模糊控制系统的应用
控制系统的模糊控制理论与应用

控制系统的模糊控制理论与应用控制系统是指通过对特定对象的操作,以达到预期目标的过程。
在控制系统中,模糊控制理论是一种常用的控制方法。
本文将介绍控制系统的模糊控制理论以及其应用。
一、模糊控制理论的基本概念模糊控制理论是一种基于模糊逻辑的控制方法,它模拟了人类的思维和决策过程。
与传统的精确控制方法相比,模糊控制理论能够应对现实世界中存在的模糊不确定性和非线性关系。
1. 模糊集合模糊集合是模糊控制理论的基础,它是对现实世界中一类事物或对象的模糊描述。
不同于传统的集合理论,模糊集合允许元素以一定的隶属度或可信度属于这个集合。
2. 模糊逻辑模糊逻辑是模糊控制理论的核心,它用于描述和处理具有模糊性质的命题和推理。
模糊逻辑采用模糊集合的运算规则,能够处理模糊不确定性和非精确性的信息。
3. 模糊控制器模糊控制器是模糊控制系统的核心组件,它基于模糊逻辑进行决策和控制。
模糊控制器通常由模糊规则库、模糊推理机和模糊输出函数组成。
二、模糊控制理论的应用领域模糊控制理论具有广泛的应用领域,并在许多实际问题中取得了良好的效果。
1. 工业控制在工业控制领域,模糊控制理论可以应对复杂的非线性系统和参数不确定性。
例如,在温度控制系统中,模糊控制器可以根据当前的温度和环境条件,控制加热器的输出功率,以使温度保持在设定范围内。
2. 智能交通在智能交通系统中,模糊控制理论可以用于交通信号灯控制、车辆路径规划和交通流量优化。
通过根据交通状况和道路条件动态调整信号灯的时序,可以提高交通效率和道路安全性。
3. 机器人技术在机器人技术中,模糊控制理论可以用于机器人路径规划、动作控制和感知决策。
通过将环境信息模糊化,机器人可以根据当前的感知结果和目标任务制定合理的动作策略。
4. 金融风险控制在金融风险控制中,模糊控制理论可以用于风险评估和交易决策。
通过建立模糊规则库和模糊推理机制,可以根据不确定和模糊的市场信息制定合理的交易策略。
三、模糊控制理论的优势和发展方向模糊控制理论具有以下几个优势,使其在实际应用中得到了广泛的应用和研究:1. 简化建模过程:相比传统的控制方法,模糊控制理论能够简化系统的建模过程,减少系统的复杂性。
模糊控制应用实例

模糊控制应用实例模糊控制是一种基于模糊逻辑的控制方法,它能够处理模糊的输入和输出,使得控制系统具有更好的鲁棒性和适应性。
下面将介绍一个模糊控制的应用实例。
某工厂的生产线上有一台机器人,它需要根据生产线上的物品进行分类和分拣。
由于生产线上的物品形状、颜色、大小等特征存在一定的模糊性,传统的控制方法很难实现准确的分类和分拣。
因此,工厂决定采用模糊控制方法来解决这个问题。
首先,需要对机器人的控制系统进行建模。
假设机器人的控制系统包括三个输入变量和一个输出变量。
其中,三个输入变量分别为物品的大小、颜色和形状,输出变量为机器人的动作,包括分类和分拣两种动作。
接下来,需要确定输入变量和输出变量的模糊集合和模糊规则。
假设物品的大小、颜色和形状分别属于三个模糊集合:小、中、大;红、绿、蓝;圆、方、三角。
输出变量也分别属于两个模糊集合:分类、分拣。
根据这些模糊集合,可以确定一些模糊规则,例如:如果物品大小为小且颜色为红且形状为圆,则机器人动作为分类;如果物品大小为中且颜色为绿且形状为方,则机器人动作为分拣;如果物品大小为大且颜色为蓝且形状为三角,则机器人动作为分类。
最后,需要进行模糊推理和模糊控制。
当机器人接收到一个物品时,它会根据物品的大小、颜色和形状,将它们映射到对应的模糊集合中。
然后,根据模糊规则进行模糊推理,得到机器人的动作。
最后,根据机器人的动作,控制机器人进行分类或分拣。
通过模糊控制方法,机器人可以更准确地分类和分拣物品,提高生产效率和质量。
同时,模糊控制方法还具有较好的鲁棒性和适应性,能够应对物品特征的变化和噪声的干扰。
总之,模糊控制是一种有效的控制方法,它能够处理模糊的输入和输出,使得控制系统具有更好的鲁棒性和适应性。
在工业生产、交通运输、医疗健康等领域都有广泛的应用。
模糊系统及其应用研究

模糊系统及其应用研究一、引言随着科学技术的快速发展和社会的不断进步,人类社会已经正式步入信息化社会。
信息与知识已经成为社会发展的新要素和新引擎。
模糊系统,也称模糊逻辑或模糊数学,是信息科学中的一种新兴学科,是处理模糊信息的一种有效方法。
本文将详细介绍模糊系统及其应用研究。
二、模糊系统概述模糊系统是以模糊集合和模糊逻辑为基础的一种数学理论和方法,其主要特点是对信息的模糊性进行了有效处理,解决了传统集合和逻辑的不足。
模糊集合是指具有模糊性的集合,模糊逻辑是指运用模糊语言来表达的逻辑。
模糊系统的主要应用领域包括控制、决策、识别、智能优化、模式识别、数据挖掘等。
三、模糊系统的应用研究1. 模糊控制模糊控制是以模糊理论为基础的一种新的控制方法,其目的是解决传统控制方法对于非线性、大惯性、时变等复杂系统无法提供有效控制的问题。
模糊控制系统的最大特点是具有灵活性、自适应性、多功能性和鲁棒性等优势。
模糊控制在机械、航空、环保等领域都得到了广泛的应用。
2. 模糊决策模糊决策是以模糊数学为基础的一种决策分析方法,其主要特点是对决策过程中模糊性信息的处理能力较强。
模糊决策广泛应用于工程领域的高风险决策、金融投资决策、产品质量评估等方面。
3. 模糊识别模糊识别是一种针对未知模型的识别方法,主要特点是其对模型不确定性、非线性、时变等复杂模型的准确识别能力较强。
模糊识别广泛应用于质量控制、机械故障诊断、金融市场预测等领域。
4. 模糊优化模糊优化是以模糊集合理论为基础的一种优化方法,其主要特点是可以适应非线性、模糊或者不确定的优化问题。
模糊优化适用于生产计划、物流运输、供应链管理等复杂的管理决策问题。
5. 模糊数据挖掘模糊数据挖掘是一种基于模糊数学理论的数据分析方法,其主要特点是处理不完整数据,解决数据挖掘中的误导性和随机性问题。
模糊数据挖掘适用于企业管理、社会调查、市场预测等领域的数据处理。
四、总结模糊系统是人工智能、控制理论等领域的重要方法之一,其主要特点是处理模糊信息的能力强。
模糊控制技术在空调系统中的应用与优化

模糊控制技术在空调系统中的应用与优化摘要:随着科技的不断进步,空调系统已经成为了现代生活中不可或缺的一部分。
然而,如何通过有效的控制手段提高空调系统的性能,成为了当前研究的热点。
本文将探讨模糊控制技术在空调系统中的应用与优化,为空调系统的控制与优化提供参考。
引言:空调系统在今天的社会中扮演着重要的角色,它不仅给人们提供舒适的室内环境,还在工业生产中起到至关重要的作用。
为了提高空调系统的性能,控制手段成为了研究的热点。
模糊控制技术因其对不确定性的强适应能力而引起了广泛的关注,并在空调系统中得到了广泛应用。
本文将探讨模糊控制技术在空调系统中的应用与优化。
一、模糊控制技术概述模糊控制技术是一种针对模糊系统建模与控制的方法。
与传统的精确控制方法相比,模糊控制技术不需要准确地建立系统的数学模型,而是通过模糊集合、模糊规则和模糊推理等方法来实现对系统的控制。
在空调系统中,模糊控制技术能够通过模糊规则和模糊推理来实现对温度、湿度等参数的自适应调节,从而提高系统的控制性能。
二、模糊控制技术在空调系统中的应用1. 温度控制空调系统主要功能之一是对室内温度进行控制,使其维持在一个舒适的范围内。
模糊控制技术能够通过将温度划分为模糊集,设计一定的模糊规则,并通过模糊推理来调节空调系统的运行状态,实现对温度的自适应控制。
这种方法能够更好地适应不同环境下温度的变化,提高系统的控制精度。
2. 湿度控制除了温度,空调系统还需对室内湿度进行控制,以提供舒适的空气环境。
传统的控制方法往往需要准确的湿度模型,而模糊控制技术具有很好的适应性和实时性,能够快速响应湿度的变化,并通过模糊推理来调节空调系统中的加湿和除湿装置,实现对湿度的精确控制。
3. 能耗优化空调系统的能耗一直是一个重要的问题。
模糊控制技术通过模糊推理来根据室内外的温度、湿度等参数,综合考虑能耗与舒适性之间的权衡,从而实现对空调系统的能耗优化。
通过动态调控制冷剂循环速度、风速等参数,模糊控制技术能够使空调系统在保证舒适性的同时,尽可能减少能耗,达到节能的目的。
模糊控制理论及应用

模糊控制理论及应用模糊控制是一种基于模糊逻辑的控制方法,它能够应对现实世界的不确定性和模糊性。
本文将介绍模糊控制的基本原理、应用领域以及未来的发展趋势。
一、模糊控制的基本原理模糊控制的基本原理是基于模糊逻辑的推理和模糊集合的运算。
在传统的控制理论中,输入和输出之间的关系是通过精确的数学模型描述的,而在模糊控制中,输入和输出之间的关系是通过模糊规则来描述的。
模糊规则由模糊的IF-THEN语句组成,模糊推理通过模糊规则进行,从而得到输出的模糊集合。
最后,通过去模糊化操作将模糊集合转化为具体的输出值。
二、模糊控制的应用领域模糊控制具有广泛的应用领域,包括自动化控制、机器人控制、交通控制、电力系统、工业过程控制等。
1. 自动化控制:模糊控制在自动化控制领域中起到了重要作用。
它可以处理一些非线性和模糊性较强的系统,使系统更加稳定和鲁棒。
2. 机器人控制:在机器人控制领域,模糊控制可以处理环境的不确定性和模糊性。
通过模糊控制,机器人可以对复杂的环境做出智能响应。
3. 交通控制:模糊控制在交通控制领域中有重要的应用。
通过模糊控制,交通信号可以根据实际情况进行动态调整,提高交通的效率和安全性。
4. 电力系统:在电力系统中,模糊控制可以应对电力系统的不确定性和复杂性。
通过模糊控制,电力系统可以实现优化运行,提高供电的可靠性。
5. 工业过程控制:在工业生产中,许多过程具有非线性和不确定性特点。
模糊控制可以应对这些问题,提高生产过程的稳定性和质量。
三、模糊控制的发展趋势随着人工智能技术的发展,模糊控制也在不断演进和创新。
未来的发展趋势主要体现在以下几个方面:1. 混合控制:将模糊控制与其他控制方法相结合,形成混合控制方法。
通过混合控制,可以充分发挥各种控制方法的优势,提高系统的性能。
2. 智能化:利用人工智能技术,使模糊控制系统更加智能化。
例如,引入神经网络等技术,提高模糊控制系统的学习和适应能力。
3. 自适应控制:模糊控制可以根据系统的变化自适应地调整模糊规则和参数。
模糊控制原理与应用

模糊控制原理与应用
模糊控制是一种基于模糊逻辑的控制方法,它可以处理那些难以用传
统控制方法精确描述的系统。
模糊控制的基本思想是将输入和输出之
间的关系用模糊集合来描述,然后通过模糊推理来确定控制规则,最
终实现对系统的控制。
模糊控制的优点在于它可以处理那些难以用传统控制方法精确描述的
系统,例如非线性系统、模糊系统、多变量系统等。
此外,模糊控制
还具有较好的鲁棒性和适应性,能够在一定程度上克服系统参数变化
和外部干扰的影响。
模糊控制的应用非常广泛,例如在工业控制、交通控制、机器人控制、医疗诊断等领域都有着广泛的应用。
在工业控制中,模糊控制可以用
于控制温度、湿度、压力等参数,以及控制机器人的运动轨迹和速度。
在交通控制中,模糊控制可以用于控制交通信号灯的时序和周期,以
及优化交通流量。
在医疗诊断中,模糊控制可以用于对患者的病情进
行评估和诊断。
在模糊控制的实现过程中,需要进行模糊化、模糊推理和去模糊化等
步骤。
其中,模糊化是将输入和输出之间的关系用模糊集合来描述,
模糊推理是根据模糊规则进行推理,得出控制结果,去模糊化是将模
糊结果转化为具体的控制量。
总之,模糊控制是一种基于模糊逻辑的控制方法,它可以处理那些难以用传统控制方法精确描述的系统。
模糊控制具有广泛的应用前景,在工业控制、交通控制、机器人控制、医疗诊断等领域都有着广泛的应用。
在模糊控制的实现过程中,需要进行模糊化、模糊推理和去模糊化等步骤。
模糊控制系统在供水治理中的应用优化

模糊控制系统在供水治理中的应用优化摘要:随着城市化进程的加快,供水治理成为城市发展的重要问题之一。
传统的控制方法在供水治理中存在一些问题,如模型难以建立、系统复杂、控制策略单一等。
为了解决这些问题,模糊控制系统逐渐应用于供水治理中。
本文将重点研究模糊控制系统在供水治理中的应用优化,并提出了一种基于模糊逻辑的智能供水管理方法。
1. 引言随着人口增加和城市发展,供水治理成为城市管理中不可忽视的重要问题。
传统的控制方法在面对复杂多变的供水系统时存在一些困难和不足之处。
因此,寻找一种适用于复杂环境下的智能化、自适应性强、鲁棒性好且易于实施和维护的控制方法变得尤为重要。
2. 模糊控制系统在供水治理中的应用2.1 模糊逻辑模糊逻辑是对现实世界进行描述和决策时常常使用到的一种数学方法。
它能够处理不确定性和模糊性问题,适用于复杂多变的供水系统。
模糊逻辑通过将输入和输出的关系映射到一个模糊集合上,然后通过一系列的规则进行推理和决策,从而实现对系统的控制。
2.2 模糊控制系统模糊控制系统是一种基于模糊逻辑的控制方法。
它通过将输入变量和输出变量进行模糊化处理,并利用一系列的规则对输入和输出之间的关系进行推理,从而实现对供水系统的控制。
相比于传统的控制方法,模糊控制系统具有更好的鲁棒性和自适应性。
2.3 模糊控制在供水治理中的应用在供水治理中,模糊控制系统可以应用于多个方面,如水质监测与调节、供水管网优化、泵站调度等。
例如,在水质监测与调节方面,可以利用传感器获取实时数据,并通过建立合适的模型来预测和调节水质。
在供水管网优化方面,可以利用模糊规则来优化管网布局、减少泄漏等问题。
在泵站调度方面,则可以通过建立模糊规则来实现泵站的自动调度,提高供水效率。
3. 模糊控制系统在供水治理中的优化3.1 模型建立模型建立是模糊控制系统优化的关键步骤之一。
在供水治理中,由于系统复杂性和不确定性,建立一个准确的数学模型是非常困难的。
因此,可以利用数据驱动的方法来建立模型,如神经网络和遗传算法等。
模糊控制技术在电气系统中的应用

模糊控制技术在电气系统中的应用随着科技的不断发展,电气系统的控制技术也在不断地进步。
在许多电气系统中,模糊控制技术是一种常见的控制技术。
那么,模糊控制技术是什么?它在电气系统中的应用又是怎样的呢?一、模糊控制技术的基础模糊控制技术是一种基于模糊集合的控制技术。
而什么是模糊集合呢?简单来说,模糊集合就是将对象划分为一个或多个隶属度在0和1之间的子集,而非将它们划分为恰好的子集。
模糊控制技术通过模糊逻辑、模糊推理等方法,将输入和输出之间的模糊关系抽象化,并根据这些关系推导出一种合理的控制策略,以实现对系统的控制。
二、模糊控制技术在电气系统中有着广泛的应用。
在许多领域,如电力系统、机器人控制、交通控制等方面,模糊控制技术都展现出了其独特的优点。
1、电力系统中的应用电力系统是模糊控制技术的一个重要应用领域。
在电力系统中,模糊控制技术可以用来控制变压器、发电机、电动机等设备。
例如,模糊控制技术可以帮助调节电机的转速和电压。
与传统的控制技术相比,模糊控制技术更加灵活,对于复杂的电气设备控制效果更好。
2、机器人控制中的应用机器人控制是另一个在电气系统中应用广泛的领域。
在机器人控制中,模糊控制技术可以用来控制机器人的动作和运动。
例如,通过对机器人的运动状态进行模糊推理,可以实现更加灵活的机器人运动和轨迹规划。
3、交通控制中的应用交通控制也是模糊控制技术的一个应用领域。
在交通控制中,模糊控制技术可以用来优化交通信号灯的控制。
通过将道路的交通流量、车辆速度等指标纳入模糊控制系统中,可以实现更加高效的交通信号灯控制,减少交通拥堵和污染。
三、模糊控制技术的发展和应用前景随着电气系统的不断发展,模糊控制技术也在不断地改进和完善。
在未来,模糊控制技术的应用前景也将越来越广泛。
例如,在智能家居、自动化控制等领域,模糊控制技术都将有着广泛的应用。
总之,模糊控制技术在电气系统中的应用是一种灵活的控制技术,与传统的控制技术相比具有更广泛的应用领域和更高的控制效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制系统的应用一、模糊控制系统的应用背景模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。
1965年美国的扎德创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理。
1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生。
模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域。
从信息技术的观点来看, 模糊控制是一种基于规则的专家系统。
从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器。
相对传统控制, 包括经典控制理论与现代控制理论。
模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,可以得到适合控制要求的控制量, 可以说模糊控制是一种语言变量的控制。
模糊控制具有以下特点:(1) 模糊控制是一种基于规则的控制。
它直接采用语言型控制规则, 出发点是现场操作人员的控制经验或相关专家的知识, 在设计中不需要建立被控对象的精确数学模型, 因而使得控制机理和策略易于接受与理解, 设计简单, 便于应用;(2) 由工业过程的定性认识出发, 比较容易建立语言控制规则, 因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用;(3) 基于模型的控制算法及系统设计方法, 由于出发点和性能指标的不同, 容易导致较大差异; 但一个系统的语言控制规则却具有相对的独立性, 利用这些控制规律间的模糊连接, 容易找到折中的选择, 使控制效果优于常规控制器;(4) 模糊控制算法是基于启发性的知识及语言决策规则设计的, 这有利于模拟人工控制的过程和方法, 增强控制系统的适应能力, 使之具有一定的智能水平;(5) 模糊控制系统的鲁棒性强, 干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。
除此, 模糊控制还有比较突出的两个优点:第一, 模糊控制在许多应用中可以有效且便捷地实现人的控制策略和经验;第二, 模糊控制可以不需被控对象的数学模型即可实现较好的控制, 这是因为被控对象的动态特性已隐含在模糊控制器输入、输出模糊集及模糊规则中。
模糊控制也有缺陷, 主要表现在: 1) 精度不太高; 2) 自适应能力有限; 3) 易产生振荡现象。
二、模糊控制系统的现状模糊控制的研究主要体现在控制器的研究和开发以及各类实际应用中, 目前模糊控制已经应用在各个行业。
各类模糊控制器也非常多, 模糊控制器的研究一直是控制界研究的热点问题, 而关于模糊控制系统的稳定性分析则是模糊控制需要研究和解决的基本问题。
目前已经出现了为实现模糊控制功能的各种集成电路芯片。
开发模糊控制系统的软件工具也出现了不少。
下面作一简单介绍。
1.与其它智能控制的结合或融合模糊控制与其它智能控制的复合产生了多种控制方式方法。
主要表现在: 1)模糊PID 控制器模糊PID 控制器的研究是将模糊技术与常规的PID 控制算法相结合的一种控制方法, 得到了许多学者的关注。
模糊PID 控制器是一种双模控制形式。
这种改进的控制方法的出发点主要是消除模糊控制的系统稳态误差, 利用PID 控制器提高控制精度, 消除误差, 增加稳态控制性能。
从PID 控制角度出发, 提出FI —PI、FI —PD、FI —PID 三种形式的模糊控制器, 并能运用各种方式得出模糊控制器中量化因子、比例因子同PID 控制器的因子KP 、KI 、KD之间的关系式。
对基于简单线性规则TS 模型的模糊控制器进行了分析, 指出这类模糊控制器是一种非线性增益PID 控制器。
有人试图利用GA 算法, 通过性能指标评价函数, 决定模糊控制器的Ke 、Kec 、Ku 等参数。
2)自适应模糊控制器自适应模糊控制器就是借鉴自适应控制理论的一些理念来设计模糊控制器, 也称作语言自组织模糊控制器(SOC) , 它的思想就在于在线或离线调节模糊控制规则的结构或参数, 使之趋于最优状态。
目前主要有通过采用一种带有修正因子的控制算法, 改变控制规则的特性; 或直接对模糊控制规则进行修正; 还有一种是对控制规则进行分级管理, 提出自适应分层模糊控制器; 又有人提出规则自组织自学习算法, 对规则的参数以及数目进行自动修正; 更进一步的是采用神经网络对模糊控制规则及参数进行调整, 也是一种实现模糊自适应控制的好方法。
3)模糊控制与神经控制的融合神经模糊控制是神经网络技术与模糊逻辑控制技术相结合的产物, 是指基于神经网络的模糊控制方法。
模糊系统是建立在IF2THEN 表达式之上, 这种方式容易让人理解, 但是在自动生成和调整隶属函数和模糊规则上却很困难。
而人工神经网络是模拟人直观性思维的一种方式, 它是将分布式存储的信息并行协同处理, 是一个非线性动力学系统, 每个神经元结构简单, 但大量神经元构成网络系统能实现很强的功能, 因此人工神经网络具有自适应的学习能力、容错性和鲁棒性, 并且神经网络对环境的变化具有较强的自适应能力, 所以可结合神经网络的学习能力来训练__模糊规则, 提高整个系统的学习能力和表达能力。
现有人工神经网络代表性的模型有感知器、多层映射、BP 网络、RBF 神经网络实现局部或全部的模糊逻辑控制功能, 前者如利用神经网络实现模糊控制规则或模糊推理, 后者通常要求网络层数多于3 层;自适应神经网络模糊控制, 利用神经网络的学习功能作为模型辨识或直接用作控制器; 基于模糊神经网络的隶属函数及推理规则的获取方法, 具有模糊连接强度的模糊神经网等, 均在控制中有所应用。
而且, 还有神经网络与遗传算法同模糊控制相结合的自调整应用。
4)遗传算法优化的模糊控制考虑到模糊控制器的优化涉及到大范围、多参数、复杂和不连续的搜索表面, 而专家的经验只能起一个指导作用, 很难根据它准确地定出各项参数, 因而实际上还要反复试凑, 寻找一个最优过程。
因此,人们自然想到用遗传算法来进行优化。
遗传算法应用于模糊控制器的优化设计是非常适合的, 遗传算法的运行仅由适应度数值驱动而不需要被优化对象的局部信息。
此外, 优化模糊控制器正好符合遗传算法的所谓“积木块”假设, 积木块指长度较短的、性能较好的基因片段。
用遗传算法优化模糊控制器时, 优化的主要对象是模糊控制器的隶属函数和规则集。
已经有人运用这个方法对倒立摆控制器隶属函数的位置、形状等参数, 结果表明遗传算法优化后的隶属函数远远优于手工设计的。
显然通过改进遗传算法, 按所给优化性能指标, 对被控对象进行寻优学习, 可以有效地确定模糊逻辑控制器的结构和参数。
5)模糊控制与专家控制相结合专家模糊控制系统是由专家系统技术和模糊控制技术相结合的产物。
把专家系统技术引入模糊控制之中, 目的是进一步提高模糊控制器的智能水平。
专家模糊控制保持了基于规则的方法的价值和用模糊集处理带来的灵活性, 同时把专家系统技术的表达, 利用知识的长处结合进来。
专家系统技术考虑了更多方面的问题, 如是什么组成知识, 如何组织、如何表达、如何应用知识。
专家系统方法重视知识的多层次及分类的需要, 以及利用这些知识进行推理的计算机组织。
将模糊控制与专家控制相结合能够表达和利用控制复杂过程和对象所需的启发式知识, 重视知识的多层次和分类的需要, 弥补了模糊控制器结构过于简单、规则比较单一的缺陷, 赋予了模糊控制更高的智能; 二者的结合还能够拥有过程控制复杂的知识, 并能够在更为复杂的情况下对这些知识加以有效利用。
除以上介绍的几种主要方式外,还有多变量模糊控制, 模糊系统建模及参数辨识、模糊滑模控制器、模糊解耦控制器、模糊变结构控制、模型参考自适应控制、最优模糊控制器、模糊预测控制等。
2.模糊控制的软硬件产品为了更好的利用模糊控制, 相继有不少公司开发了模糊控制的软件工具和硬件集成电路。
这里介绍了两类开发工具, 一类是开发模糊系统的软件工具, 如FREEWARE、FIDE、东芝IFCS、NEC FL SDE 、FC - TOOL V110 。
另一类是通用模糊逻辑开发工具, 如CUBICALC、FUZZY -C、FUZZL E 118 、METUS FUZZY L IBRARY、FUZZY LOGIC DESIGNER 等。
并介绍了一些其它的开发工具。
3.模糊控制的一些应用模糊控制的应用非常广泛。
除广泛应用于工业控制、家电控制、水电控制、航天等外。
我们还可以用在统计上、决策系统上、制造活性炭过程中等。
三、模糊控制系统的最新应用(一)富士通MWC智能手套可识别模糊动作日本富士通发布一款新的手势控制设备原型产品,它是手指手套的样子,可以戴在操作者的手上。
据悉,此前富士通研究所一直在开发新的手势控制手套,并嵌入了NFC技术和基于手势的输入控制接口。
在触屏或者其他控制接口不可用的情况下,富士通提供了一种新的操作方式。
研究所已经研发出手势识别技术,能完美识别各种模糊动作,实现多任务运行。
手势识别精确度大部分由设备在运行过程中分辨操作手势和普通手臂运动的能力所决定,还有不同个体做相同手势的微小变化。
这种识别技术主要是利用腕部的背屈位置,这时手掌完全反转,这是大家在日常活动中不常用的姿势,所以它就能够很好的识别操作手势和普通手臂运动。
此外,它还定义了很多基于肩部的手势,以此作为坐标系统的中心。
这种方式很好地适应了每个人之间的手势变化,也允许使用很多不同的姿势进行手势输入,且操作的姿势不会让人难堪。
成功的可穿戴设备需要让人感到舒适,不让大家觉得给自己增加了负担,这么来看这些设备就不能配备庞大的电池,因此,低耗电的操作是先决条件。
对于这款手套设备来说,只是在手指上戴上一个可触传感器,且只是在接触物体后才会启动NFC特征读取器,所以电力消耗量可以被控制到很少。
(二)模糊智能控制在洗衣机中的应用全智能模糊控制技术如今在洗衣机上运用比较普遍,这种技术很大的方便了人们的洗衣。
这款海尔 XQB70-M918家家爱波轮洗衣机,采用了智能模糊功能,更加的省时省电。
6KG的洗涤容量,也非常适合大众家庭使用。
特设的快速洗程序,进少量水就开始洗涤衣物,漂洗、脱水、甩干同步进行,省时省电。
8个不同水位可自行调节,避免过高水位造成的洗涤浪费。
这款洗衣机可对衣物重量与材质对洗衣程序进行模糊控制,以确定水位的高低、时间的长短,自动选择最佳洗衣程序,精确洗衣。