大学物理简谐振动
大学物理简谐运动

电磁振荡的简谐运动
总结词
电磁振荡的简谐运动是指电磁场中的电荷或电流在电 场和磁场的作用下做周期性振动。这种振动可以产生 无线电波,是通信技术中的重要应用之一。
详细描述
电磁振荡的简谐运动是指电磁场中的电荷或电流在电场 和磁场的作用下做周期性振动。这种振动可以产生无线 电波,是通信技术中的重要应用之一。电磁振荡的频率 范围很广,从低频的无线电波到高频的X射线,都可以 通过电磁振荡产生。在通信技术中,电磁振荡被广泛应 用于信号传输、广播、电视等领域。电磁振荡的振荡频 率、幅度和相位都可以通过电路元件进行调节和控制, 从而实现信息的传输和接收。
实验器材与步骤
步骤 1. 安装摆球和支架,确保摆球可以自由摆动。
2. 将光电门传感器放置在摆球的平衡位置附近,并与数据采集器连接。
实验器材与步骤
3. 启动数据采集器, 记录摆球摆动的位置 和时间数据。
5. 将实验结果与理论 值进行比较,验证简 谐运动的规律。
4. 分析数据,计算摆 球的速度和加速度。
简谐运动的特点
位移与时间的关系是正弦 或余弦函数。
速度和加速度随时间按正 弦或余弦规律变化。
回复力与位移大小成正比, 方向相反。
简谐运动的能量是守恒的。
简谐运动的分类
01
根据位移和时间的关系,简谐运动可分为正弦简谐 运动和余弦简谐运动。
02
根据振幅和频率是否变化,简谐运动可分为自由简 谐运动和受迫简谐运动。
对未来科技发展的影响与启示
简谐运动的研究不仅对于当前科技发 展具有重要意义,也为未来科技发展 提供了启示和方向。
通过深入探索简谐运动背后的物理规 律和原理,可以启发新的科技思想和 实验方法,推动物理学和其他学科的 交叉融合和创新发展。
大学物理简谐振动

A2
A
A2 sin 2
2 -1
2
O
1 A1 x2
A1 sin 1
x2 x
x1x1
x2
x
A1 cos1 A2 cos2
合振动振幅:A A12 A22 2A1A2 cos(2 1)
1. 两个分振动的相位相同(同相)
5 (或 3 )
4
4
第六章
机械波
mechanical wave
6.1 机械波的产生、传播和描述 波动: 振动在空间中的传播过程.
机械波: 机械振动在弹性介质中的传播过程. 波动
电磁波: 交变电磁场在空间中的传播过程. 6.1.1 机械波的产生
当弹性介质中的一部分发生振动时,由于介质各个 部分之间的弹性力作用,振动就由近及远地传播出去. (1) 机械波实质上是介质中大量质点参与的集体振动;
20 0.47
(2) 30为何值时, x1+x3 的振幅为最大; 30为何值时, x2+x3的振幅为最小.
x1 0.05cos10t 3 4
x2 0.06cos10t 4
x3 0.07 cos10t 30
30
10
0 时,x1+x3 振幅最大:30
10
3
4
30 20 时,x2+x3 振幅最小:30 20
t 时刻点 P 的振动状态
P点在
t
时刻的位移
y P ,t
yO ,t x
u
A c os [ (t
x) u
0 ]
波函数 (波方程)
y( x, t )
A cos[ (t
大学物理振动

4.1 简谐振动
一.简谐振动
一物理量随时间的变 化规律遵从余弦函数 关系,则称该物理量 作简谐振动。
表达式 x(t)=Acos( t+)
特点 (1)等幅振动 (2)周期振动 x(t)=x(t+T )
-A 0 A
X
表达式 x(t)=Acos( t+)
二. 描述简谐振动的特征量 1. 振幅 A: 即最大位移:x=±A 2. 角频率 (圆频率)ω (弧度/秒:rad/s) 3. 周期T 和频率 v ∵ ωT=2π ∴ T=2π/ω (s) (完成一次全振动所需的时间) 而 v = 1/T =ω/2π (Hz)
a
d2x d t2
2 Acos(
t
0)
2 Acos(
t
0
)
x、 v 、a
2A
A v
A
x
0
-A
- A
- 2A v > 0
<0
a<0 减速
<0 加速
<0 >0 减速
a
T t
>0 >0 加速
解题方法
由初始条件求解振幅和初位相:
设 t =0 时,振动位移:x = x0
振动速度:v = v0
x Acos( t ) xo Acos
谐振系统的总机械能:
E Ek Ep
1 m 2 A2 sin 2 ( t ) 1 kA2 cos2 ( t )
2
2
E
1 2
kA2
1 2m2 A2来自1 2mvm 2
x Acos t
X
Ep
Ek
E 1 kA2
2
X
结论:
大学物理简谐运动课件

05
简谐运动的应用领域
物理学领域的应用
振动与波动实验
01
简谐运动是振动的基本形式之一,在物理学实验中常被用来研
究振动和波动现象,如共振、干涉和衍射等。
弦的振动
02
弦的振动是一种常见的简谐运动,在研究弦乐器的发声机制、
弦振动方程等方面有重要应用。
电磁波的发射与接收
03
在无线电通信和雷达技术中,信号的发射和接收都涉及到电磁
详细描述
简谐运动的位移公式为x=A*sin(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公式用于描述简 谐运动物体在任意时刻的位置变化。
简谐运动的速率公式
总结词
描述简谐运动物体速度大小的公式
详细描述
简谐运动的速率公式为v=A*ω*cos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公 式用于描述简谐运动物体在任意时刻的速度大小。
简谐运动的加速度公式
总结词
描述简谐运动物体加速度大小的公式
详细描述
简谐运动的加速度公式为a=A*ω^2*sin(ωt+φ),其中A为振幅, ω为角频率,t为时间,φ为初相角。 该公式用于描述简谐运动物体在任意 时刻的加速度大小。
简谐运动的能量定理
总结词
描述简谐运动物体能量变化的定理
详细描述
简谐运动的能量定理指出,一个做简谐运动的物体,其振动能量E与振幅A的平方成正 比,即E=1/2*k*A^2,其中k为弹簧的劲度系数。该定理用于描述简谐运动物体能量的
受迫振动与共振
受迫振动的定义
受迫振动是指振动物体受到周期性外力作用下的振动,其振动频率与外力频率相同或相近 。
共振的原理
大学物理 第9章 简谐振动

9.2 简谐振动的规律 9.3 简谐振动的合成
9.1 简谐振动的定义
9.1.1 弹簧振子的振动
9.1.2 简谐振动的定义
9.1.3 单摆的运动规律
9.1.4 LC振荡回路中电容器 上电量的变化规律
振动是与人类生活和科学技术密切相关的一种 基本运动形式。
广义的振动 一物理量在某一定值附近周期性变化的现象称振动。
下面我们重点对合振动的振幅进行讨论
A A1 A2 2 A1 A2 cos( 2 1 )
2 2
t 2 t 1 2 1
讨论:两种特殊情况
(1) 21=2k (k=0,1,2,…) 两分振动同相
A A1 A 2
o
考虑方向 F mg 简谐振动!
mg
0
F ma mg
t 0
l
又 a
l d
2
dv dt
l
d
2
dt
2
T
F
O
dt
2
g
即
d 2 g 0 2 l dt
d (v l ) dt
mg
g l
2 T 2
2
x
A x A y cos t
2 2
(2)相位差 y x ,轨迹方程为
x Ax y Ay 0
x
2 2
y
2 2
2
xy Ax Ay
cos(
Ax
Ay
y
x ) sin (
2
y
大学物理振动归纳总结

大学物理振动归纳总结振动是物理学中一个重要的概念,指的是物体相对静止位置周围的周期性运动。
在大学物理中,学生们学习了振动的基本原理、振动的类型和特性以及振动在实际应用中的重要性。
本文将对大学物理学习中的振动内容进行归纳总结,以帮助读者更好地理解和掌握这一领域的知识。
一、振动的基本概念振动是指物体围绕平衡位置来回运动的现象。
它具有以下基本特征:1. 平衡位置:物体在振动中的位置称为平衡位置,当物体不受外力作用时停留在该位置。
2. 振幅:振动物体离开平衡位置最大的距离称为振幅,用符号A表示。
3. 周期:振动物体从一个极端位置到另一个极端位置所经历的时间称为周期,用符号T表示。
4. 频率:振动物体每秒钟完成的周期数称为频率,用符号f表示,单位是赫兹(Hz)。
二、简谐振动简谐振动是最基本的振动形式,具有以下特点:1. 恢复力与位移成正比:简谐振动的特点是恢复力与位移成正比,且恢复力的方向与位移方向相反。
2. 线性势能场:简谐振动的位能与振动物体的位移成正比。
3. 几何意义:简谐振动可以用圆周运动来解释,振动物体的位置可以看作是绕圆心做匀速圆周运动的点的投影。
三、振动的参数和公式1. 振动的周期和频率:周期T与频率f之间满足关系:T=1/f。
2. 振动的角频率和频率:角频率ω与频率f之间满足关系:ω=2πf。
3. 振动的位移公式:对于简谐振动,位移x可以表示为:x = A *sin(ωt + φ),其中A表示振幅,ω表示角频率,t表示时间,φ表示初相位。
4. 振动的速度公式:振动物体的速度v可以表示为:v = -Aω *cos(ωt + φ)。
5. 振动的加速度公式:振动物体的加速度a可以表示为:a = -Aω² * sin(ωt + φ)。
四、受迫振动受迫振动是在有外界驱动力的情况下发生的振动。
其特点是振动的频率等于外界驱动力的频率,导致振动物体发生共振现象。
1. 共振现象:当外力频率等于振动物体的固有频率时,振动物体受到的外力最大,称为共振现象。
大学物理简谐波归纳总结

大学物理简谐波归纳总结简谐运动是物理学中的重要概念,在大学物理中占据着重要地位。
简谐波是一种特殊的振动形式,具有周期性和周期恒定的特点。
在本文中,将对大学物理中的简谐波进行综合归纳总结。
一、简谐运动的特点简谐运动的特点包括:1. 运动是周期性的,体现了一个往复的过程;2. 运动是周期恒定的,即周期保持不变;3. 运动规律性强,可以通过数学公式来描述。
二、简谐波的定义与性质简谐波是一种沿着固定方向传播的波动,具有以下性质:1. 振动方向与波传播方向垂直;2. 波的幅度在距离波源远处衰减;3. 简谐波可以通过波函数进行描述,如正弦函数或余弦函数;4. 简谐波满足线性叠加原理。
三、简谐振动的基本参数简谐振动可以用一些基本参数来描述:1. 振幅(A):振动系统在最大位移时的位移量;2. 周期(T):振动系统完成一个完整周期所需要的时间;3. 角频率(ω):单位时间内的相位变化量,等于2π除以周期;4. 频率(f):单位时间内周期的个数,等于1除以周期。
四、简谐振动的力学模型简谐振动可以通过力学模型进行具体分析:1. 弹簧振子:一个质点通过弹簧与一个固定点相连,受弹簧弹力的作用而振动;2. 单摆:一个具有质量的物体通过一根轻绳或轻杆与一个支点相连,受重力的作用而振动;3. 机械波的传播:弹簧振子或单摆可以组成波动系统,形成机械波的传播。
五、简谐振动与波动的应用简谐振动与波动在日常生活和科学研究中有着广泛的应用:1. 悬挂钟的摆动可以近似看作简谐振动;2. 声音的传播可以用简谐波描述;3. 光的传播也可以通过简谐波模型进行解释。
六、简谐波的数学表达简谐波可以由数学公式进行描述,一般采用正弦或余弦函数:1. 一维简谐波的表达式:y(x, t) = A*sin(kx - ωt + φ);2. 二维简谐波的表达式:z(x, y, t) = A*cos(kx + ky - ωt + φ)。
七、简谐波的相速度与群速度简谐波中存在相速度和群速度两个重要概念:1. 相速度:简谐波的相位在空间中的传播速度,等于波长λ除以周期T;2. 群速度:简谐波包络线在空间中传播的速度,等于波包在空间中传播的速度。
大学物理简谐振动实验报告

大学物理简谐振动实验报告一、实验目的1、观察简谐振动现象,加深对简谐振动特征的理解。
2、学习使用物理实验仪器测量简谐振动的相关物理量。
3、掌握数据处理和误差分析的方法,探究简谐振动的规律。
二、实验原理1、简谐振动的定义物体在与位移成正比而反向的回复力作用下的振动称为简谐振动。
其运动方程为:$x = A\sin(\omega t +\varphi)$,其中$A$为振幅,$\omega$为角频率,$\varphi$为初相位,$t$为时间。
2、简谐振动的周期对于弹簧振子,其周期$T$与振子质量$m$和弹簧劲度系数$k$的关系为:$T = 2\pi\sqrt{\frac{m}{k}}$。
3、简谐振动的能量简谐振动系统的机械能守恒,其动能$E_k =\frac{1}{2}mv^2$,势能$E_p =\frac{1}{2}kx^2$,总能量$E = E_k + E_p =\frac{1}{2}kA^2$。
三、实验仪器1、气垫导轨、滑块、光电门、数字毫秒计。
2、弹簧、砝码、游标卡尺、天平。
四、实验内容及步骤1、仪器调节(1)将气垫导轨调至水平,可通过调节导轨的底脚螺丝,使滑块在导轨上能保持静止或匀速运动。
(2)调节光电门的位置,使其能准确测量滑块通过的时间。
2、测量弹簧劲度系数(1)将弹簧一端固定在气垫导轨的一端,另一端连接滑块。
(2)在滑块上依次添加不同质量的砝码,记录每次添加砝码后滑块静止时弹簧的伸长量。
(3)用游标卡尺测量弹簧的原长和每次的伸长量,根据胡克定律$F = kx$,计算弹簧的劲度系数$k$。
3、测量简谐振动的周期(1)将滑块拉离平衡位置一定距离,然后释放,让其在气垫导轨上做简谐振动。
(2)通过光电门和数字毫秒计测量滑块振动$n$次(一般取$n =20$)的时间$t$,计算振动周期$T =\frac{t}{n}$。
4、改变滑块质量和弹簧劲度系数,重复上述实验,探究周期与质量和劲度系数的关系。
五、实验数据记录与处理1、弹簧劲度系数的测量|砝码质量$m$(g)|弹簧伸长量$x$(cm)|||||50 | 25 ||100 | 50 ||150 | 75 ||200 | 100 |根据胡克定律$F = kx$,$F = mg$,可得$k =\frac{mg}{x}$。
大学物理第九章简谐运动

t 确定, 振动状态确定
O
A
O X X
初相位:=/3
判断: t = 0, 振子的初位移、初速度 x0=A/2, v0<0(向x轴负方向运动)
用旋转矢量描述简谐振动:
O
O X 判断: t = 0,
A
X
=/2
振子的初位移、初速度
x0=0, v0<0 (向x轴负方向运动)
用旋转矢量描述简谐振动:
14
讨论
相位差:表示两个相位之差
(1)对于两个同频率的简谐运动,相位 差表示它们间步调上的差异(解决振动合成 问题). x1 A1 cos(t 1 ) x2 A2 cos(t 2 )
(t 2 ) (t 1 )
2 1
15
合成
简谐运动 谐振子 分解 复杂振动
作简谐运动的物体
8
弹簧振子的振动模型
弹簧和一谐振子组成的振动系统。
l0 k
m
x
C
o
B
x xB F FB
x 0 F 0 平衡位置
x xc v 0
9
振动的成因
a 回复力
b 惯性
10
弹簧振子的动力学分析
F
o
F kx ma
2
m
x
解得 x A cos(t )
简谐运动方程
积分常数,根据初始条件确定
12
由 x A cos(t )
简谐运动方程
简谐振动的各 阶导数也都作 简谐振动
dx 得 v A sin(t ) dt A cos t 2 d2 x a 2 A 2 cos(t ) dt
大学物理(一)_ 简谐振动_41运动方程及特征量_

弹簧振子周期
T = 2π m
k
单摆周期
T = 2π l
g
表示一个质点一秒内振动的次数
2π T 表示一个质点2π 秒内振动的次数
简谐振动方程
y = A co s(ω t + ϕ )
三、特征量
1 振幅 A = ym ax
2 周期、频率、角频率
y
A o
−A
y−t 图
T
t
T
2
y = A c o s (ω t + ϕ ) = A cos[ ω ( t + T ) + ϕ ]
压,电磁场中电场强度和磁场强度
合成 3.最简单、最基本的振动是简谐振动
简谐振动 分解 复杂振动
§4-1 简谐振动的运动方程及特征量
一、简谐振动的定义
切向合力:在振动方向上所受合力
F t = − ky
Ft
=
mat
=
d2y m
dt 2
=
−ky
at
=
d 2y dt 2
=
−
k m
y
k =ω2
m
d 2y dt 2
= 2π
l (周期)
g
周期由系统本身性质决定
微振动是谐振动
二、简谐振动的振动表达式
解方程
d2 y dt2
+
ω
2y
=
0
简谐振动的微分方程
解得 y = A c o s ( ω t + ϕ )
简谐振动方程
积分常数,根据初始条件确定
运动速度 加速度
v
=
a
dy = − Aω sin (ω t + ϕ )
大学物理简谐振动

大学物理简谐振动在大学物理的广袤知识海洋中,简谐振动是一个极其重要的概念。
它不仅在物理学的理论体系中占据着关键的地位,而且在实际生活和众多科学技术领域都有着广泛而深刻的应用。
简谐振动,简单来说,是一种理想化的周期性运动。
想象一下一个小球在光滑水平面上连接着一个弹簧,当小球被拉离平衡位置然后松手,它就会在弹簧的作用下做往复运动,这种运动就是简谐振动。
我们先来看看简谐振动的数学描述。
它可以用一个正弦或余弦函数来表示,形如 x =A sin(ωt +φ) ,其中 x 是位移,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
振幅 A 决定了振动的最大位移,也就是振动的“幅度”;角频率ω 则反映了振动的快慢;初相位φ 则决定了振动的起始位置。
再深入理解一下简谐振动的特点。
首先,它的加速度与位移成正比,且方向总是指向平衡位置。
这意味着,当物体偏离平衡位置越远,它受到的回复力就越大,加速度也就越大,从而促使它更快地返回平衡位置。
其次,简谐振动的能量是守恒的。
在振动过程中,动能和势能相互转化,但总能量始终保持不变。
那么,简谐振动在实际生活中有哪些例子呢?最常见的莫过于钟摆的运动。
钟摆通过重力和绳子的拉力作用,在一定角度范围内做简谐振动,从而实现准确计时。
此外,乐器中的弦振动也是简谐振动的一种表现。
比如吉他弦,当被拨动时,弦在固定的两个端点之间做简谐振动,产生特定频率的声音。
在工程技术领域,简谐振动也有着重要的应用。
例如,汽车的减震系统就利用了简谐振动的原理。
当汽车行驶在不平坦的路面上时,减震器通过弹簧和阻尼器的作用,使车身的振动尽可能接近简谐振动,从而减少颠簸,提高乘坐的舒适性和稳定性。
对于学习大学物理的同学们来说,理解和掌握简谐振动有着重要的意义。
它是进一步学习波动、光学等知识的基础。
通过研究简谐振动,我们能够培养对物理现象的观察、分析和解决问题的能力。
在解决简谐振动相关的问题时,通常需要运用牛顿第二定律、能量守恒定律等物理定律,并结合数学工具进行计算和分析。
大学物理111简谐振动课件

1. 平衡位置 2. 建立坐标 3.受力分析
弹性力 f kx
4.牛顿运动方程
kx
ma
m
d2 dt
x
2
令 k 2 整理得
m
d 2 x 2 x 0 简谐振动动力学方程
dt 2
解微分方程可得
x A cos(t 0 )
简谐振动运动学方程
二、简谐振动的三个特征量
1.振幅 物体离开平衡位置的最大位移的绝对值 A, 由初始条件决定,描述振动的空间范围。
2.周期 振动状态重复一次所需要的时间,描述振 动的快慢.
Acos[(t T ) 0] Acos(t 0)
T 2π T 2π
1
T
物体在单位时间内发生完全振动的次
数,称振动的频率.
2π 称圆频率(角频率).
k T 2 m 1 k
m
k
2 m
反映了系统的固有特性,分别称为谐振子系统 的固有圆频率、固有周期和固有频率.
圆频率 k 由系统决定,与初始条件无关
m
振幅 反映振动的强弱,由初始条件决定.
由
x Acos t 0 v A sin t 0
x0 Acos0
t=0时 v0 A sin0 可得
A
x02
v02
2
初相位 0 已知初始振动状态,用旋转矢量确定
x0<0 v0<0
x0=0 v0<0
x0>0 v0<0
例6 某简谐振动的振动曲线如图,写出振动方程。 x(cm)
O
t(s)
-1
1
-2
解: 设振动方程为 x A cos(t 0 )
则由振动曲线: A=2 cm
xA
简谐运动知识点总结大学

简谐运动知识点总结大学简谐运动是物理学中的一个重要概念,它描述了物体在受到恢复力作用下做周期性运动的现象。
在现实生活中,简谐运动无处不在,例如摆动的钟表、弹簧振子、水波运动等都属于简谐运动的范畴。
下面我们将对简谐运动的相关知识点进行总结。
一、简谐运动的基本概念1. 弹簧振子:弹簧振子是较为典型的简谐振动系统,它由一根具有一定弹性的弹簧和挂在弹簧上的质点组成。
当质点偏离平衡位置时,弹簧会产生恢复力,质点受到的力将使其进行振动运动。
弹簧振子的运动规律可以用简谐运动的相关理论进行描述和分析。
2. 产生简谐运动的条件:简谐运动的产生需要满足一定条件,其中最重要的是恢复力与质点位移成正比,即F=-kx,其中F为恢复力,k为弹簧的弹性系数,x为质点的位移。
只有符合这一条件,系统才能产生简谐运动。
3. 简谐运动的特征:简谐运动具有一系列特征,包括周期性、振幅、频率和相位等。
这些特征描述了简谐运动的基本规律和运动状态。
二、简谐运动的相关物理量和表达式1. 位移、速度和加速度:在简谐运动中,质点的位移、速度和加速度都是关键的物理量。
它们可以用数学表达式来描述,其中位移x、速度v和加速度a分别满足关系式x=Acos(ωt)、v=-Aωsin(ωt)、a=-Aω²cos(ωt)。
其中A为振幅,ω为角频率,t为时间。
2. 动能和势能:简谐振动系统中,质点具有动能和势能,它们随着时间的变化而变化。
动能和势能的表达式为K=1/2mω²A²sin²(ωt)和U=1/2kx²。
3. 机械能:简谐振动系统的机械能由动能和势能组成,它保持不变。
简谐振动的机械能可以用公式E=K+U=1/2kA²表示。
三、简谐运动的图像和图象1. 位移-时间图像:简谐运动的位移-时间图像通常是正弦曲线形状,它描述了质点在振动过程中位置随时间的变化规律。
在这个图像中,横轴代表时间,纵轴代表位移,通过这个图像可以清晰地观察到振动的周期性和规律性。
简谐振动教案_大学物理

课时:2课时教学目标:1. 理解简谐振动的定义、特点及其产生的原因。
2. 掌握简谐振动的运动规律,能够运用简谐振动方程解决实际问题。
3. 了解简谐振动的能量特征及其守恒规律。
4. 培养学生分析问题和解决问题的能力,提高学生的科学素养。
教学重点:1. 简谐振动的定义和特点。
2. 简谐振动的运动规律及其方程。
3. 简谐振动的能量特征及其守恒规律。
教学难点:1. 简谐振动的运动方程的推导。
2. 简谐振动的能量特征及其守恒规律的应用。
教学过程:第一课时一、导入1. 回顾机械振动的基本概念,引导学生思考简谐振动的特点。
2. 介绍简谐振动的产生原因,如弹簧振子、单摆等。
二、新课讲授1. 简谐振动的定义:物体在某一位置附近来回做往复运动,称为机械振动。
在所有的振动中,最简单、最基本的振动是简谐振动。
2. 简谐振动的特点:(1)等幅振动:振幅不变;(2)周期振动:振动周期固定;(3)线性恢复力:回复力与位移成正比,方向相反。
三、例题分析1. 以弹簧振子为例,推导简谐振动的运动方程。
2. 分析简谐振动的能量特征及其守恒规律。
四、课堂小结1. 简谐振动的定义、特点及其产生的原因。
2. 简谐振动的运动规律及其方程。
3. 简谐振动的能量特征及其守恒规律。
第二课时一、复习导入1. 复习上节课所学内容,检查学生对简谐振动的理解程度。
2. 引导学生思考简谐振动在实际生活中的应用。
二、新课讲授1. 简谐振动在实际生活中的应用:(1)弹簧振子:质量块在弹簧的弹力作用下做简谐振动;(2)单摆:摆球在重力作用下做简谐振动;(3)振动电路:电路中的电容器和电感器在交流电作用下做简谐振动。
2. 简谐振动的合成:(1)同方向同频率谐振动的合成;(2)不同方向同频率谐振动的合成。
三、例题分析1. 分析同方向同频率谐振动的合成。
2. 分析不同方向同频率谐振动的合成。
四、课堂小结1. 简谐振动在实际生活中的应用。
2. 简谐振动的合成。
五、作业布置1. 完成课后习题,巩固所学知识。
大学物理基础知识简单谐振动与波动

大学物理基础知识简单谐振动与波动大学物理基础知识简单谐振动与波动简单谐振动是物理学中一种重要的运动形式。
它在自然界和人类生活中都有广泛的应用,例如钟摆的摆动、弹簧的振动、电路中的交流电等等。
本文将介绍简单谐振动的基本概念和特点,并探讨与之相关的波动现象。
一、简单谐振动的基本概念简单谐振动是指一个物体在一个恢复力作用下以最简单的方式进行周期性振动的运动形式。
它具有以下几个基本特点:1. 平衡位置:简单谐振动系统的平衡位置是指物体在没有外力作用时的位置,也是物体往复振动的中心位置。
2. 振幅:简单谐振动的振幅是指物体从平衡位置往一个方向偏离的最大距离,用A表示。
3. 周期:简单谐振动的周期是指物体完成一次完整振动所需的时间,用T表示。
4. 频率:简单谐振动的频率是指单位时间内发生的完整振动次数,用f表示。
它与周期的倒数成正比,即f=1/T。
二、简单谐振动的数学描述简单谐振动可以通过一个简单的数学模型进行描述。
对于一个质点的简单谐振动,其位移随时间t的变化可以由以下公式表示:x = Acos(ωt + φ)其中,x是质点距离平衡位置的位移,A是振幅,ω是角频率,t是时间,φ是初相位。
角频率ω和频率f之间的关系可以通过以下公式计算:ω = 2πf初相位φ可以用初始条件来确定,例如质点的初始位移和初始速度。
简单谐振动的物体在振动过程中会出现一系列重复的运动状态,这些状态被称为振动的相位。
相位可以通过质点的位置和速度来描述,常用的相位有零相位、正相位和负相位。
三、简谐振动的能量变化简谐振动系统的能量在振动过程中会发生变化。
振动系统的总能量包括势能和动能两部分。
势能由于弹性势能而产生,它与物体的位移平方成正比。
动能由于物体的速度而产生,它与物体的速度平方成正比。
在简谐振动中,势能和动能之和保持不变,总能量恒定。
当物体位于极端位置时,动能达到最大值,而势能为零;当物体通过平衡位置时,势能达到最大值,而动能为零。
大学物理-简谐振动讲义

t
A
a v
o·
t=0
x· x
v Asin(t )
Acos( t )
2
Av cos( t v )
a 2 Acos( t ) Aa cos( t a )
简谐振动旋转矢量表示法的应用
应用: 可以方便地确定初相位φ和相位
x0 0 x0 0 v0 0 v0 0
b a
a4 b3
F
(dF dr
) r r0
x
a4 b3
x
kx
其中
k
a4 b3
,为等效劲度系数.
➢ 结论: 原子在平衡位置附近的微振动是谐振动.
周期为:
T 2
m 2π k
b3 a4
m
角频率为:
a4 b3m
例题 质量为 m 的比重计,放在密度为 的液体中。
已知比重计圆管的直径为 d 。试证明在竖直方向的 振动为简谐振动,并计算周期。
x
A
= 2
O
t
-A
❖ 相位差
x1 A1 cos(1t 1) x2 A2 cos(2t 2 )
(2t 2 ) (1t 1) 2 1 (当2 1时)
k1
m1
k2 m2
x1
O
x2
若 2 1 2kπ
若 2 1 (2k 1)π
A1 x
x1
A2
o
x2
T
A1 x
A2
x1
x0 0 x0 0
x
v0 0 v0 0
M1 φ1
P φ2
M
2
[例1] 已知某质点作简谐运动, 振动曲线如图. 试根据图中数据
写出振动表达式.
大学物理4-1 简谐振动的动力学特征

a x
积分常数,根据初始条件确定
x A cos(t )
T 2π
A A
x
x t 图
T
取 0
o
t
t
v A sin(t )
A
v
v t 图
T
π A cos( t ) 2
a A 2 cos(t )
0
an
π t 0 2
A
vm A
v a
an A
2
x
x A cos(t 0 )
π v A cos( t 0 ) 2
a A cos(t 0 )
2
第4章 机械振动
第4章 机械振动
用旋转矢量图画简谐运动的
x
A
0
P
2
三 简谐振动的旋转矢量表示法
2π T
当
t t+ 0时 0
0
A
t=t
A
x0
以 o为 原点旋转矢
量 A的端点
在
o
x
x 轴上的
投影点的运 动为简谐运 动.
x0 A cos 0
第4章 机械振动
x A cos( t t t
即
2
① ② ③ ④ ⑤ J d x (m 2 ) 2 kx 0 R dt
2
d x k x0 2 2 dt m I / R
所以,此振动系统的运动是谐振动.
第4章 机械振动
(2) 振动系统的圆频率
k m J / R2
T 2 2 m J / R2 k
大学物理系列之简谐振动PPT课件

同号时为加速 异号时为减速
O
X
A
A
第33页/共66页
振动质点位移、速度与特征点 (t=0时对应的φ)
v
xv x
x0>0时Φ在1,4象限 v0>0时Φ在3,4象限
x
v
x
第34页/共66页
x
x
xv x
例1. 一物体沿 x 轴作简谐振动,A= 12cm, T = 2s
x 当t = 0时, 0= 6cm, 且向x正方向运动。
t 时刻与x轴的夹角
( t﹢ )
相位
A
A
第32页/共66页
11
旋转矢量端续点 上M 作匀速圆周运动
其 速率
A
振子的运动速度(与 X 轴同向为正)
A
t
旋转矢量端点 M 的加速度为
法向加速度,其大小为
A
和
t
A
X O
振子的运动加速度(与 X 轴同向为正)
A
t
任一时刻的 和 值,
其正负号仅表示方向。
• 任意位置
Fmsgin
悬线的张力和重力的合力沿悬线的垂直方向指向平衡位置。
第16页/共66页
Fmsgin
当θ很小时 sinθ ≈ θ ( θ < 5 °)
恢复力 Fmg
符合简谐振动的动力学定义
由牛顿第二定律
mat mg
d2
ml
mg
dt2
令 2 g l
d2 2 0
dt2
T 2 2
l g
单摆运动学方程: mcots()
弹簧振子 t= 0 时
m = 5×10 -3 kg
例三 k = 2×10 -4 N·m -1