大学物理实验弦线上的驻波
大学物理第6章第4节-驻波

在两个相邻波节之间的符号相同. (1) 波节两边的相位相反; (2) 两相邻波节之间的相位相同.
x
x
三. 半波损失 波在波密介质界面反射时, 反射波在界 形成波节 面处形成波节(发生 波疏介质 波密介质 的相位突变). 称为半 波疏介质 : u小 波损失. 波密介质 : u大 波在波疏介质界 波密介质 波疏介质 形成波腹 (自由端反射 ) 面反射 (称为自由端), 反射波在界面处形成波腹 (没有相位突变).
波腹与波节的位置
t y 2 A cos 2 cos 2 T x
波腹
y 2 A | cos 2 x | 1
x 2k
4
, (k 0, 1, 2, )
波节
y 0 cos 2 x 0
x (2k 1) , (k 0, 1, 2, ) 4
由波腹和波节的位置,
x 2k
4
, (k 0, 1, 2, )
x (2k 1) , (k 0, 1, 2, ) 4
x xk 1 xk 2
相邻两个波腹或波节之间的距离为 2
相位分布特点:
t y 2 A cos 2 cos 2 T cos(2 ) x 在一个波节两边的符号相反, x
3 5 4 (0 ) 5 2 2 4 2
t0
时反射波在P点的相位 (有半波损
反P 入P
3 2 2
失)
OP两点的相 位差
2 L
2 L
O
入射波 u L
波疏 波密
x
D
P
反射波
x
由于O点的相位落后于P点的相位, 反 射波在 t 0 时O点的相位
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
弦振动实验中驻波波长的测量方法

弦振动实验中驻波波长的测量方法张宇亭;赵斌;王茂香【摘要】弦驻波实验是大学物理实验之一。
相比于早期的音叉,该实验采用了钢质弦线,不仅能观察到弦线上的驻波,而且还能听到弦线振动的声音,便于研究振动与声音的关系,有助于理解弦乐器的工作原理。
文中基于新型弦振动实验仪器,对弦线上的驻波进行了研究,给出了驻波波长的两种测量方法,即驻波公式计算求波长和直接观察驻波求波长的方法,通过大量数据处理与分析,对两种方法进行了对比,为实验仪器的测评和改进提供一定的参考。
%Standing wave experiment is one of experiments of college paring to the tuning fork in the earlier time, metallic string is applied in the new experimental instruments.The standing waves can not only be observed on the string,but also the voice of string vibration can be heard.It will be convenient to study the relationship between vibration and voice,and this will help to understand the mechanics of string instruments.In this paper,we studied the standing waves on the metallic string and gave two meth-ods on the measurement of standing wavelength using the new experimental instrument.One was based on the formula of standing wave and the other was directly observing standing waves to get the wavelength.Through a lot of data processing and analysis,we compared these two methods and gave definite reference for determining and improving the experimental instrument.【期刊名称】《实验科学与技术》【年(卷),期】2016(014)001【总页数】4页(P42-45)【关键词】关;键;词;弦振动;驻波;弦线张力【作者】张宇亭;赵斌;王茂香【作者单位】南京理工大学物理实验中心,南京 210094;南京理工大学物理实验中心,南京 210094;南京理工大学物理实验中心,南京 210094【正文语种】中文【中图分类】O4-34;O321弦振动实验一直是高等学校普通物理实验中的基础实验之一,是帮助学生理解波的形成、传播和干涉的一个重要实验[1-3]。
大学物理实验

弦线上波的传播规律实验介绍:波动的研究几乎出现在物理学的每一领域中。
如果在空间某处发生的扰动,以一定的速度由近及远向四处传播,则这种传播着的扰动称为波。
机械扰动在介质内的传播形成机械波,电磁扰动在真空或介质内的传播形成电磁波。
不同性质的扰动的传播机制虽然不相同,但由此形成的波却具有共同的规律性。
本试验利用弦线上驻波实验仪,通过弦线上驻波的观察与测量,研究弦线上横波的传播规律。
各种乐器,包括弦乐器、管乐器和打击乐器等,都是由于产生驻波而发声的。
为得到最强的驻波,弦或管内空气柱的长度必须等于半波长的整数倍。
实验目的:1、观察弦振动及驻波的形成;2、在振动源频率不变时,用实验确定驻波波长与张力的关系;3、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;4、定量测定某一恒定波源的振动频率;5、学习用对数作图法处理数据。
实验仪器:弦线上驻波实验仪(FD-FEW-II型)及其附件,包括:可调频率的数显机械振动源、平台、固定滑轮、可动刀口、可动卡口、米尺、弦线、砝码等;分析天平,卷尺。
图1 弦线上驻波实验仪示意图1、可调频率数显机械振动源;2、振动簧片;3、金属丝弦线;4、可动刀口支架;5、可动卡口支架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌实验原理:1、弦线上横波传播规律在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程:2222y T yt xμ∂∂=∂∂ ⑴ 式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。
将(1)式与典型的波动方程22222y y v t x∂∂=∂∂ 相比较,即可得到波的传播速度:v =⑵若波源的振动频率为f ,横波波长为λ;由运动学知识知,f v λ、与关系为:v f λ= ⑶比较式⑵和式⑶可得:λ=⑷为了用实验证明公式⑷成立,将该式两边取对数,得:11lg lg lg lg 22T f λμ=-- ⑸若固定频率f 及线密度μ不变,而改变张力T ,并测出各相应波长λ,作lg lg T λ- 图,若得一直线,计算其斜率,如为12,则证明了12Tλ∝的关系成立;同理,固定线密度μ及张力T 不变,改变波源振动频率f ,测出各对应波长λ,作lg lg f λ-图,如得一斜率为1-的直线,就验证了:1f λ-∝的关系。
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的'信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
实验指导书(驻波)

上海电力学院物理实验指导书所属课程:大学物理实验实验名称:驻波(一)(二)面向专业:全院理工科实验室名称:物理实验室2006年2月驻波(一)一.实验目的:1.观察在弦线上形成的驻波;2.了解弦线振动时驻波波长与弦线所受张力的关系,并利用它来测定电动音叉的频率.二、实验仪器、设备:名称型号、规格备注电动音叉f=103.3Hz滑轮1个弦线μ=2.61×10-3g/cm砝码20g米尺1m劈形木板2个三、实验原理1.驻波:两个振幅相同的相干波,在同一直线上沿相反方向传播时。
叠加后直线上各质点形成稳定的振动状态,称此为驻波。
让相干前进的波与反射波叠加就能形成驻波。
2.在张紧的弦线上观察驻波:一根弦线横跨在音叉的一端A和劈形木块P的刀口B之间,在刀口右面通过滑轮H和砝码m给弦线施加一定的张力。
音叉由电磁策动力维持振幅恒定的振动。
当音叉振动时,在弦线上激起一横波,此波向右行进。
当此波遇到固定点B时又被反射,形成向左行进的反射波,这两个波在弦上相互叠加就形成驻波。
驻波从B开始就被分成几段,每段的两个端点的振幅为零,固定不动,这些点称为波节。
每段中的各质点则同步作上下振动。
两相邻的波节中间的点振幅最大,称为波腹。
相邻两波节(或波腹)之间的距离L等于形成这驻波的相干波波长的一半,即L=λ/2。
当弦线AB段的长度接近半波长的整数倍时,驻波振幅最大而且稳定。
由于B端是固定点,所以B端一定是波节。
3.当改变音叉频率或改变加上弦线的张力F时,就可改变半波长L。
在本实验中,采用改变张力F来改变L。
在弦线上传播的横波的波速u和张力F及弦线的单位长度的质量μ有如下关系:u2=F/μ又u=λf从上两式可知张力F的改变,引起u的变化。
由于音叉频率f不变,所以λ改变。
由上两式得f2=F/(μλ2)所以只要测得F、μ及λ就能求得电动音叉的频率f。
四.实验内容与步骤:1.记下弦线单位长度质量(由实验室给出)。
μ=2.45×10-4kg/m=2.45×10-3g/cm(原悬线值)μ=2.61×10-4kg/m=2.61×10-3g/cm(2001/9/10重测新悬线值)2.在弦线下垂端加砝码140克,记下张力(化为达因)。
实验3 弦线上的驻波实验

弦线上驻波实验【实验目的】1.观察在弦上形成的驻波,并用实验确定弦线振动时驻波波长与张力的关系; 2.在弦线张力不变时,用实验确定弦线振动时驻波波长与振动频率的关系; 3.学习对数作图或最小二乘法进行数据处理。
【实验原理】在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程:2222xyT t y ∂∂=∂∂μ (1)式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。
将(1)式与典型的波动方程22222xy V t y ∂∂=∂∂ 相比较,即可得到波的传播速度: μTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张力及线密度之间的关系为:μλTf1=(2)为了用实验证明公式(2)成立,将该式两边取对数,得:f T log log 21log 21log --=μλ 若固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作log λ-log T 图,若得一直线,计算其斜率值(如为21),则证明了λ∝21T的关系成立。
同理,固定线密度μ及张力T ,改变振动频率f ,测出各相应波长λ,作log λ-log f 图,如得一斜率为-1的直线就验证了λ∝f -1。
弦线上的波长可利用驻波原理测量。
当两个振幅和频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。
在弦线上出现许多静止点,称为驻波的波节。
相邻两波节间的距离为半个波长。
【实验仪器】图2 仪器结构图1.可调频率数显机械振动源;2. 振动簧片;3. 弦线;4和5. 可动刀口支架; 6.标尺;7. 固定滑轮;8. 砝码与砝码盘;9. 变压器;10. 实验平台;11. 实验桌实验装置如图2所示,金属弦线的一端系在能作水平方向振动的可调频率数显机械振动源的振簧片上,频率变化范围从0-200Hz 连续可调,频率最小变化量为0.01Hz ,弦线一端通过定滑轮○7悬挂一砝码盘○8;在振动装置(振动簧片)的附近有可动刀口○4,在实验装置上还有一个可沿弦线方向左右移动并撑住弦线的可动刀口支架○5。
大学物理实验讲义-弦振动与驻波研究

大学物理实验讲义-弦振动与驻波研究弦振动与驻波研究【实验目的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张力的关系; 3.学习对数作图和最小二乘法进行数据处理。
【实验原理】在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程:2222x yT t y ∂∂=∂∂μ(1)式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。
将(1)式与典型的波动方程22222x y V t y ∂∂=∂∂相比较,即可得到波的传播速度: μTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张力及线密度之间的关系为:μλTf1=(2)为了用实验证明公式(2)成立,将该式两边取对数,得:11lg lg lg lg 22T f λμ=-- (3)固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作lg λ-lg T 图,若得一直线,计算其斜率值(如为21),则证明了λ∝21T的关系成立。
弦线上的波长可利用驻波原理测量。
当两个振幅和频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。
在弦线上出现许多静止点,称为驻波的波节。
相邻两波节间的距离为半个波长。
【实验仪器】1、可调频率数显机械振动源;2、振动簧片;3、弦线(铜丝);4、可动刀片支架;5、可动刀口支架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌9123456781011图1 实验装置示意图图2 可调频率数显机械振动源面板图 (1、电源开关 2、频率调节 3、复位键 4、幅度调节 5、频率指示)实验装置如图1所示,金属弦线的一端系在能作水平方向振动的可调频率数显机械振动弦线上驻波实验仪电 源ON复位 幅度 调节上海复旦天欣科教仪器有限公司频率调节H Z1 2 3 45FD-SWE-II源的振簧片上,频率变化范围从0-200Hz 连续可调,频率最小变化量为0.01Hz ,弦线一端通过定滑轮⑦悬挂一砝码盘⑧;在振动装置(振动簧片)的附近有可动刀片支架④,在实验装置上还有一个可沿弦线方向左右移动并撑住弦线的可动刀口⑤。
大学物理实验教案6驻波法测振动频率

⼤学物理实验教案6驻波法测振动频率⼤学物理实验教案实验名称:驻波法测振动频率实验⽬的:1、求出弦线线密度;2、观察弦线上的驻波;3、绘出弦线上横波波长与张⼒的关系;4、测出弦振动的频率。
实验仪器:电振⾳叉(频率约为Hz 100)弦线滑轮砝码托砝码(5个)钢卷尺螺丝⼑电⼦天平实验原理:1、弦线上横波传播速度(⼀)如图1所⽰,将细弦线的⼀端固定在电振⾳叉的⼀个叉⼦顶端上,另⼀端绕过滑轮挂上砝码。
闭合电源K 后,调节⾳叉断续器的接触点螺丝k ',使⾳叉维持稳定的振动,并将其振动沿弦线向滑轮⼀端传播,形成横波。
当横波到达B 点后产⽣反射,由于前进波与反射波能够满⾜相⼲条件,在弦线上形成驻波,⽽任意两个相邻的波节(或波腹)间的距离都为波长的⼀半。
适当调节砝码重量或弦长(⾳叉端到滑轮轴间的线长),在弦上将出现稳定的图1 强烈的振动,即弦与⾳叉共振(弦振动频率应当和⾳叉的频率f 相等)。
弦共振时,驻波的振幅最⼤,⾳叉端为稍许振动的节点(⾮共振时,⾳叉端不是驻波的节点),若此时弦上有n 个半波区,则n l 2=λ,弦上的波速v 则为:f v λ= (1)即:f nlv 2= (1’)2、弦线上横波传播速度(⼆)若横波在张紧的弦线上沿x 轴正⽅向传播,我们取ds AB =的微元段加以讨论(图2)。
设弦线的线密度(即单位长质量)为ρ,则此微元段弦线ds 的质量为ds ρ。
在A 、B 处受到左右邻段的张⼒分别为1T F 、2T F,xy图2其⽅向为沿弦线的切线⽅向与x 轴交成1α、2α⾓。
由于弦线上传播的横波在x ⽅向⽆振动,所以作⽤在微元段ds 上的张⼒的x 分量应该为零,即:0cos cos 1122=-ααT T F F (2)⼜根据⽜顿第⼆定律,在y ⽅向微元段的运动⽅程为:221122sin sin dtyd ds F F T T ραα=- (3)对于⼩的振动,可取dx ds ≈,⽽1α、2α都很⼩,所以1cos 1≈α,1cos 2≈α,11sin ααtg ≈,22sin ααtg ≈。
大学物理演示实验——弦驻波3页

大学物理演示实验——弦驻波3页第一页:实验名称:弦驻波实验实验原理:弦驻波是指在两端固定并受一定张力作用下的弦子上,由于弦子的振动而形成的波动现象。
当弦子振动的频率趋近于弦子固有频率时,在弦子上会形成一系列波峰和波谷,这种状态被称为驻波。
实验材料:弦子、螺钉、扳手、符合弦子长度的振动板、线圈、信号发生器、示波器。
实验过程:1.将弦子固定在一侧的螺钉上,穿过振动板并拉直。
将另一侧的弦子固定在无线电线圈上。
2.调整信号发生器的频率,使得弦子的振动频率趋近于弦子固有频率。
可以通过变化振动板的长度和张力来调整弦子的固有频率。
3.观察弦子上形成的驻波现象,并使用示波器显示出波形。
第二页:实验注意事项:1.调整弦子的长度和张力时,要注意不要使弦子太紧或者太松,以免影响实验结果。
2.在进行实验时,应该保持实验室的安静,以便于观察弦子上的驻波现象。
3.在使用示波器时,要注意将其接在弦子的两端,并调整合适的垂直放大倍数和时间基准,以便于观察驻波的波形。
实验结果分析:1.驻波现象的产生是由于弦子振动频率趋近于弦子固有频率,才能使得波峰波谷不断循环出现。
2.在一定条件下,弦子上的驻波现象稳定不动,可以提取弦子的固有频率。
3.弦子的固有频率与其长度和张力有关,通过调整长度和张力可以调节弦子的固有频率,从而控制弦子上的驻波现象。
第三页:实验结论:通过弦驻波实验,我们可以了解到驻波的产生原理和特点。
在实验中,我们可以通过调整弦子的长度和张力,使得弦子振动频率趋近于固有频率,从而使得驻波现象稳定出现。
在观察弦子上的驻波现象时,可以使用示波器显示弦子的波形,以便于更加直观的观察弦子上的波动现象。
弦子的固有频率与其长度和张力有关,通过调节这些变量可以控制弦子的固有频率,进而控制驻波现象的出现。
2020年大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1-------------------------------------------------------①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ--------------------------------------------------------②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2或λ=2*L/n代入③得γn=2L------------------------------------------------------④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
大学物理演示实验——弦驻波

大学物理演示实验探究1151914 李海鹏一、实验名称:弦驻波现象的探究二、主要装置:振荡器(调节振动源的振幅和频率),振动源,松紧带(充当驻波的介质)三、物理原理:当振动频率,振幅和振动方向相同的两列简谐波,在同一直线沿着相反的方向传播时,产生特殊的干涉现象,即驻波。
在波的传播过程中,当波由波密媒质进入波疏媒质时,在分界面处,反射波与入射波同相位,没有半波损失。
当波由波疏媒质进入波密媒质时,在分界面处,反射波与入射波有π的相位突变,有半波损失。
所以驻波在两固定端形成的是波节。
相邻波节和波腹的距离为因为波长有一定限制,一波长和松紧带的长度应满足如下条件是才能形成驻波。
四、实验现象:当振动频率,振幅和振动方向相同的两列简谐波,在同一直线沿着相反的方向传播时,产生特殊的干涉现象,即驻波。
松紧带的两端分别与振动源和固定端(入射波反射点)相连。
当振荡器开启时,将会形成简谐波,入射波和反射波干涉,当频率波长满足条件时将在松紧带上形成驻波。
因为波长有一定限制,一波长和松紧带的长度满足如下条件时才能形成驻波。
调节合适的频率与振幅使得驻波形成之后,可以看到在驻波中,直线上的某些始终静止不动,这样的点叫做波节。
某些点的振幅具有最大值,这些点称为波腹。
波腹处的振幅等于一个波的振幅的两倍。
固定端形成的永远是波节。
波形上的不同点以不同的振幅在波节两边以相同的频率做往复运动。
两波节中间的点,振幅最大;越靠近波节,振幅越小。
此时绳上的各点,只有段与段之间的相位突变,没有震动状态或相位的逐点传播,没有什么能量向外传播。
每一个节点的两侧的各点总是向相反方向运动,当右边的点向上移动时,左边的点向下移动,说明节点两边的位相相反。
而相邻两节点间的各点,虽然它们的振幅不同,但它们却同时经过平衡点,同时达到最大值,和最小值,各点的向相同方向运动,说明它们具有相同的位相。
分别改变振动频率以及振幅,观察松紧带的振动情况。
频率增大,驻波形成的越多,即两波节之间的距离越小。
大物实验报告 弦振动与驻波实验

物理实验报告哈工大物理实验中心班号33006学号1190501917姓名刘福田教师签字实验日期2020.4.19预习成绩学生自评分总成绩(注:为方便登记实验成绩,班号填写后5位,请大家合作。
)实验(三)弦振动和驻波实验一.实验目的1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;2、在振动源频率不变时,用实验确定驻波波长与张力的关系;3、观察弦振动及驻波的形成。
二.实验原理在一根拉紧的弦线上,张力为T,线密度为μ,则沿弦线传播的横波应满足运动方程其中x:波在传播方向(与弦线平行)的位置坐标;y:振动位移;而典型的波动方程为通过比较(1)、(2),可得到波的传播速度;若波源的振动频率为f,横波波长为λ,则横波沿弦线传播的速度可表示为波长与张力及线密度之间的关系可表示为两边取对数,得到公式波长的测量:驻波方法图像如图所示三.实验主要步骤或操作要点1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;①将弦线一端固定在鞋盒侧面,线跨过鞋盒沿,另一端下垂并悬挂一水瓶。
实验装置如图3-1图3-1②在保持张力不变的情况下,移动筷子位置,使半波长λ/2分别为10、15、20、25、30c m。
③用牙签波动弦线发出声音,利用P h y p h o x分别测出线的振动频率f2、在振动源频率不变时,用实验确定驻波波长与张力的关系①固定A B之间的距离并测量②利用小量杯等量地增加水瓶中水的体积,即等量地改变弦线的张力T③波动弦线,用软件p h y p h o x测量不同张力下弦线的振动频率f3、验证三分损益法①保持弦线张力不变,先将A B的距离固定,测出此时的频率,并将音调定为基准音D o,算出相应的F a,S o l,L a,高音D o的理论频率。
②移动筷子,缩短A B距离,波动弦线,先粗略听出F a音,再微调距离使得P h y p h o x 测出的频率恰为理论的F a音频率。
测出相应的A B距离。
标记F a位置。
大学物理-驻波

波腹
波节
相邻波节(或波腹)间距:
x
xk 1 xk
2
驻波的特性
相位特性:
1.相邻两节点间各点振动相位相同 2.同一波节两侧各点振动相位相反 驻波中不存在相位的传播
“驻”字的第二层含义”
驻波的特性
能量特性:
能量在波腹和波节 之间振荡,动能势和能 势能相互转化。
动能
驻波中不存在相位的传播
驻波波函数:y y1 y
Acos[2(vt x / )] Acos[2(vt x / )]
(2Acos 2 / x )cos2vt =A,x cos t
振幅
相位
驻波的特性 驻波波函数:y (2Acos 2 x )cos2vt
频率特性: 各点都做同频率的简谐振动 波形特性: 波形余弦分布,原地起伏变化但不移动
驻波波形不移动
“驻”字的第一层含义”
驻波的特性
振幅特性: 驻波波函数:y (2Acos 2 x )cos2vt 振幅: A, 2A cos 2 x
A,
0 波节位置:xk
2k
1
4
,k
0,1,2
A, 2A
波腹位置:xk
2K
,k
4
0,1,2
驻波的特性
“驻”势字能的第三层含义”
超声驻波悬浮 超声驻波 y (2Acos 2 x )cos2vt
声压驻波 声辐射力
p
L(p0ckos
2
2
x )cos2t
F
F0sin(2
2
x)
声辐射力 水滴
线上的驻波实验

实验** 弦线上的驻波实验[引言]弦线上波的传播规律的研究是力学中的重要内容。
本实验重点在于观测弦线上形成的驻波,并用实验确定弦振动时,驻波波长与张力的关系,驻波波长与振动频率的关系,以及驻波波长与弦线密度的关系。
常用的实验方法有两种:一是采用振动频率固定的电动音叉,通过改变弦线长度或张力,形成稳定驻波;二是采用频率连续可调的振动体,改变弦长或张力,形成稳定驻波从而验证弦线上驻波的振动规律。
掌握驻波原理测量横波波长的方法。
这种方法不仅在力学中有重要应用,在声学、无线电学和光学等学科的实验中都有许多应用。
[预习提示]1. 波的叠加原理。
2. 驻波的形成原理。
3. 弦线的共振频率和波速与哪些条件有关[实验目的]1. 了解波在弦线上的传播及弦波形成的条件。
2.测量拉紧弦不同弦长的共振频率。
3. 测量弦线的密度。
4. 测量弦振动时波的传播速度。
[实验仪器]DH4618型弦振动研究实验仪,DH4618型弦振动实验仪信号源,双踪示波器[实验原理]由波动理论知道,两列振幅和频率均相同、振动方向一致且传播方向相反的简谐波叠加后会产生驻波。
合成振幅为零的点称为波节,合成振幅最大的点称为波腹。
相邻两波节或波腹间的距离都是半个波长。
各种乐器,包括弦乐器、管乐器和打击乐器,都是由于产生驻波而发声。
在弦乐器中,沿弦线传播的行波在乐器一端被反射,反射波与入射波相互叠加,形成驻波,如图**-1所示。
图**-1 驻波示意图设沿x 轴正方向传播的波为入射波,沿x 轴负方向传播的波为反射波,则它们的波动方程可以写为1,2cos 2()Y A ft x πλ=±。
其中A 为简谐波的振幅,f 为频率,λ为波长,x 为弦线上质点的位置坐标。
两波叠加后的合成波为驻波,其方程为:122cos 2()cos 2Y Y A x ft πλπ+= (**-1)由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2cos 2()|A x πλ,只与质点的位置x 有关,与时间无关。
大学物理演示实验报告

弦线驻波演示实验::实验内容::实验目的了解:1、一固定端的弦线在周期性横向外力的作用下所形成的驻波;2、环形驻波;3、弹簧片的固有频率与强迫外力的频率相同时产生的共振现象。
操作与现象1、固定端反射的线形驻波的演示将松紧带的两端分别固定在振荡器和喇叭振源上面的竖直铜棒上。
把振荡器(或其它一处)的输出端与喇叭振源的输入端接通,调节功率旋钮使它位于中间位置,打开电源,把频率调节旋钮从低处往高处逐步转动,这样在松紧带上会显现出线形驻波。
2、环形驻波的演示把钢丝变成一个圆环后,将两端固定在喇叭振源的铜棒上,接通电路,调节频率旋钮和功率旋钮,从钢丝左端和右端传来的振动在钢丝内叠加,当调节到圆周长等于半波长的整数倍时,则在圆环上形成环形驻波。
3、弹簧片共振现象的演示将弹簧片固定在喇叭振源的铜棒上,接通电路,调节频率旋钮,当振源的强迫外力的振动频率与弹簧片的其中一边固有频率相同时,这一边产生共振,弹簧片振动得很强,另一端则几乎不振。
调节振动频率,当振源的振动频率与弹簧片的另一边的固有频率相同时,则另一边产生共振现象。
水波盘【实验目的】利用水波的投影显示波的形成、传播、反射、干涉和衍射等的形象。
【实验器材】水波盘演示仪,如图20-1所示。
有水槽、振动源、光源、各种振子(包括单振子、双振子、平面波振子)及挡板2块水槽及壳体水槽是用底部装有密封、透明玻璃的不锈钢盆制成。
壳体用金属材料制成,上面放有水槽,正面竖直安装毛玻璃,作为水波投影的屏幕。
框架内部倾斜45°装有平面镜,用来反射水面的影象到屏幕上,底部装有变压电源,后面装有一立杆。
立杆上端安装光源盒,中部安装振动源盒,在立杆的中部开有长槽孔,用来调节振动源盒的高度。
振动源振动源采用电磁、激励式。
它是由电磁铁、电位器、振杆、振子、主板等组成。
振频调节是一个与电磁铁线圈串联的可调电阻,控制其电流以改变振动的频率。
调节振幅螺丝,可使投影波形的清晰度达到最佳。
振动源盒后面有一插孔,使用时与光源盒插头相接。
大学物理实验----弦振动驻波

弦振动驻波的研究【实验目的】1.观察弦振动时驻波的形成;2.验证弦振动时驻波波长与张力的关系; 3.验证弦线波传播规律ρTV =,λ⋅=f V 。
【实验仪器】本实验用产生稳定驻波的实验装置产生驻波(如图1所示)。
波源A 是由电力驱动的电动音叉,能够产生机械波。
B 是一个定滑轮,称为节点。
从音叉A 的端部引出一根弦线穿过B 点后弯折,弦线的另一端悬挂一重物M 。
重物产生的重力就是加在弦线上的张力。
【实验原理】1. 求弦线线密度的原理机械波在介质中的传播速度与介质本身的物理属性有关系。
当一列横波沿弦线传播时,若维持张力T 不变,则横波的传播速度v 与弦线上的张力T 及弦线的线密度ρ的关系为ρTv =。
若弦线的振动频率为f ,横波在弦线上传播的波长为λ,则ρλTf v =⋅=,即ρλTf1=,若f 、ρ固定,则 λ∝T 。
精确测定λ和T ,作λ~T 图线,若其为一过原点的直线,则上述观点得到验证。
若知道f ,T ,λ则可求出弦线的线密度。
2. 用驻波法求波长的原理从波源A 发出的机械波沿着弦线向前传播。
机械波传播到节点B 后即被反射,反射回来的机械波仍然沿弦线传播。
发射波(波1)与反射波(波2)在C 点相遇,如图2。
波1比波图1 驻波发生装置源A 的相位延迟了πλϕ21⋅=x。
波2比波源A 的相位延迟了ππλϕ+⋅-=222xL 。
其中2ϕ里面附加的相位π是由于在节点B 的位置处,波是由波疏介质(弦线)入射到波密介质(金属定滑轮),因此产生半波损失,产生π的相位突变。
波1和波2在C 点处的相位差ππλϕϕϕ+⋅-=-=∆22212xL c 。
对于C 点来说,两列波的相位差恒定。
且两列波是从同一个波源发出的,故频率相同,振幅相同,满足机械波波的相干条件(频率相同,振幅相近,相位差恒定),会产生波的干涉现象。
图2 驻波原理当波源到节点的距离为半波长的整数倍的时候,即2λ⋅=m L ,m 为整数,在C 点处相遇的两束波的相位差为πλππππλλϕ22222⋅-+=+⋅-=∆xm xm c 。
大学物理实验弦线上的驻波

大
(4)每增加 20 克砝码重复上述步骤,记录砝码质量和半波长的个数。直至线端总重量 (5)将波长 、张力 T 及弦线的线密度 (由实验室给出)值代入(2-4)式,计算频
学
20
(4)改变砝码质量,使弦线上形成明显(即振幅最大)而稳定(即振幅不随时间改变)
的驻波。每增加 20 克砝码,重复上述步骤,观察弦线上的驻波的波节数,并观察驻波波节 数的增减。 2. 测定电动音叉的频率
木块 R1 的阻碍反射回来,入射波和反射波在弦线上的合成波为驻波。 的线圈和可调螺丝 S 与音叉相连。调节 S,使它与音叉接触,则电路接通(音叉本身作一导 线) ,电磁铁将吸引音叉。音叉一旦被吸动后,螺丝 S 便不再与音叉接触,电流中断,电磁 铁便失去吸引音叉的作用,音叉又回到原来的位置,于是电路又被接通。这样反复作用的结
理
实
开关 K 可调螺丝 S
验
单位长度弦线的质量) 之间有以下关系:
学
根据波动理论, 横波沿弦线传播时的传播速度 v 与弦线上的张力 T 及弦线的线密度 (即
生
ln
(2-2)
中 心
v 。则有
果,就使音叉按其固有频率振动起来。 弦线的张力
T W mg
式中,m 为砝码(包括砝码托)的质量。改变 m 即可改变张力。
贤
学
院
物
kg
东
南
驻波波长平均 值
(1) 在弦线上出现驻波的条件是什么?在实验中为什么要把弦线的振动调节到驻波现象 最显著、最稳定的状态? (2)对于一定的在弦线长 L,如果已经调节处 n1 个半波长的驻波,此时砝码质量为 m1 。
大
/ cm
观察思考
学
成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使 用
砝码质量
2. 电动音叉振动频的率测定
学
11 级
弦线线密度: = 0.4488 103 kg/m 砝码质 量 (g) 张力 F (N) 半波数 目 n
南京地区重力加速度:_________________
2L / n
20
供
仅
3. 驻波波长的测定 弦线长度 / cm 半波数目 (个) (λ/2)/ cm
1
东
南
相位是一个很重要的物理概念,我们将在《大学物理》课程中介绍。可参阅有关教材。
大
学
成
贤 学
院
实验原理
物
理
实 验
级
中
心
波节,弦线与音叉脚相连接处也可以近似地看做波节。 研究指出,相邻两波节之间的距离为波长的一半,即有 2L 所以,只有当弦线的长度 l 为半波长 /2 的整数倍时才能形成稳定的驻波。这也就是说,要 想在弦线上出现稳定驻波的条件是
使 用 学 生 成 贤 学 院 物 理 实
实验内容
1. 定性观察弦线上的驻波现象
(1) 装好仪器, 移动音叉使弦线长约为 120cm。 在弦线一端的砝码托上加 20 克砝码 (连 定的驻波,并使振幅最大。
(2)前后移动音叉,使驻波波形清晰,观察弦线上的驻波的波节数。前后移动音叉, 把弦线放长、拉长或缩短,观察弦线上的驻波形成与弦线长度及其松紧程度的关系,并观察 驻波波节数的增减。
弦线上的振动
驻波是由两列传播方向相反而振幅、频率都相同,且相位差 1 恒定的简谐波波叠加而成 的。驻波有一维驻波、二维驻波等。例如,按某些频率激发弦乐器的弦线振动,弦线就会形 成一维驻波。对于话筒的膜片、锣鼓鼓面,它们形成的驻波分布在平面或曲面上,这是二维 驻波。驻波在声学、光学、无线电工程等方面都有广泛的应用。
使
用
生
学
11
实验目的
20
1. 观察弦线上的驻波的现象。 2. 利用弦线上的横驻波测量电动音叉的频率等。
供
仅
将一根柔软的弦线的一端固定,另一端栓在音叉的一个脚上,弦线以一定的张力绷紧, 弦线的方向与音叉的纵向一致。 如果让音叉作振幅恒定的简谐振动时, 就会有连续的横波列 自音叉的脚沿着弦线传播,我们称它为“前进波” 。当这列前进波传播到弦线的固定端时便 要发生发射,反射后波将沿着前进波反方向传播。当它遇到音叉脚时,发生第二次反射,继 而沿着前进波的方向传播到固定端, 又发生第三次反射……。 我们称经过一次或多次反射的 波为“反射波” 。在传播和多次反射的过程中,能量不断衰减,直到最后消失。 由于音叉的振动是连续的,所以弦线上既有前进波,又有无数的反射波。一般情况下, 现象不明显。然而,当弦线的长度与波的波长之间满足某种关系,并且前进波和各个反射波 由于这些波的相位不同,弦线上各点的振动显得杂乱无章、没有规律,而且振幅很小,振动 都具有相同相位时,弦线上的各点都作振幅各自恒定的简谐振动。这时,我们将看到这样一 个有趣的现象:弦线上的某些点始终不动(即振幅始终为零) ,称作波节;弦线上的某些点 振幅始终最大(可以远远大于音叉脚的振动振幅) ,称作波腹。弦线上两波节之间的各点, 只作上下振动,振动的相位相同;而波节两侧的点振动的相位相反,这就是驻波现象。 图 2-1 描绘了弦线上传播的前进波遇到障碍物后反射, 反射波与前进波叠加形成的驻波 的图像。图中实线代表前进波,虚线代表反射波,粗线代表叠加后的合成波——驻波。我们 看到,当弦线上出现稳定的驻波时,驻波的波腹远大于音叉振动的振幅,弦线的固定端点是
T
将 v 代入上式,得
1
2
20
或 L
1 2
(2‐4)
可见,只要测出波长 、张力 T 及弦线的线密度 ,就可测定音叉振动的频率 。
仅
供
结果的平均值。由此计算出在弦线上传播波的波长 。 W 等于 100 克为止。
东
南
率电动音叉的频率 ,并求出平均值。 3. 固定砝码的质量,移动音叉,改变弦线长度,使弦线上形成明显而稳定的驻波。记
录驻波的波节数,并测量相应的半波长。由半波长的平均值计算驻波频率。 4.(选做)固定弦线的长度,调节砝码质量,使弦线上出现偶数个半波长的驻波,再以 弦线和音叉连接处为中心,在水平面内缓慢移动音叉,直至旋转到 90 (此时弦线方向与音 叉振动方向一致) , 仔细观察弦线的振动情况, 看看有什么情况发生?想一想这是什么道理?
供
仅
仪器介绍
电动音叉、滑轮、弦线、砝码、米尺等。
贤
学
院
成
A
R1
R2
物
电动音叉
学
大
W
~220V 电压
图 2-2 弦线驻波实验装置如图 2-2 所示。 弦线的一端固定在电动音叉末端的一个脚上, 另一端
跨过滑轮 A 系以重物 W。音叉作为振源,它所发出的波沿细线向滑轮一端传播,受到劈形 音叉的振动利用电磁铁来激发,电源的一端接音叉,另一端连接开关 K,再经过电磁铁
贤
学
院
物
kg
东
南
驻波波长平均 值
(1) 在弦线上出现驻波的条件是什么?在实验中为什么要把弦线的振动调节到驻波现象 最显著、最稳定的状态? (2)对于一定的在弦线长 L,如果已经调节处 n1 个半波长的驻波,此时砝码质量为 m1 。
大
/ cm
观察思考
学
成
理
半波长 L / cm 二次纪 平均值 录
(cm)
理
实
开关 K 可调螺丝 S
验
单位长度弦线的质量) 之间有以下关系:
学
根据波动理论, 横波沿弦线传播时的传播速度 v 与弦线上的张力 T 及弦线的线密度 (即
生
ln
(2-2)
中 心
v 。则有
果,就使音叉按其固有频率振动起来。 弦线的张力
T W mg
式中,m 为砝码(包括砝码托)的质量。改变 m 即可改变张力。
实
1
T
验
(Hz)
中 心
生
欲使弦线上出现 n2 个半波长的驻波,你能估算出砝码质量 m2 应该为多少吗? (3)当弦线上的张力改变时,线密度也会改变。实验中如不考虑这种改变,会给实验结 果带来什么影响?这种影响是否可以忽略?为什么? (4)在弦线上横驻波实验中,所悬砝码的摆动对实验有什么影响? (5)如果要研究波长与张力之间的关系,如何安排实验?如何处理实验数据? (6)在弹奏弦线乐器时,发出声音的音调与弦线的长度、粗细、松紧程度有什么关系? 为什么? 有何关系?为什么? (7)电动音叉是由 50 赫兹市电驱动的,但音叉的频率并不等于 50 赫兹,它与市电频率 (8)通过本实验,你对驻波有什么新的认识?
木块 R1 的阻碍反射回来,入射波和反射波在弦线上的合成波为驻波。 的线圈和可调螺丝 S 与音叉相连。调节 S,使它与音叉接触,则电路接通(音叉本身作一导 线) ,电磁铁将吸引音叉。音叉一旦被吸动后,螺丝 S 便不再与音叉接触,电流中断,电磁 铁便失去吸引音叉的作用,音叉又回到原来的位置,于是电路又被接通。这样反复作用的结
2
使 用
T
ln
,
n 1, 2,3,
(2-1)
若音叉的频率为 ,弦线在音叉驱动下的振动频率也是 ,横波在弦线上的传播速度
v 2
11 级
v
T
(2‐3)
(1)在弦线一端的砝码托上加 20 克砝码(连砝码托 40 克,若无砝码托则加两只 20 克 砝码)接上电源,使音叉振动大小合适,能看到稳定的驻波,并使振幅最大。 (2) 将劈形木块 R1 放在靠近滑轮一边的细线下, 移动 R1 的位置调节细线可振动的长度, 使弦线上出现 2 个 (或 2 个以上) 完整波腹 (弦线两端均为波节) , 用米尺测出驻波半波长 /2 (相邻波节之间距离) 。 (3) 重新调节细线可振动的长度再做一次,量出和上述相同半波数的长度。求出两次
使 用 院
如果要求确定波长与弦线密之间的关系,应如何安排实验?如何处理实验数据?
学
11 级
20
仅
供
东
南
大
学
成
贤
学
物
理
实
验
中 心
生
大
(4)每增加 20 克砝码重复上述步骤,记录砝码质量和半波长的个数。直至线端总重量 (5)将波长 、张力 T 及弦线的线密度 (由实验室给出)值代入(2-4)式,计算频
学
20
(4)改变砝码质量,使弦线上形成明显(即振幅最大)而稳定(即振幅不随时间改变)
的驻波。每增加 20 克砝码,重复上述步骤,观察弦线上的驻波的波节数,并观察驻波波节 数的增减。 2. 测定电动音叉的频率
11 级
砝码托 40 克,若无砝码托则加两只 20 克砝码)接上电源,使音叉振动大小合适,能看到稳
验
中 心
数据表格
1. 观察驻波现象并加以描述:_____________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ ___________________________________________________________________________________ _____________________________________________________________________。