any issues related to the OMS.Made for mobileDesigned for use with mobile equipment, the ELA transducer matches this application well because of several physical and intrinsic attributes. The most important of these is theability to mount the sensor along the exterior of the hydraulic outrigger-cylinder barrel. Although the cylinder gains added functionality, in many cases it retains the same form and fit as the original cylinder; the smart cylinder is essentially a drop-in replacement. The envelope in which the cylinder is mounted does not change. Only additional harnessing and the ECM are added - plus there are minor physical changes to the rear stabilizers.The cylinder bores used in A-frame outriggers range from 3 to 4.5 in. Strokes may be as long as of 66.9 in., depending on lifting capacity. According to Hoffman added, "Eliminating the expense of gun-drilling the piston rod and machining the end cap reduces the cost of creating this smart cylinder. The cylinder's structural integrity remains the same, and it is easier to assemble, install, and service than cylinders with magnetostrictive sensors."Other positive attributes: the Hall-effect sensor is noncontact for long service life, its temperature rating is high, it performs well in high shock and vibration applications, and its aluminum housing resists damage from impact and corrosion. The external transducer can be replaced in the field without difficulty.Cylinders can be supplied with magnets already fitted, so that if the stroke-sensing function is required later, the transducer can easily be added. The magnet assembly for the EL transducer is designed to match the bore of the cylinder. A slot is milled into the piston to accommodate the magnet assembly. Service life is not a factor because the magnet assembly is made of the same quality as piston-wear rings.A different kind of linear sensorModel ELA linear-displacement transducers (LDTs) use Hall-effect technology and mount externally to mobile hydraulic cylinders. Unlike other types of in-cylinder LDTs, they can be used in double-ended cylinders. They can also be used effectively in steering and long-stroke cylinders, where gun drilling can become cost prohibitive and are easily field replaceable.Hall-effect LDTs can be manufactured for strokes exceeding 50 ft and for use 20,000 ft below the surface of the ocean and other demanding environments.Hall-effect technologyLDTs from Rota Engineering use a microprocessor that transmits and receives signals from Hall-effect chips mounted to a printed-circuit board. The circuit board is contained within a stainless-steel or aluminum housing, depending on application requirements. Apiston-mounted magnet causes a voltage drop when it passes over the Hall-effect chip. The microprocessor calculates the position of the Hall-effect chip and correlates the voltage drop to a proportional voltage, current, PWM, or CANbus output.Hoffman explains, "Hall-effect sensors do not have as high a resolution as magnetostrictive sensors, which can achieve resolution measured in ten-thousandths of an inch. Hall-effect LDTs, however, generally have resolution of 0.012 to 0.020 in. The tighter resolution of magnetostrictive LDTs is needed for many process applications, such as a rolling mill. Most of the time, though, 0.020-in. resolution is more than sufficient for mobile hydraulic applications."An additional benefit of the Hall-effect technology is small size. In most instances, the pin-to-pin dimension of a cylinder need not be increased to accommodate a Hall-effect LDT. Also, the surface-mount technology tolerates high levels of vibration, and potting can provide additional vibration resistance.For more information, contact Rota Engineering at (972) 359-1041, or visit . For information on Manitowoc's truck-mounted cranes and other products, visit www.manitowoc.译自:希契科克斯,艾伦. 使用智能液压缸增加起重机的稳定性[J]. 液压与气动技术;克利夫兰(2013年9月12日):n/a使用智能液压缸增加起重机的稳定性希契科克斯,艾伦ASM国际片通媒体,OTP工业解决方案(以前俄亥俄州传输和泵有限公司)摘要:在大型的建筑工地上起重机将重物举至空中100英尺及以上的情况并不罕见。
中英文文献翻译-起重机介绍
附录外文文献原文:The Introduction of cranesA crane is defined as a mechanism for lifting and lowering loads with a hoisting mechanism Shapiro, 1991. Cranes are the most useful and versatile piece of equipment on a vast majority of construction projects. They vary widely in configuration, capacity, mode of operation, intensity of utilization and cost. On a large project, a contractor may have an assortment of cranes for different purposes. Small mobile hydraulic cranes may be used for unloading materials from trucks and for small concrete placement operations, while larger crawler and tower cranes may be used for the erection and removal of forms, the installation of steel reinforcement, the placement of concrete, and the erection of structural steel and precast concrete beams.On many construction sites a crane is needed to lift loads such as concrete skips, reinforcement, and formwork. As the lifting needs of the construction industry have increased and diversified, a large number of general and special purpose cranes have been designed and manufactured. These cranes fall into two categories, those employed in industry and those employed in construction. The most common types of cranes used in construction are mobile, tower, and derrick cranes.1.Mobile cranesA mobile crane is a crane capable of moving under its own power without being restricted to predetermined travel. Mobility is provided by mounting or integrating the crane with trucks or all terrain carriers or rough terrain carriers or by providing crawlers. Truck-mounted cranes have the advantage of being able to move under their own power to the construction site. Additionally, mobile cranes can move about the site, and are often able to do the work of several stationary units.Mobile cranes are used for loading, mounting, carrying large loads and for work performed in the presence of obstacles of various kinds such as power lines and similar technological installations. The essential difficulty is here the swinging of the payload which occurs during working motion and also after the work is completed. This applies particularly to the slewing motion of the crane chassis, for which relatively large angular accelerations and negative accelerations of the chassis are characteristic. Inertia forces together with the centrifugal force and the Carioles force cause the payload to swing as a spherical pendulum. Proper control of the slewing motion of the crane serving to transport a payload to the defined point with simultaneous minimization of the swings when theworking motion is finished plays an important role in the model.Modern mobile cranes include the drive and the control systems. Control systems send the feedback signals from the mechanical structure to the drive systems. In general, they are closed chain mechanisms with flexible members [1].Rotation, load and boom hoisting are fundamental motions the mobile crane. During transfer of the load as well as at the end of the motion process, the motor drive forces, the structure inertia forces, the wind forces and the load inertia forces can result in substantial, undesired oscillations in crane. The structure inertia forces and the load inertia forces can be evaluated with numerical methods, such as the finite element method. However, the drive forces are difficult to describe. During start-up and breaking the output forces of the drive system significantly fluctuate. To reduce the speed variations during start-up and braking the controlled motor must produce torque other than constant [2,3], which in turn affects the performance of the crane.Modern mobile cranes that have been built till today have oft a maximal lifting capacity of 3000 tons and incorporate long booms. Crane structure and drive system must be safe, functionary and as light as possible. For economic and time reasons it is impossible to build prototypes for great cranes. Therefore, it is desirable to determinate the crane dynamic responses with the theoretical calculation.Several published articles on the dynamic responses of mobile crane are available in the open literature. In the mid-seventies Peeken et al. [4] have studied the dynamic forces of a mobile crane during rotation of the boom, using very few degrees of freedom for the dynamic equations and very simply spring-mass system for the crane structure. Later Maczynski et al. [5] studied the load swing of a mobile crane with a four mass-model for the crane structure. Posiadala et al. [6] have researched the lifted load motion with consideration for the change of rotating, booming and load hoisting. However, only the kinematics were studied. Later the influence of the flexibility of the support system on the load motion was investigated by the same author [7]. Recently, Kilicaslan et al. [1] have studied the characteristics of a mobile crane using a flexible multibody dynamics approach. Towarek [16] has concentrated the influence of flexible soil foundation on the dynamic stability of the boom crane. The drive forces, however, in all of those studies were presented by using so called the metho d of ……kinematics forcing‟‟ [6] with assumed velocities or accelerations. In practice this assumption could not comply with the motion during start-up and braking.A detailed and accurate model of a mobile crane can be achieved with the finite element method. Using non-linear finite element theory Gunthner and Kleeberger [9] studied the dynamic responses of lattice mobile cranes. About 2754 beam elements and 80 truss elements were used for modeling of the lattice-boom structure. On this basis a efficient software for mobile crane calculation––NODYA has been developed. However, the influences of the drive systems must be determined by measuring on hoisting of the load[10], or rotating of the crane [11]. This is neither efficient nor convenient for computer simulation of arbitrary crane motions.Studies on the problem of control for the dynamic response of rotary crane are also available. Sato et al. [14], derived a control law so that the transfer a load to a desired position will take place that at the end of the transfer of the swing of the load decays as soon as possible. Gustafsson [15] described a feedback control system for a rotary crane to move a cargo without oscillations and correctly align the cargo at the final position. However, only rigid bodies and elastic joint between the boom and the jib in those studies were considered. The dynamic response of the crane, for this reason, will be global.To improve this situation, a new method for dynamic calculation of mobile cranes will be presented in this paper. In this method, the flexible multibody model of the steel structure will be coupled with the model of the drive systems. In that way the elastic deformation, the rigid body motion of the structure and the dynamic behavior of the drive system can be determined with one integrated model. In this paper this method will be called ……complete dynamic calculation for driven “mechanism”.On the basis of flexible multibody theory and the Lagrangian equations, the system equations for complete dynamic calculation will be established. The drive- and control system will be described as differential equations. The complete system leads to a non-linear system of differential equations. The calculation method has been realized for a hydraulic mobile crane. In addition to the structural elements, the mathematical modeling of hydraulic drive- and control systems is decried. The simulations of crane rotations for arbitrary working conditions will be carried out. As result, a more exact representation of dynamic behavior not only for the crane structure, but also for the drive system will be achieved. Based on the results of these simulations the influences of the accelerations, velocities during start-up and braking of crane motions will be discussed.2.Tower cranesThe tower crane is a crane with a fixed vertical mast that is topped by a rotating boom and equipped with a winch for hoisting and lowering loads (Dickie, 990). Tower cranes are designed for situations which require operation in congested areas. Congestion may arise from the nature of the site or from the nature of the construction project. There is no limitation to the height of a high-rise building that can be constructed with a tower crane. The very high line speeds, up to 304.8 mrmin, available with some models yield good production rates at any height. They provide a considerable horizontal working radius, yet require a small work space on the ground (Chalabi, 1989). Some machines can also operate in winds of up to 72.4 km/h, which is far above mobile crane wind limits.The tower cranes are more economical only for longer term construction operations and higher lifting frequencies. This is because of the fairly extensive planning needed for installation, together with the transportation, erection and dismantling costs.3. Derrick cranesA derrick is a device for raising, lowering, and/or moving loads laterally. The simplest form of the derrick is called a Chicago boom and is usually installed by being mounted to building columns or frames during or after construction (Shapiro and Shapiro, 1991).This derrick arrangement. (i.e., Chicago boom) becomes a guy derrick when it is mounted to a mast and a stiff leg derrick when it is fixed to a frame.The selection of cranes is a central element of the life cycle of the project. Cranes must be selected to satisfy the requirements of the job. An appropriately selected crane contributes to the efficiency, timeliness, and profitability of the project. If the correct crane selection and configuration is not made, cost and safety implications might be created (Hanna, 1994). Decision to select a particular crane depends on many input parameters such as site conditions, cost, safety, and their variability. Many of these parameters are qualitative, and subjective judgments implicit in these terms cannot be directly incorporated into the classical decision making process. One way of selecting crane is achieved using fuzzy logic approach.Cranes are not merely the largest, the most conspicuous, and the most representative equipment of construction sites but also, at various stages of the project, a real “bottleneck” that slows the pace of the construction process. Although the crane can be found standing idle in many instances, yet once it is involved in a particular task ,it becomes an indispensable link in the activity chain, forcing at least two crews(in the loading and the unloading zones) to wait for the service. As analyzed in previous publications [6-8] it is feasible to automate (or, rather, semi-automate) crane navigation in order to achieve higher productivity, better economy, and safe operation. It is necessary to focus on the technical aspects of the conversion of existing crane into large semi-automatic manipulators. By mainly external devices mounted on the crane, it becomes capable of learning, memorizing, and autonomously navigation to reprogrammed targets or through prêt aught paths.The following sections describe various facets of crane automation:First, the necessary components and their technical characteristics are reviewed, along with some selection criteria. These are followed by installation and integration of the new components into an existing crane. Next, the Man –Machine –Interface (MMI) is presented with the different modes of operation it provides. Finally, the highlights of a set of controlled tests are reported followed by conclusions and recommendations.Manual versus automatic operation: The three major degrees of freedom of common tower cranes are illustrated in the picture. In some cases , the crane is mounted on tracks , which provide a fourth degree of freedom , while in other cases the tower is “telescope” or extendable , and /or the “jib” can be raised to a diagonal position. Since these additional degrees of freedom are not used routinely during normal operation but rather are fixed in a certain position for long periods (days or weeks), they are not included in the routineautomatic mode of operation, although their position must be “known” to the control system.外文文献中文翻译:起重机介绍起重机是用来举升机构、抬起或放下货物的器械。
机床的介绍作文英文翻译
机床的介绍作文英文翻译英文:Introduction to Machine Tool。
Machine tools are essential equipment in the manufacturing industry, as they are used to shape and form metal and other solid materials. These tools include lathes, milling machines, drilling machines, and grinding machines, among others. They play a crucial role in producing a wide range of products, from automotive parts to household appliances.One of the most common types of machine tools is the lathe. It is used to rotate a workpiece against a cutting tool to remove material and create a symmetrical object.For example, when I was working in a metalworking factory,I used a lathe to create precise cylindrical shapes for engine parts. The process involved carefully setting the cutting tool and adjusting the speed and feed to achievethe desired dimensions.Another important machine tool is the milling machine, which uses rotary cutters to remove material from a workpiece. I remember using a milling machine to produce intricate patterns on metal components for aerospace applications. It required a high level of precision and attention to detail to ensure the final product met the strict quality standards.Drilling machines are also widely used in the manufacturing industry to create holes in metal and other materials. When I worked in a fabrication shop, I used a drilling machine to accurately drill holes in steel beams for construction projects. The machine's ability to maintain perpendicularity and concentricity was crucial for ensuring the structural integrity of the final assembly.In addition to these examples, there are many other types of machine tools that serve specific purposes in the manufacturing process. Each tool requires skilled operators to set up and operate, as well as regular maintenance toensure optimal performance.Machine tools have revolutionized the way we produce goods, allowing for greater precision, efficiency, and consistency in manufacturing. They have become an indispensable part of modern industry, and their continued development and innovation will shape the future of manufacturing.中文:机床介绍。
起重机的历史外文文献翻译、中英文翻译
The History of Crane1.OverviewThe first construction cranes were invented by the Ancient Greeks and were powered by men or beasts of burden, such as donkeys. These cranes were used for the construction of tall buildings. Larger cranes were later developed, employing the use of human treadwheels, permitting the lifting of heavier weights. In the High Middle Ages, harbor cranes were introduced to load and unload ships and assist with their construction – some were built into stone towers for extra strength and stability. The earliest cranes were constructed from wood, but cast iron and steel took over with the coming of the Industrial Revolution.For many centuries, power was supplied by the physical exertion of men or animals, although hoists in watermills and windmills could be driven by the harnessed natural power. The first 'mechanical' power was provided by steam engines, the earliest steam crane being introduced in the 18th or 19th century, with many remaining in use well into the late 20th century. Modern cranes usually use internal combustion engines or electric motors and hydraulic systems to provide a much greater lifting capability than was previously possible, although manual cranes are still utilized where the provision of power would be uneconomic.Cranes exist in an enormous variety of forms – each tailored to a specific use. Sizes range from the smallest jib cranes, used inside workshops, to the tallest tower cranes, used for constructing high buildings. For a while, mini - cranes are also used for constructing high buildings, in order to facilitate constructions by reaching tight spaces. Finally, we can find larger floating cranes, generally used to build oil rigs and salvage sunken ships. This article also covers lifting machines that do not strictly fit the above definition of a crane, but are generally known as cranes, such as stacker cranes and loader cranes.2. History(1)Ancient GreeceThe crane for lifting heavy loads was invented by the Ancient Greeks in the late 6th century BC. The archaeological record shows that no later than c.515 BC distinctive cuttings for both lifting tongs and lewis irons begin to appear on stone blocks of Greek temples. Since these holes point at the use of a lifting device, and since they are to be found either above the center of gravity of the block, or in pairs equidistant from a point over the center of gravity, they are regarded by archaeologists as the positive evidence required for the existence of the crane.The introduction of the winch and pulley hoist soon lead to a widespread replacement of ramps as the main means of vertical motion. For the next two hundred years, Greek building sites witnessed a sharp drop in the weights handled, as the new lifting technique made the use of several smaller stones more practical than of fewer larger ones. In contrast to the archaic period with its tendency to ever-increasing block sizes, Greek temples of the classical age like the Parthenon invariably featured stone blocks weighing less than 15-20 tons. Also, the practice of erecting large monolithic columns was practically abandoned in favor of using several column drums.Although the exact circumstances of the shift from the ramp to the crane technology remain unclear, it has been argued that the volatile social and political conditions of Greece were moresuitable to the employment of small, professional construction teams than of large bodies of unskilled labor, making the crane more preferable to the Greek polis than the more labor-intensive ramp which had been the norm in the autocratic societies of Egypt or Assyria.The first unequivocal literary evidence for the existence of the compound pulley system appears in the Mechanical Problems (Mech. 18, 853a32-853b13) attributed to Aristotle (384-322 BC), but perhaps composed at a slightly later date. Around the same time, block sizes at Greek temples began to match their archaic predecessors again, indicating that the more sophisticated compound pulley must have found its way to Greek construction sites by then.Ancient RomeThe heyday of the crane in ancient times came during the Roman Empire, when construction activity soared and buildings reached enormous dimensions. The Romans adopted the Greek crane and developed it further. We are relatively well informed about their lifting techniques, thanks to rather lengthy accounts by the engineers Vitruvius (De Architectura 10.2, 1-10) and Heron of Alexandria (Mechanica 3.2-5). There are also two surviving reliefs of Roman treadwheel cranes, with the Haterii tombstone from the late first century AD being particularly detailed.The simplest Roman crane, the Trispastos, consisted of a single-beam jib, a winch, a rope, and a block containing three pulleys. Having thus a mechanical advantage of 3:1, it has been calculated that a single man working the winch could raise 150 kg (3 pulleys x 50 kg = 150), assuming that 50 kg represent the maximum effort a man can exert over a longer time period. Heavier crane types featured five pulleys (Pentaspastos) or, in case of the largest one, a set of three by five pulleys (Polyspastos) and came with two, three or four masts, depending on the maximum load. The Polyspastos, when worked by four men at both sides of the winch, could already lift 3000 kg (3 ropes x 5 pulleys x 4 men x 50 kg = 3000 kg). In case the winch was replaced by a treadwheel, the maximum load even doubled to 6000 kg at only half the crew, since the treadwheel possesses a much bigger mechanical advantage due to its larger diameter. This meant that, in comparison to the construction of the Egyptian Pyramids, where about 50 men were needed to move a 2.5 ton stone block up the ramp (50 kg per person), the lifting capability of the Roman Polyspastos proved to be 60 times higher (3000 kg per person).However, numerous extant Roman buildings which feature much heavier stone blocks than those handled by the Polyspastos indicate that the overall lifting capability of the Romans went far beyond that of any single crane. At the temple of Jupiter at Baalbek, for instance, the architrave blocks weigh up to 60 tons each, and one corner cornice block even over 100 tons, all of them raised to a height of about 19 m. In Rome, the capital block of Trajan's Column weighs 53.3 tons, which had to be lifted to a height of about 34 m (see construction of Trajan's Column).It is assumed that Roman engineers lifted these extraordinary weights by two measures (see picture below for comparable Renaissance technique): First, as suggested by Heron, a lifting tower was set up, whose four masts were arranged in the shape of a quadrangle with parallel sides, not unlike a siege tower, but with the column in the middle of the structure (Mechanica 3.5). Second, a multitude of capstans were placed on the ground around the tower, for, although having a lower leverage ratio than treadwheels, capstans could be set up in higher numbers and run by more men (and, moreover, by draught animals). This use of multiple capstans is also described by AmmianusMarcellinus (17.4.15) in connection with the lifting of the Lateranense obelisk in the Circus Maximus (ca. 357 AD). The maximum lifting capability of a single capstan can be established by the number of lewis iron holes bored into the monolith. In case of the Baalbek architrave blocks, which weigh between 55 and 60 tons, eight extant holes suggest an allowance of 7.5 ton per lewis iron, that is per capstan. Lifting such heavy weights in a concerted action required a great amount of coordination between the work groups applying the force to the capstans.Middle AgesDuring the High Middle Ages, the treadwheel crane was reintroduced on a large scale after the technology had fallen into disuse in western Europe with the demise of the Western Roman Empire. The earliest reference to a treadwheel (magna rota) reappears in archival literature in France about 1225, followed by an illuminated depiction in a manuscript of probably also French origin dating to 1240. In navigation, the earliest uses of harbor cranes are documented for Utrecht in 1244, Antwerp in 1263, Brugge in 1288 and Hamburg in 1291, while in England the treadwheel is not recorded before 1331.Generally, vertical transport could be done more safely and inexpensively by cranes than by customary methods. Typical areas of application were harbors, mines, and, in particular, building sites where the treadwheel crane played a pivotal role in the construction of the lofty Gothic cathedrals. Nevertheless, both archival and pictorial sources of the time suggest that newly introduced machines like treadwheels or wheelbarrows did not completely replace more labor-intensive methods like ladders, hods and handbarrows. Rather, old and new machinery continued to coexist on medieval construction sites and harbors.Apart from treadwheels, medieval depictions also show cranes to be powered manually by windlasses with radiating spokes, cranks and by the 15th century also by windlasses shaped like a ship's wheel. To smooth out irregularities of impulse and get over 'dead-spots' in the lifting process flywheels are known to be in use as early as 1123.The exact process by which the treadwheel crane was reintroduced is not recorded, although its return to construction sites has undoubtedly to be viewed in close connection with the simultaneous rise of Gothic architecture. The reappearance of the treadwheel crane may have resulted from a technological development of the windlass from which the treadwheel structurally and mechanically evolved. Alternatively, the medieval treadwheel may represent a deliberate reinvention of its Roman counterpart drawn from Vitruvius' De architectura which was available in many monastic libraries. Its reintroduction may have been inspired, as well, by the observation of the labor-saving qualities of the waterwheel with which early treadwheels shared many structural similarities.Structure and placementThe medieval treadwheel was a large wooden wheel turning around a central shaft with a treadway wide enough for two workers walking side by side. While the earlier 'compass-arm' wheel had spokes directly driven into the central shaft, the more advanced 'clasp-arm' type featured arms arranged as chords to the wheel rim, giving the possibility of using a thinner shaft and providing thus a greater mechanical advantage.Contrary to a popularly held belief, cranes on medieval building sites were neither placed on the extremely lightweight scaffolding used at the time nor on the thin walls of the Gothic churches which were incapable of supporting the weight of both hoisting machine and load. Rather, cranes were placed in the initial stages of construction on the ground, often within the building. When a new floor was completed, and massive tie beams of the roof connected the walls, the crane was dismantled and reassembled on the roof beams from where it was moved from bay to bay during construction of the vaults. Thus, the crane ‘grew’ and ‘wandered’ with the building with the result that today all extant construction cranes in England are found in church towers above the vaulting and below the roof, where they remained after building construction for bringing material for repairs aloft.Less frequently, medieval illuminations also show cranes mounted on the outside of walls with the stand of the machine secured to putlogs.Mechanics and operationIn contrast to modern cranes, medieval cranes and hoists - much like their counterparts in Greece and Rome - were primarily capable of a vertical lift, and not used to move loads for a considerable distance horizontally as well. Accordingly, lifting work was organized at the workplace in a different way than today. In building construction, for example, it is assumed that the crane lifted the stone blocks either from the bottom directly into place, or from a place opposite the centre of the wall from where it could deliver the blocks for two teams working at each end of the wall. Additionally, the crane master who usually gave orders at the treadwheel workers from outside the crane was able to manipulate the movement laterally by a small rope attached to the load. Slewing cranes which allowed a rotation of the load and were thus particularly suited for dockside work appeared as early as 1340. While ashlar blocks were directly lifted by sling, lewis or devil's clamp (German Teufelskralle), other objects were placed before in containers like pallets, baskets, wooden boxes or barrels.It is noteworthy that medieval cranes rarely featured ratchets or brakes to forestall the load from running backward. This curious absence is explained by the high friction force exercised by medieval treadwheels which normally prevented the wheel from accelerating beyond control. Harbor usageAccording to the "present state of knowledge" unknown in antiquity, stationary harbor cranes are considered a new development of the Middle Ages. The typical harbor crane was a pivoting structure equipped with double treadwheels. These cranes were placed docksides for the loading and unloading of cargo where they replaced or complemented older lifting methods like see-saws, winches and yards.Two different types of harbor cranes can be identified with a varying geographical distribution: While gantry cranes which pivoted on a central vertical axle were commonly found at the Flemish and Dutch coastside, German sea and inland harbors typically featured tower cranes where the windlass and treadwheels were situated in a solid tower with only jib arm and roof rotating. Interestingly, dockside cranes were not adopted in the Mediterranean region and the highly developed Italian ports where authorities continued to rely on the more labor-intensive method ofunloading goods by ramps beyond the Middle Ages.Unlike construction cranes where the work speed was determined by the relatively slow progress of the masons, harbor cranes usually featured double treadwheels to speed up loading. The two treadwheels whose diameter is estimated to be 4 m or larger were attached to each side of the axle and rotated together. Today, according to one survey, fifteen treadwheel harbor cranes from pre-industrial times are still extant throughout Europe.[28] Beside these stationary cranes, floating cranes which could be flexibly deployed in the whole port basin came into use by the 14th century.RenaissanceA lifting tower similar to that of the ancient Romans was used to great effect by the Renaissance architect Domenico Fontana in 1586 to relocate the 361 t heavy Vatican obelisk in Rome. From his report, it becomes obvious that the coordination of the lift between the various pulling teams required a considerable amount of concentration and discipline, since, if the force was not applied evenly, the excessive stress on the ropes would make them rupture.Early modern ageCranes were used domestically in the 17th and 18th century. The chimney or fireplace crane was used to swing pots and kettles over the fire and the height was adjusted by a trammel.4. Types of the cranesMobileMain article: Mobile craneThe most basic type of mobile crane consists of a truss or telescopic boom mounted on a mobile platform - be it on road, rail or water.FixedExchanging mobility for the ability to carry greater loads and reach greater heights due to increased stability, these types of cranes are characterized that they, or at least their main structure does not move during the period of use. However, many can still be assembled and disassembled.外文翻译起重机的历史1. 概况第一台具有机械结构的起重机是由古希腊人发明的,并且由人或者是牲畜比如驴,作为动力源。
毕业论文外文资料翻译-现代起重机的特征和发展趋向
Characteristics and DevelopmentalTendency of Modern CranesWith rapid development of modern science and technology, magnification of industrial production scale and improvement of automation level, application of cranes is becoming widespread and its function is obvious. Meanwhile, requirements for cranes are more and more strict. Especially, the widespread use of electronic computer technology spurs lots of subject-crossing advanced design approaches and accelerates the improvement of modern manufacturing and detecting technology. Fierce competition in international market becomes more dependent on the competition of technology. All of these impel technological functions of cranes into a brand-new developmental stage. Cranes are facing a tremendous transformation.Our country is entering global international competitive market at an unprecedented rate and crane manufacture is confronted with a new situation where opportunities and challenges coexist. Thus, it is crucial for cranes to develop and innovate constantly. I want to make a brief explanation about characteristics and developmental tendency of modern cranes with examples, based on new theories, technology and trend of cranes at home and overseas.1.Make the key products large, high speed, endured and specializedBecause of continuous expansion of industrial production scale, increasingly improvement of production efficiency and rising proportion of money spending on loading and unloading and transporting materials in the process of production, required amount of large or high-speed cranes is increasing. Lifting quantities become larger, working speed becomes higher and requirements of energy-consuming and reliability become stricter. Cranes have already become a critical link in the process of automation production. Cranes should be easy to use, maintain and operate and have high security, less troubles and long average time between failures. The central issue in international market production competition is reliability, and many companies abroad have drawn up inter-controlled standard of reliability. The most important for us to catch up with and surpass world advanced level of crane’s function is to improve reliability, to make cranes durable, less troubles, maintainable and economic to be used.At the moment, the biggest floating crane in the world weighs 6500t, chain crane 3000t and bridge crane 1200t.Diversity of industrial mode of production and customers’need makes crane market expanding and products renewing constantly to satisfy special needs with specific functions and bring its best usefulness into play. Functions of various kinds of cranes are improving. DEMAG ERGOTECH has developed a crane special for aircraft maintenance, which has made its own way into international market. This crane is great in length and lifting height and has accurate halt. When a flexible maintenance platform fixed under lifting cart, it can reach every part of the aircraft. With the fast development of nuclear power stations in the world, cranes which are special for them achieve corresponding development. For example, annular bridge crane in reactors’space, working under radiative circumstances, is used to lift dangerous load such as top cover of pressure container and components in reactors. It requires high reliability, high security, the ability to determine location accurately and automatically and transfer goods to a lower level, as well as various kinds of protection and particular security devices.2. Make series of production modularized, combined, standardized and practicalMost cranes are produced by series and batch, thus use of systematic multi-objections entire optimization to design series of cranes has already become the key point in development. Through rational matching of series main parameter, its functions can be improved, manufacturing cost can be reduced, and degree of general purpose can be raised. Use less specification spare parts to compose series production with multi-species and multi-specifications. And thus, the requirements of customers can be fully satisfied.By using modularized design instead of conservative entire design, we can make components with similar functions into standard modules which have various uses, similar connective key factors and are interchangeable. Through combination of different modules, we can make different kinds and specifications of cranes. There are only several modules involved when it comes to crane improvement. To design a new style of crane, all that you do is to choose different modules to recompose. Because of improvement in degree of general purpose, single products with small serial production can transform into module production of pretty great batches. As a result, we can achieve specialization production with high efficiency and cut manufacturing cost. It can satisfy marketing demands and increase competitive capacity by composing cranes of various series and specifications using less modularized forms.Bridge crane produced by DEMAG ERGOTECH considered carefully modularization and combination. It makes inter-parameter of series, entirety, mechanism and components matched with each other. The distribution of capacity obtains most economic and suitable effects. To make the main components of lifting mechanism reaches its largest general purpose, the method that the result of lifting weights multiplying lifting speed is a constant has been used. There are more specifications derived through changes of pulley multiplying power. Series of 5-125t bridge cranes only need four basic lifting carts even with various working ranks. Module series of standard wheel cases, which are produced by the company, have various groups of linking holes which can choose different drive unit to form platform carts. They can also combine with metal construction components to be used as running machine of various kinds of cranes; its wheels have several forms of surfaces to be chosen. Because of no basic distance limit and flexible combination, they are widely used. The company’s series of end bridge standard modules have commercialized. It resorts to frictional cycle and high intensity bolt link which improves interchange and accuracy of sizes and reduces machining of connecting covers. It can connect to each main beam quickly and effectively. There are two kinds of end beam modules; one is suitable for single beam and the other is for double beams. According to length and weights, end beam style can be decided.3. Make productions for general purposes small, light, simple and diversifiedThere are quite a number of cranes used in general workshop and storehouse, and thus they have light work and the requirement is not very strict. How to improve application of these cranes and to cut manufacturing cost is critical to win in the marketing competition. Considering comprehensive benefit, the need to decrease the height of cranes as low as possible, to simplify the constructions and to reduce weights and wheel pressure can also decrease structure’s height, lighten structure composition and reduce cost of producing and maintenance. So there will be fast development of electric calabash bridge and light beam cranes, and bridge cranes for general purposes will be replaced by them.The needs of customers advance diversity of cranes. Series parameter scale of cranes expanding and functions enlarging, product of one machine for several useswill obtain further development to increase capacity of dealing with emergencies. The proportion of using wireless remote control under normal conditions will increase.DEMAG ERGOTECH has formed standard crane series of light combinations after long period explosion and innovation. The whole series compose of various productions such as combination “工” style single beam, hanging case single beam, horn cart case single beam and case double beams. There are altogether fifteen forms of connection between main beam and end beam. This is suitable for needs of different structure and lifting goods. Each specification of crane has three single speeds and three double speeds to be chosen. There are seven operating ways. In addition, different electric conduction pattern and different electric control pattern can match hundreds and thousands of cranes through different combinations to fully satisfy different needs of customers. Another advantage of the crane is that they are light. Compared to productions at home, its lifting weight is 32t and length 25.5m compared to 46.4t------weight of double beams cranes in our country, 28.3t------ electric calabash bridge cranes. Weight of DEMAG electric calabash bridge crane is only 18.5, which is lighter than domestic productions by 60 percent and 35percent respectively.现代起重机的特征和发展趋向随着现代科学技术的迅速发展,工业生产规模的扩大和自动化程度的提高,起重机在现代化生产过程中应用越来越广,作用愈来愈大,对起重机的要求也越来越高。
机械外文文献翻译----起重机调度与空间限制
毕业设计方案中起重机的英文翻译
The Use and History of CraneEvery time we see a crane in action we remains without words, these machines are sometimes really huge, taking up tons of material hundreds of meters in height. We watch with amazement and a bit of terror, thinking about what would happen if the load comes off or if the movement of the crane was wrong. It is a really fascinating system, surprising both adults and children. These are especially tower cranes, but in reality there are plenty of types and they are in use for centuries. The cranes are formed by one or more machines used to create a mechanical advantage and thus move large loads. Cranes are equipped with a winder, a wire rope or chain and sheaves that can be used both to lift and lower materials and to move them horizontally. It uses one or more simple machines to create mechanical advantage and thus move loads beyond the normal capability of a human. Cranes are commonly employed in the transport industry for the loading and unloading of freight, in the construction industry for the movement of materials and in the manufacturing industry for the assembling of heavy equipment.1. OverviewThe first construction cranes were invented by the Ancient Greeks and were powered by men or beasts of burden, such as donkeys. These cranes were used forthe construction of tall buildings. Larger cranes were later developed, employing the use of human treadwheels, permitting the lifting of heavier weights. In the High Middle Ages, harbor cranes were introduced to load and unload ships and assist with their construction –some were built into stone towers for extra strength and stability. The earliest cranes were constructed from wood, but cast iron and steel took over with the coming of the Industrial Revolution.For many centuries, power was supplied by the physical exertion of men or animals, although hoists in watermills and windmills could be driven by the harnessed natural power. The first 'mechanical' power was provided by steam engines, the earliest steam crane being introduced in the 18th or 19th century, with many remaining in use well into the late 20th century. Modern cranes usually use internal combustion engines or electric motors and hydraulic systems to provide a much greater lifting capability than was previously possible, although manual cranes are still utilized where the provision of power would be uneconomic.Cranes exist in an enormous variety of forms –each tailored to a specific use. Sizes range from the smallest jib cranes, used inside workshops, to the tallest tower cranes, used for constructing high buildings. For a while, mini - cranes are also used for constructing high buildings, in order tofacilitate constructions by reaching tight spaces. Finally, we can find larger floating cranes, generally used to build oil rigs and salvage sunken ships. This article also covers lifting machines that do not strictly fit the above definition of a crane, but are generally known as cranes, such as stacker cranes and loader cranes.2. HistoryAncient GreeceThe crane for lifting heavy loads was invented by the Ancient Greeks in the late 6th century BC. The archaeological record shows that no later than c.515 BC distinctive cuttings for both lifting tongs and lewis irons begin to appear on stone blocks of Greek temples. Since these holes point at the use of a lifting device, and since they are to be found either above the center of gravity of the block, or in pairs equidistant from a point over the center of gravity, they are regarded by archaeologists as the positive evidence required for the existence of the crane.The introduction of the winch and pulley hoist soon lead to a widespread replacement of ramps as the main means of vertical motion. For the next two hundred years, Greek building sites witnessed a sharp drop in the weights handled, as the new lifting technique made the use of several smaller stones more practical than of fewer larger ones. In contrast to the archaic period with its tendency to ever-increasing block sizes, Greek temples of theclassical age like the Parthenon invariably featured stone blocks weighing less than 15-20 tons. Also, the practice of erecting large monolithic columns was practically abandoned in favor of using several column drums.Although the exact circumstances of the shift from the ramp to the crane technology remain unclear, it has been argued that the volatile social and political conditions of Greece were more suitable to the employment of small, professional construction teams than of large bodies of unskilled labor, making the crane more preferable to the Greek polis than the more labor-intensive ramp which had been the norm in the autocratic societies of Egypt or Assyria.The first unequivocal literary evidence for the existence of the compound pulley system appears in the Mechanical Problems (Mech. 18, 853a32-853b13> attributed to Aristotle (384-322 BC>, but perhaps composed at a slightly later date. Around the same time, block sizes at Greek temples began to match their archaic predecessors again, indicating that the more sophisticated compound pulley must have found its way to Greek construction sites by then.Ancient RomeThe heyday of the crane in ancient times came during the Roman Empire, when construction activity soared and buildings reached enormous dimensions. The Romans adopted the Greek crane and developed it further. We are relatively well informed about theirlifting techniques, thanks to rather lengthy accounts by the engineers Vitruvius (De Architectura 10.2, 1-10> and Heron of Alexandria (Mechanica 3.2-5>. There are also two surviving reliefs of Roman treadwheel cranes, with the Haterii tombstone from the late first century AD being particularly detailed.The simplest Roman crane, the Trispastos, consisted of a single-beam jib, a winch, a rope, and a block containing three pulleys. Having thus a mechanical advantage of 3:1, it has been calculated that a single man working the winch could raise 150 kg (3 pulleys x 50 kg = 150>, assuming that 50 kg represent the maximum effort a man can exert over a longer time period. Heavier crane types featured five pulleys (Pentaspastos> or, in case of the largest one, a set of three by five pulleys (Polyspastos> and came with two, three or four masts, depending on the maximum load. The Polyspastos, when worked by four men at both sides of the winch, could already lift 3000 kg (3 ropes x 5 pulleys x 4 men x 50 kg = 3000 kg>. In case the winch was replaced by a treadwheel, the maximum load even doubled to 6000 kg at only half the crew, since the treadwheel possesses a much bigger mechanical advantage due to its larger diameter. This meant that, in comparison to the construction of the Egyptian Pyramids, where about 50 men were needed to move a 2.5 ton stone block up the ramp (50 kg per person>, the lifting capability ofthe Roman Polyspastos proved to be 60 times higher (3000 kg per person>.However, numerous extant Roman buildings which feature much heavier stone blocks than those handled by the Polyspastos indicate that the overall lifting capability of the Romans went far beyond that of any single crane. At the temple of Jupiter at Baalbek, for instance, the architrave blocks weigh up to 60 tons each, and one corner cornice block even over 100 tons, all of them raised to a height of about 19 m. In Rome, the capital block of Trajan's Column weighs 53.3 tons, which had to be lifted to a height of about 34 m (see construction of Trajan's Column>.It is assumed that Roman engineers lifted these extraordinary weights by two measures (see picture below for comparable Renaissance technique>: First, as suggested by Heron, a lifting tower was set up, whose four masts were arranged in the shape of a quadrangle with parallel sides, not unlike a siege tower, but with the column in the middle of the structure (Mechanica 3.5>. Second, a multitude of capstans were placed on the ground around the tower, for, although having a lower leverage ratio than treadwheels, capstans could be set up in higher numbers and run by more men (and, moreover, by draught animals>. This use of multiple capstans is also described by Ammianus Marcellinus (17.4.15> in connection with the lifting of the Lateranense obelisk in the Circus Maximus (ca. 357 AD>. Themaximum lifting capability of a single capstan can be established by the number of lewis iron holes bored into the monolith. In case of the Baalbek architrave blocks, which weigh between 55 and 60 tons, eight extant holes suggest an allowance of 7.5 ton per lewis iron, that is per capstan. Lifting such heavy weights in a concerted action required a great amount of coordination between the work groups applying the force to the capstans.Middle AgesDuring the High Middle Ages, the treadwheel crane was reintroduced on a large scale after the technology had fallen into disuse in western Europe with the demise of the Western Roman Empire. The earliest reference to a treadwheel (magna rota> reappears in archival literature in France about 1225, followed by an illuminated depiction in a manuscript of probably also French origin dating to 1240. In navigation, the earliest uses of harbor cranes are documented for Utrecht in 1244, Antwerp in 1263, Brugge in 1288 and Hamburg in 1291, while in England the treadwheel is not recorded before 1331.Generally, vertical transport could be done more safely and inexpensively by cranes than by customary methods. Typical areas of application were harbors, mines, and, in particular, building sites where the treadwheel crane played a pivotal role in the construction of the lofty Gothic cathedrals. Nevertheless, both archival and pictorial sources ofthe time suggest that newly introduced machines like treadwheels or wheelbarrows did not completely replace more labor-intensive methods like ladders, hods and handbarrows. Rather, old and new machinery continued to coexist on medieval construction sites and harbors.Apart from treadwheels, medieval depictions also show cranes to be powered manually by windlasses with radiating spokes, cranks and by the 15th century also by windlasses shaped like a ship's wheel. To smooth out irregularities of impulse and get over 'dead-spots' in the lifting process flywheels are known to be in use as early as 1123.The exact process by which the treadwheel crane was reintroduced is not recorded, although its return to construction sites has undoubtedly to be viewed in close connection with the simultaneous rise of Gothic architecture. The reappearance of the treadwheel crane may have resulted from a technological development of the windlass from which the treadwheel structurally and mechanically evolved. Alternatively, the medieval treadwheel may represent a deliberate reinvention of its Roman counterpart drawn from Vitruvius' De architectura which was available in many monastic libraries. Its reintroduction may have been inspired, as well, by the observation of the labor-saving qualities of the waterwheel with which early treadwheels shared many structural similarities.Structure and placementThe medieval treadwheel was a large wooden wheel turning around a central shaft with a treadway wide enough for two workers walking side by side. While the earlier 'compass-arm' wheel had spokes directly driven into the central shaft, the more advanced 'clasp-arm' type featured arms arranged as chords to the wheel rim, giving the possibility of using a thinner shaft and providing thus a greater mechanical advantage.Contrary to a popularly held belief, cranes on medieval building sites were neither placed on the extremely lightweight scaffolding used at the time nor on the thin walls of the Gothic churches which were incapable of supporting the weight of both hoisting machine and load. Rather, cranes were placed in the initial stages of construction on the ground, often within the building. When a new floor was completed, and massive tie beams of the roof connected the walls, the crane was dismantled and reassembled on the roof beams from where it was moved from bay to bay during construction of the vaults. Thus, the crane ‘grew’ and ‘wandered’ with the building with the result that today all extant construction cranes in England are found in church towers above the vaulting and below the roof, where they remained after building construction for bringing material for repairs aloft.Less frequently, medieval illuminations also show cranes mounted on the outside of walls with the stand of the machine secured to putlogs.Mechanics and operationIn contrast to modern cranes, medieval cranes and hoists - much like their counterparts in Greece and Rome - were primarily capable of a vertical lift, and not used to move loads for a considerable distance horizontally as well. Accordingly, lifting work was organized at the workplace in a different way than today. In building construction, for example, it is assumed that the crane lifted the stone blocks either from the bottom directly into place, or from a place opposite the centre of the wall from where it could deliver the blocks for two teams working at each end of the wall. Additionally, the crane master who usually gave orders at the treadwheel workers from outside the crane was able to manipulate the movement laterally by a small rope attached to the load. Slewing cranes which allowed a rotation of the load and were thus particularly suited for dockside work appeared as early as 1340. While ashlar blocks were directly lifted by sling, lewis or devil's clamp (German Teufelskralle>, other objects were placed before in containers like pallets, baskets, wooden boxes or barrels.It is noteworthy that medieval cranes rarely featured ratchets or brakes to forestall the load from running backward. This curious absence isexplained by the high friction force exercised by medieval treadwheels which normally prevented the wheel from accelerating beyond control.Harbor usageAccording to the "present state of knowledge" unknown in antiquity, stationary harbor cranes are considered a new development of the Middle Ages. The typical harbor crane was a pivoting structure equipped with double treadwheels. These cranes were placed docksides for the loading and unloading of cargo where they replaced or complemented older lifting methods like see-saws, winches and yards.Two different types of harbor cranes can be identified with a varying geographical distribution: While gantry cranes which pivoted on a central vertical axle were commonly found at the Flemish and Dutch coastside, German sea and inland harbors typically featured tower cranes where the windlass and treadwheels were situated in a solid tower with only jib arm and roof rotating. Interestingly, dockside cranes were not adopted in the Mediterranean region and the highly developed Italian ports where authorities continued to rely on the more labor-intensive method of unloading goods by ramps beyond the Middle Ages.Unlike construction cranes where the work speed was determined by the relatively slow progress of the masons, harbor cranes usually featured double treadwheels to speed up loading. The two treadwheelswhose diameter is estimated to be 4 m or larger were attached to each side of the axle and rotated together. Today, according to one survey, fifteen treadwheel harbor cranes from pre-industrial times are still extant throughout Europe.[28] Beside these stationary cranes, floating cranes which could be flexibly deployed in the whole port basin came into use by the 14th century.RenaissanceA lifting tower similar to that of the ancient Romans was used to great effect by the Renaissance architect Domenico Fontana in 1586 to relocate the 361 t heavy Vatican obelisk in Rome. From his report, it becomes obvious that the coordination of the lift between the various pulling teams required a considerable amount of concentration and discipline, since, if the force was not applied evenly, the excessive stress on the ropes would make them rupture.Early modern ageCranes were used domestically in the 17th and 18th century. The chimney or fireplace crane was used to swing pots and kettles over the fire and the height was adjusted by a trammel.3. Mechanical principlesThere are two major considerations in the design of cranes. The first is that the crane must be able to lift a load of a specified weight and the second is that the crane must remain stable and not toppleover when the load is lifted and moved to another location.Lifting capacityCranes illustrate the use of one or more simple machines to create mechanical advantage.•The lever. A balance crane contains a horizontal beam (the lever> pivoted about a point called the fulcrum. The principle of the lever allows a heavy load attached to the shorter end of the beam to be lifted by a smaller force applied in the opposite direction to the longer end of the beam. The ratio of the load's weight to the applied force is equal to the ratio of the lengths of the longer arm and the shorter arm, and is called the mechanical advantage.•The pulley. A jib crane contains a tilted strut (the jib> that supports a fixed pulley block.Cables are wrapped multiple times round the fixed block and round another block attached to the load. When the free end of the cable is pulled by hand or by a winding machine, the pulley system delivers a force to the load that is equal to the applied force multiplied by the number of lengths of cable passing between the two blocks. This number is the mechanical advantage.•The hydraulic cylinder. This can be used directly to lift the load or indirectly to move the jib or beam that carries another lifting device.Cranes, like all machines, obey the principle of conservation of energy. This means that the energy delivered to the load cannot exceed the energy put into the machine. For example, if a pulley system multiplies the applied force by ten, then the load moves only one tenth as far as the applied force. Since energy is proportional to force multiplied by distance, the output energy is kept roughly equal to the input energy (in practice slightly less, because some energy is lost to friction and other inefficiencies>.StabilityFor stability, the sum of all moments about any point such as the base of the crane must equate to zero. In practice, the magnitude of load that is permitted to be lifted (called the "rated load" in the US> is some value less than the load that will cause the crane to tip (providing a safety margin>.Under US standards for mobile cranes, the stability-limited rated load for a crawler crane is 75% of the tipping load. The stability-limited rated load for a mobile crane supported on outriggers is 85% of the tipping load. These requirements, along with additional safety-related aspects of crane design, are established by the American Society of Mechanical Engineers in the volume ASME B30.5-2007 Mobile and Locomotive Cranes.Standards for cranes mounted on ships or offshore platforms are somewhat stricter because of thedynamic load on the crane due to vessel motion. Additionally, the stability of the vessel or platform must be considered.For stationary pedestal or kingpost mounted cranes, the moment created by the boom, jib, and load is resisted by the pedestal base or kingpost. Stress within the base must be less than the yield stress of the material or the crane will fail.4. Types of the cranesMobileMain article: Mobile craneThe most basic type of mobile crane consists of a truss or telescopic boom mounted on a mobile platform - be it on road, rail or water.FixedExchanging mobility for the ability to carry greater loads and reach greater heights due to increased stability, these types of cranes are characterized that they, or at least their main structure does not move during the period of use. However, many can still be assembled and disassembled.5. Overhead CranesUseThe most common overhead crane use is in the steel industry. Every step of steel, until it leaves a factory as a finished product, the steel is handled by an overhead crane. Raw materials are poured into a furnace by crane, hot steel is stored for cooling by an overhead crane, the finished coils are lifted andloaded onto trucks and trains by overhead crane, and the fabricator or stamper uses an overhead crane to handle the steel in his factory. The automobile industry uses overhead cranes for handling of raw materials. Smaller workstation cranes handle lighter loads in a work-area, such as CNC mill or saw.HistoryAlton Shaw, of the Shaw Crane Company, is credited with the first overhead crane, in 1874. Alliance Machine, now defunct, holds an AISE citation for one of the earliest cranes as well. This crane was in service until approximately 1980, and is now in a museum in Birmingham, Alabama. Over the years important innovations, such as the Weston load brake (which is now rare> and the wire rope hoist (which is still popular>, have come and gone. The original hoist contained components mated together in what is now called the built-up style hoist. These built up hoists are used for heavy-duty applications such as steel coil handling and for users desiring long life and better durability. They also provide for easier maintenance. Now many hoists are package hoists, built as one unit in a single housing, generally designed for ten-year life or less.Notable cranes and dates•1874: Alton Shaw develops t he first overhead crane.•1938: Yale introduces the Cable-King hoist.•1944: Shepard-Niles supplies a hoist for lifting atomic bombs for testing in New Mexico.•1969: Power Electronics International, Inc. developed the overhead hoist variable speed drive. •1983: The world's biggest overhead crane from Bardella Company starts its operation at Itaipu dam Hydro Power Plant Brazil.•1997: Industry giant P&H files for chapter eleven bankruptcy. Later renamed Morris Material Handling but still using the P&H tradename, they again went bankrupt.•1998: Dearborn Crane supplies two 500-ton capacity overhead cranes to Verson Press of Chicago. The cranes were never used due to Verson's bankruptcy.。
机床的介绍作文英文带翻译
机床的介绍作文英文带翻译英文:As a manufacturing engineer, I have had the opportunity to work with various types of machine tools, including the versatile and essential machine tool known as a lathe. A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, and turning, with tools that are applied to the workpieceto create an object with symmetry about that axis.The lathe is an incredibly versatile machine tool that can be used to create a wide range of objects, from simple cylindrical shafts and rings to complex engine crankshafts and camshafts. The ability to precisely shape and finish metal, wood, and other materials makes the lathe an indispensable tool in manufacturing and machining processes.One of the key features of a lathe is its ability toperform both symmetrical and asymmetrical turning operations. This means that it can be used to create objects that are perfectly symmetrical, such as a chess piece, as well as objects that have unique and irregular shapes, such as a custom-designed tool handle. The lathe's versatility makes it an essential tool for prototype development and custom part manufacturing.In addition to its versatility, the lathe is also known for its precision and accuracy. By carefully adjusting the speed, feed rate, and cutting tools, a skilled machinist can create objects with incredibly tight tolerances and smooth surface finishes. This level of precision is essential in industries such as aerospace, automotive, and medical device manufacturing, where even the smallest deviation from design specifications can have serious consequences.Overall, the lathe is a crucial machine tool in the world of manufacturing and machining. Its versatility, precision, and ability to create a wide range of objects make it an indispensable tool for engineers, machinists,and manufacturers.中文:作为一名制造工程师,我有机会与各种类型的机床打交道,其中包括一种多功能且必不可少的机床——车床。
起重机-港口机械专业英语词汇
HSR(火工矫正报告)heat straightening report
edge
angle
below
bottom
camber
oriention
key plan
图纸描述单一mono
图纸描述待定later
图纸描述合适的applicable 图纸描述辅助的auxiliary
图纸描述避免avoid
图纸描述深度depth
图纸描述描述description 图纸描述名称designation 图纸描述详图details
图纸描述直径diameter
图纸描述尺寸dimension
图纸描述正面图elevation
图纸描述膨胀expansion
图纸描述适宜的fitted
图纸描述间距gap
图纸描述缀板guesset
图纸描述增加量increment
图纸描述中间intermediary 图纸描述允许permit
图纸描述相似的similar
图纸描述形状shape
图纸描述表scheudule
图纸描述剖面sections
图纸描述硬/强硬的stiff
图纸描述厚thick
图纸描述薄的thin
图纸描述穿过thru
图纸描述紧固tight
图纸描述桁架truss
图纸描述典型的typical 图纸描述单位unite
图纸描述垂直vertical 图纸描述宽width。
起重机的发展与介绍外文文献翻译、中英文翻译、外文翻译
(6)空间尺寸和重量
(7)稳定性:固定起重机的锚钉、压板或其它装置应保证起重机在工作情况下,起重臂各个方向的稳定保证,在暴风雨等恶劣条件下起重机稳定。
如果是有轨起重机,固定装置在计算起重机稳定性时不应计算在内。
2.起重机的重要零件
吊钩
吊钩用来提取重物,可分为单钩和多钩或板钩。尽管通常的做法是将吊钩悬挂在(滑轮组)壳体内的滑轮上,当装卸。当货物达到40吨时应采用抗剪铆接吊钩B.S3017或三角型B.S3317吊钩,还需装置锁定机构,防止吊钩旋转。
制动器
制动装置是起重机提升重物过程的一个重要装置电力起重机装有一个自动的电控制动器,当货物突然失控时它将由交流螺旋线圈起动,为防止重物下降时失速,有时装上一个离心式制动器,但采用电位计动态控制的电制动器能使重物放慢速度达到正确移动效果,产生的力矩可使功力装置对其灵活的控制。在沃特连纳德系统中经常会用到一个大型动力装置,它可以单一控制的传动装置高速,它的动力发生器可节约通用控制器的花费,制动器由高强度金属制成,有光滑的摩擦表面、无裂纹.
介绍
在修桥筑路等建设中,常常有大量的物料、零部件、成品需要运输,大量的物料搬运在建筑工地、采石厂、铁路、港口和仓库中都存在。水泥厂、灰泥厂和长期加强混泥产品都需要各种物料提升机械。在仓库等场所所做维修工作,也将用到起重机械可作间歇作业或连续作业。
根据机械作用目的不同,可分为以下主要两类:
a起重机械 如:绞车、千斤顶、升降机和连续起重机;
译文标题
起重机的发展与介绍
原文标题
Cranedevelopmentand Introduction
作者
Elkeson
译名
埃尔克森
英文介绍吊车的作文
英文介绍吊车的作文A crane is a type of machine used for lifting and moving heavy objects. It has a long arm with a hook or other attachment at the end, which can be raised and lowered to lift and transport materials.Cranes are commonly used in construction sites to move large building materials such as steel beams and concrete blocks. They are also used in ports to load and unload cargo from ships, as well as in warehouses to stack and move goods.There are different types of cranes, including tower cranes, mobile cranes, and overhead cranes. Each type has its own specific uses and advantages, depending on the job requirements and site conditions.Operating a crane requires skill and precision, as the operator must carefully control the movement of the arm and the load to ensure safety and efficiency. Training andcertification are usually required for crane operators to ensure proper operation and prevent accidents.Overall, cranes play a crucial role in various industries and are essential for lifting and moving heavy objects in a safe and efficient manner. Their versatility and power make them indispensable tools for many construction and industrial projects.。
机械毕业设计英文外文翻译多螺旋千斤顶
机械毕业设计英文外文翻译多螺旋千斤顶Translation:Title: English Translation of Mechanical Graduation Design - Multiple Screw JackLength: 1200 words or moreAbstract:1. IntroductionThe traditional single screw jack has limitations in termsof lifting capacity due to the limitations of its structure. In order to meet the demand for heavy lifting in various industries, a multiple screw jack is designed. The multiple screw jack consists of several screw shafts connected in parallel or in series, allowing for a higher lifting capacity with the same operating force. The design and analysis of the multiple screw jack are the main focus of this paper.2. Design and Calculation2.1 Screw Pitch SelectionThe selection of screw pitch is crucial to the performanceof the multiple screw jack. A smaller screw pitch results in a higher load capacity, but also requires more operating force. On the other hand, a larger screw pitch reduces the load capacitybut requires less operating force. The optimal screw pitch isdetermined through calculations considering the load requirements and operating force limitations.2.2 Load Capacity CalculationThe load capacity of the multiple screw jack is determined by the diameter and material of the screw shafts, as well as the number of screw shafts used. The load capacity can be calculated using the formula:Load Capacity = (π * (d^2) * σ) / 4where d is the diameter of the screw shaft and σ is the allowable stress of the material.2.3 Operating Force CalculationThe operating force required to lift a given load can be calculated using the formula:Operating Force = Load / (n * α * η * P)where Load is the desired lifting load, n is the number of screw shafts, α is the lead angle of the screw, η is the efficiency of the screw, and P is the pitch of the screw.3. Finite Element Analysis4. Results and DiscussionThe results of the finite element analysis show that the maximum stress and deformation of the multiple screw jack arewithin the allowable limits. Therefore, the design is considered safe and capable of lifting heavy loads efficiently.5. Conclusion。
中英文文献翻译-起重机
1.1起重机简介起重机是一种用来起重与空中搬运重物的机械设备,广泛应用于工矿企业、车站、港口、仓库、建筑工地等部门。
它对减轻工人劳动强度、提高劳动生产率、促进生产过程机械化起着重要作用,是现代化生产中不可缺少的工具。
起重机包括桥式、门式、梁氏和旋转式等多种,其中以桥式起重机的应用最广。
桥式类起重机又分为通用桥式起重机、冶金专用起重机、龙门起重机与缆索起重机等。
桥式起重机是桥架在高架轨道上运行的一种桥架型起重机,又称天车。
桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行,起重小车沿铺设在桥架上的轨道横向运行,构成一矩形的工作范围,就可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。
1.1.1普通桥式起重机组成部分(1)桥架(又称大车)桥架是起重机的基本构件,由主梁、端梁、走台等部分组成。
(2)大车移动机构大车移动机构由大车拖动电动机、联轴节、减速器、制动器及车轮等部分。
整个桥式起重机在大车移动机构拖动下沿车间长度方向的导轨移动。
(3)小车小车安放在桥架导轨上,可沿车间宽度方向移动。
小车移动机构由小车电动机、制动器、联轴节、减速器、车轮等部分组成。
(4)提升机构提升机构由提升电动机、提升减速器、制动器、卷筒、静滑轮、吊钩等部分组成。
提升电动机经联轴节、制动轮与减速器联接,钢丝绳另一端装有吊钩。
当卷筒转动时,吊钩就随钢丝绳在卷筒上缠绕而上升或下降,对于起重量在15t以上的提升机构,一般配备两套吊钩上随着卷筒而获得上下运动,随着小车在宽度方向获得左右运动,随着大车沿车间长度方向作前后运动,所以就实现了重物在垂直、纵向、横向三个方向的运动,将重物移动到车向的任一位置。
(5)驾驶室驾驶室是操纵起重机的吊舱,驾驶室一般固定在主梁一端的下面,也有少数装在小车下方随小车移动,驾驶室内有小车、大车、提升机构的控制装置及保护装置。
1.1.2桥式起重机的工作原理起重机由大车电动机驱动沿车间两边的轨道作纵向前后运动;小车及提升机构由小车电动机驱动沿桥架上的轨道作横向左右运动;在升降重物时由起重电动机驱动作垂直上下运动,实现重物在垂直、横向、纵向三个方向的运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录外文文献原文:The Introduction of cranesA crane is defined as a mechanism for lifting and lowering loads with a hoisting mechanism Shapiro, 1991. Cranes are the most useful and versatile piece of equipment on a vast majority of construction projects. They vary widely in configuration, capacity, mode of operation, intensity of utilization and cost. On a large project, a contractor may have an assortment of cranes for different purposes. Small mobile hydraulic cranes may be used for unloading materials from trucks and for small concrete placement operations, while larger crawler and tower cranes may be used for the erection and removal of forms, the installation of steel reinforcement, the placement of concrete, and the erection of structural steel and precast concrete beams.On many construction sites a crane is needed to lift loads such as concrete skips, reinforcement, and formwork. As the lifting needs of the construction industry have increased and diversified, a large number of general and special purpose cranes have been designed and manufactured. These cranes fall into two categories, those employed in industry and those employed in construction. The most common types of cranes used in construction are mobile, tower, and derrick cranes.1.Mobile cranesA mobile crane is a crane capable of moving under its own power without being restricted to predetermined travel. Mobility is provided by mounting or integrating the crane with trucks or all terrain carriers or rough terrain carriers or by providing crawlers. Truck-mounted cranes have the advantage of being able to move under their own power to the construction site. Additionally, mobile cranes can move about the site, and are often able to do the work of several stationary units.Mobile cranes are used for loading, mounting, carrying large loads and for work performed in the presence of obstacles of various kinds such as power lines and similar technological installations. The essential difficulty is here the swinging of the payload which occurs during working motion and also after the work is completed. This applies particularly to the slewing motion of the crane chassis, for which relatively large angular accelerations and negative accelerations of the chassis are characteristic. Inertia forces together with the centrifugal force and the Carioles force cause the payload to swing as a spherical pendulum. Proper control of the slewing motion of the crane serving to transport a payload to the defined point with simultaneous minimization of the swings when theworking motion is finished plays an important role in the model.Modern mobile cranes include the drive and the control systems. Control systems send the feedback signals from the mechanical structure to the drive systems. In general, they are closed chain mechanisms with flexible members [1].Rotation, load and boom hoisting are fundamental motions the mobile crane. During transfer of the load as well as at the end of the motion process, the motor drive forces, the structure inertia forces, the wind forces and the load inertia forces can result in substantial, undesired oscillations in crane. The structure inertia forces and the load inertia forces can be evaluated with numerical methods, such as the finite element method. However, the drive forces are difficult to describe. During start-up and breaking the output forces of the drive system significantly fluctuate. To reduce the speed variations during start-up and braking the controlled motor must produce torque other than constant [2,3], which in turn affects the performance of the crane.Modern mobile cranes that have been built till today have oft a maximal lifting capacity of 3000 tons and incorporate long booms. Crane structure and drive system must be safe, functionary and as light as possible. For economic and time reasons it is impossible to build prototypes for great cranes. Therefore, it is desirable to determinate the crane dynamic responses with the theoretical calculation.Several published articles on the dynamic responses of mobile crane are available in the open literature. In the mid-seventies Peeken et al. [4] have studied the dynamic forces of a mobile crane during rotation of the boom, using very few degrees of freedom for the dynamic equations and very simply spring-mass system for the crane structure. Later Maczynski et al. [5] studied the load swing of a mobile crane with a four mass-model for the crane structure. Posiadala et al. [6] have researched the lifted load motion with consideration for the change of rotating, booming and load hoisting. However, only the kinematics were studied. Later the influence of the flexibility of the support system on the load motion was investigated by the same author [7]. Recently, Kilicaslan et al. [1] have studied the characteristics of a mobile crane using a flexible multibody dynamics approach. Towarek [16] has concentrated the influence of flexible soil foundation on the dynamic stability of the boom crane. The drive forces, however, in all of those studies were presented by using so called the method of ‘‘kinematics forcing’’ [6] with a ssumed velocities or accelerations. In practice this assumption could not comply with the motion during start-up and braking.A detailed and accurate model of a mobile crane can be achieved with the finite element method. Using non-linear finite element theory Gunthner and Kleeberger [9] studied the dynamic responses of lattice mobile cranes. About 2754 beam elements and 80 truss elements were used for modeling of the lattice-boom structure. On this basis a efficient software for mobile crane calculation––NODYA has been developed. However, theinfluences of the drive systems must be determined by measuring on hoisting of the load [10], or rotating of the crane [11]. This is neither efficient nor convenient for computer simulation of arbitrary crane motions.Studies on the problem of control for the dynamic response of rotary crane are also available. Sato et al. [14], derived a control law so that the transfer a load to a desired position will take place that at the end of the transfer of the swing of the load decays as soon as possible. Gustafsson [15] described a feedback control system for a rotary crane to move a cargo without oscillations and correctly align the cargo at the final position. However, only rigid bodies and elastic joint between the boom and the jib in those studies were considered. The dynamic response of the crane, for this reason, will be global.To improve this situation, a new method for dynamic calculation of mobile cranes will be presented in this paper. In this method, the flexible multibody model of the steel structure will be coupled with the model of the drive systems. In that way the elastic deformation, the rigid body motion of the structure and the dynamic behavior of the drive system can be determined with one integrated model. In this paper this method will be called ‘‘complete dynamic calculation for driven“mechanism”.On the basis of flexible multibody theory and the Lagrangian equations, the system equations for complete dynamic calculation will be established. The drive- and control system will be described as differential equations. The complete system leads to a non-linear system of differential equations. The calculation method has been realized for a hydraulic mobile crane. In addition to the structural elements, the mathematical modeling of hydraulic drive- and control systems is decried. The simulations of crane rotations for arbitrary working conditions will be carried out. As result, a more exact representation of dynamic behavior not only for the crane structure, but also for the drive system will be achieved. Based on the results of these simulations the influences of the accelerations, velocities during start-up and braking of crane motions will be discussed.2.Tower cranesThe tower crane is a crane with a fixed vertical mast that is topped by a rotating boom and equipped with a winch for hoisting and lowering loads (Dickie, 990). Tower cranes are designed for situations which require operation in congested areas. Congestion may arise from the nature of the site or from the nature of the construction project. There is no limitation to the height of a high-rise building that can be constructed with a tower crane. The very high line speeds, up to 304.8 mrmin, available with some models yield good production rates at any height. They provide a considerable horizontal working radius, yet require a small work space on the ground (Chalabi, 1989). Some machines can also operate in winds of up to 72.4 km/h, which is far above mobile crane wind limits.The tower cranes are more economical only for longer term construction operations and higher lifting frequencies. This is because of the fairly extensive planning needed forinstallation, together with the transportation, erection and dismantling costs.3. Derrick cranesA derrick is a device for raising, lowering, and/or moving loads laterally. The simplest form of the derrick is called a Chicago boom and is usually installed by being mounted to building columns or frames during or after construction (Shapiro and Shapiro, 1991).This derrick arrangement. (i.e., Chicago boom) becomes a guy derrick when it is mounted to a mast and a stiff leg derrick when it is fixed to a frame.The selection of cranes is a central element of the life cycle of the project. Cranes must be selected to satisfy the requirements of the job. An appropriately selected crane contributes to the efficiency, timeliness, and profitability of the project. If the correct crane selection and configuration is not made, cost and safety implications might be created (Hanna, 1994). Decision to select a particular crane depends on many input parameters such as site conditions, cost, safety, and their variability. Many of these parameters are qualitative, and subjective judgments implicit in these terms cannot be directly incorporated into the classical decision making process. One way of selecting crane is achieved using fuzzy logic approach.Cranes are not merely the largest, the most conspicuous, and the most representative equipment of construction sites but also, at various stages of the project, a real “bottleneck” that slows the pace of the construction process. Although the crane can be found standing idle in many instances, yet once it is involved in a particular task ,it becomes an indispensable link in the activity chain, forcing at least two crews(in the loading and the unloading zones) to wait for the service. As analyzed in previous publications [6-8] it is feasible to automate (or, rather, semi-automate) crane navigation in order to achieve higher productivity, better economy, and safe operation. It is necessary to focus on the technical aspects of the conversion of existing crane into large semi-automatic manipulators. By mainly external devices mounted on the crane, it becomes capable of learning, memorizing, and autonomously navigation to reprogrammed targets or through prêt aught paths.The following sections describe various facets of crane automation:First, the necessary components and their technical characteristics are reviewed, along with some selection criteria. These are followed by installation and integration of the new components into an existing crane. Next, the Man –Machine –Interface (MMI) is presented with the different modes of operation it provides. Finally, the highlights of a set of controlled tests are reported followed by conclusions and recommendations.Manual versus automatic operation: The three major degrees of freedom of common tower cranes are illustrated in the picture. In some cases , the crane is mounted on tracks , which provi de a fourth degree of freedom , while in other cases the tower is “telescope” or extendable , and /or the “jib” can be raised to a diagonal position. Since these additionaldegrees of freedom are not used routinely during normal operation but rather are fixed in a certain position for long periods (days or weeks), they are not included in the routine automatic mode of operation, although their position must be “known” to the control system.外文文献中文翻译:起重机介绍起重机是用来举升机构、抬起或放下货物的器械。