纳米材料物理基础吸附性能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《纳米材料物理基础》课程论文
一纳米材料物理基础基本概念
讲到纳米材料的基本概念,首先要了解到的就是什么是纳米?纳米是一种几何尺寸的单位,长度仅为一米的十亿分之一,即10-9m。一般来说,1-100um的区域称之为微米世界,而将1-100nm的区域称之为纳米世界。纳米材料则可以定义为1-100nm范围内以及含有此类尺度大小的材料。由于其如此小的尺寸,必然具备以往材料难以具备的新特性和功能。
纳米材料的兴起与发展
纳米材料从兴起到现在, 它的研究发展阶段大致可分为以下三个阶段。
第一阶段( 1977- 1990 年),以在美国巴尔的摩召开的第一届国际纳米科学技术会议( NTS-1) 为标志,纳米材料科学正式成为材料科学的一个新分支。
第二阶段( 1990- 1994 年),以第二届国际纳米材料学术会议为标志,会议认为对纳米材料微结构的研究应着眼于对不同类型材料的具体描述。
第三阶段( 1994- 至今),纳米材料的研究特点在于按人们的意愿设计、组装和创造新的体系,即以纳米颗粒、纳米丝和纳米管为基本单元在一维、二维和三维空间组装纳米结构体系。
纳米效应
当微粒的尺寸进入纳米量级( 1~ 100 nm) 时,其本身和由它构成的纳米固体具有如下四个方面的特异性效应,也称为纳米效应。
1 小尺寸效应
当纳米粒子的尺寸与光波的波长、传导电子的德布罗意波长以及超导态的相干长度或透射深度等物理尺寸相当或更小时,晶体周期性边界条件被破坏,材料表层附近原子密度减小所致,声、光、电、磁、热力学特性等均会随着粒子尺寸的减小发生显著变化。这种因尺寸的减小而导致的变化称为小尺寸效应,也叫体积效应,它是其它效应的基础。
2 表面效应
表面效应是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增
大后所引起的性质上的变化。因表面原子处于“裸露”状态,周围缺少相邻的原子,有许多空悬键,易与其它原子结合而稳定,具有较高的化学活性。例如,利用纳米粒子粒径小、表面有效反应中心多、催化性好等特点,在火箭固体燃料中掺合铝纳米晶,可提高其燃烧效率。
3 量子尺寸效应
量子尺寸效应是指纳米粒子尺寸下降到一定值时,费米能级附近的电子能级由准连续变为分散能级的现象。早在60年代就采用电子模型给出决定能级间距的著名公式:N
E F 34=δ 其中δ为能级间距,F E 为费米能级,N 为总电子数。对常规物体,因包含有无限多个原子(即所含电子数∞→N ),故常规材料的能级间距几乎为零(0→δ);而对纳米粒子,因其含原子数有限,δ有一定的数值,即能级发生了分裂。当能级的间距大于热能、磁能、光子能量、超导态的凝聚能等典型能量值时,必然因量子效应导致纳米微粒的光、热、电、磁、声等特性与常规材料有显著不同。例如,特异的光催化性、高光学非线性及电学特性等。
4 宏观量子隧道效应
微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如,微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有贯穿宏观系统势垒而产生变化的隧道效应——宏观量子隧道效应。宏观量子隧道效应的研究对基础研究及实用都有重要意义,它限定了磁带、磁盘进行信息贮存的时间极限,将会是未来微电子器件的基础。当微电子器件进一步细微化时,必须要考虑上述量子效应。
上述四种纳米效应是纳米微粒和纳米固体的基本特性,它使纳米微粒和纳米固体表现出许多奇异的性质。例如,金属为导体,但纳米金属微粒在低温下由于量子尺寸效应会呈现电绝缘性;铁磁性的物质进入纳米级( ~ 5 nm),因由多畴变成单畴而显示极强的顺磁效应;化学惰性的金属铂制成纳米微粒(铂黑)后却成为活性极好的催化剂等。由纳米微粒构成的纳米固体也是如此。例如,纳米金属铜的比热是传统纯铜的2倍;纳米固体钯的热膨胀提高1倍;纳米磁性金属的磁化率是普通金属的20倍,而饱和磁矩却只有普通金属的1/2等等。
世界个主要国家国家级纳米科技计划
为了在21世纪继续保持美国在经济上的领导地位并保障美国的国家安全,
2000年1月21日,美国总统克林顿在加州理工学院正式宣布National Nanotechnology Initiative ( NNI计划),整合美国各相关机构的力量,加强对纳米尺度的科学、工程和技术研发工作的协调,将纳米科技视为下一次工业革命的核心,认为纳米科技将对二十一世纪早期的经济和社会产生深刻的影响。该计划于2000年11月得到美国国会批准。
日本、德国、法国、英国等主要发达国家以及欧盟分别出台了各自的纳米计划,韩国政府2001~2003年间相继制定了《促进纳米科技10年计划》、《促进纳米技术开发法》与《纳米技术开发实施规则》;我国台湾自1999年开始也相继制定了《纳米材料尖端研究计划》与《纳米科技研究计划》。俄罗斯、加拿大、澳大利亚、以色列、印度、瑞士、墨西哥、泰国、埃及、土耳其等国家也对纳米科技发展进行了部署,全球总计已有50多个国家和地区制定了战略性的纳米科技计划。
我国方面先后成立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会;2001年7月发布了《国家纳米科技发展纲要(2001~2010)》;近期目标以纳米材料及其应用为主,中、长期目标瞄准纳米生物和医疗技术、纳米电子学和纳米器件。希望在纳米科学前沿取得重大进展,在纳米技术开发及其应用方面取得重大突破,并逐步形成精干的、具有交叉综合和持续创新能力的纳米科技骨干队伍。在纳米科技基础建设方面,要建立具有国际先进水平的国家纳米科学技术发展公用平台和重点实验室系统、纳米科技信息网络和科研开发网络,形成若干各具特色的、具有国际一流水平的纳米科技创新基地,构筑国家纳米科技研究与开发创新体系。
纳米技术的应用及前景
纳米材料的应用在磁记录上的应用。磁性纳米粒子粒径小,具有单磁畴结构、矫顽力很高的特性。用它做磁记录材料可以提高信噪比,改善图像质量。例如,松下电器公司已制成的纳米级微粒录像带,具有图像清晰、信噪比高、失真小的优点。
在半导体器件上的应用。纳米微电子材料的发展不但可以将集成电路进一步减小, 还可以研制出能够在室温使用的单原子或单分子构成的各种器件。纳米技术必将在大规模集成电路器件、薄膜晶体管选择性气体传感器、光电器件及其它