高等数学同济第五版第11章答案.
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 8-6
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
总习题八
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 12-4
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版上册答案(详解)
解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y
y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3
高数同济大学5版习题解答总习题十一
总习题十一 1. 填空: (1)对级数∑∞=1n n u , 0lim =∞→n n u 是它收敛的________条件, 不是它收敛的________条件; 解 必要; 充分.(2)部分和数列{s n }有界是正项级数∑∞=1n n u 收敛的________条件; 解 充分必要. (3)若级数∑∞=1n n u 绝对收敛, 则级数∑∞=1n n u 必定________; 若级数∑∞=1n n u 条件收敛, 则级数∑∞=1||n n u 必定________. 解 收敛; 发散.2. 判定下列级数的收敛性: (1)∑∞=11n n nn ; 解 因为11lim 11lim==∞→∞→n n n n nnn n ,而调和级数∑∞=11n n发散, 故由比较审敛法知, 级数发散. (2)∑∞=1222)!(n nn ;解 因为∞==⋅++=∞→∞→+∞→222221lim )!(2)1(2])!1[(lim lim n n n n n u u n n n n n , 故由比值审敛法知, 级数发散.(3) ∑∞=1223cos n n n n π;解 因为n n n n n 223cos 2<π, 12121lim 2lim <==∞→∞→n n n n n n n 所以由根值审敛法, 级数∑∞=12n n n 收敛; 由比较审敛法, 级数∑∞=1223cos n n n n π收敛. (4)∑∞=110ln 1n n ; 解 因为 ∞==∞→∞→nn nu n n n 10ln lim 1lim,而调和级数∑∞=11n n发散, 故由比较审敛法知, 原级数发散. 提示: ∞===⋅⋅⋅==⋅=∞→∞→∞→∞→∞→xx x x x x x x x x x x x x 11lim !101ln lim !101 ln lim 1011ln 101limln lim9910(5)∑∞=1n s nna (a >0, s >0). 解 因为a n a n a sn n n s n n ==∞→∞→)(lim lim , 故由根值审敛法知, 当a <1时级数收敛, 当a >1时级数发散. 当a =1时, 原级数成为∑∞=11n s n, 这是p =s 的p -级数, 当s >1时级数收敛, 当s ≤1时级数发散. 3. 设正项级数∑∞=1n n u 和∑∞=1n n v 都收敛, 证明级数∑∞=+12)(n n n v u 与收敛. 证明 因为∑∞=1n n u 和∑∞=1n n v 都收敛, 所以0lim =∞→n n u , 0lim =∞→n n v . 又因为0)2(lim 2lim 2=+=+∞→∞→n n n nn n n n v u u v u u , 0lim lim 2==∞→∞→n n n nn v v v ,所以级数∑∞=+12)2(n n n n v u u 和级数∑∞=12n n v 都收敛, 从而级数∑∑∞=∞=+=++12122)(])2[(n n n n n n n n v u v v u u也是收敛的.4. 设级数∑∞=1n n u 收敛, 且1lim =∞→nnn u v , 问级数∑∞=1n n v 是否也收敛?试说明理由.解 级数∑∞=1n n v 不一定收敛. 当∑∞=1n n u 和∑∞=1n n v 均为正项级数时, 级数∑∞=1n n v 收敛, 否则未必. 例如级数∑∞=-11)1(n n 收敛, 但级数∑∞=+-1]11)1[(n n n 发散, 并且有11)1(11)1(lim=-+-∞→nn n n .5. 讨论下列级数的绝对收敛性与条件收敛性: (1)∑∞=-11)1(n p n n ; 解 ∑∑∞=∞==-111|1)1(|n p n p nnn 是p 级数. 故当p >1时级数∑∞=11n p n 是收敛的, 当p ≤1时级数∑∞=11n p n 发散. 因此当p >1时级数∑∞=-11)1(n p n n 绝对收敛. 当0<p ≤1时, 级数∑∞=-11)1(n p n n 是交错级数, 且满足莱布尼茨定理的条件, 因而收敛, 这时是条件收敛的.当p ≤0时, 由于01)1(lim ≠-∞→p nn n , 所以级数∑∞=-11)1(n p n n 发散.综上所述, 级数∑∞=-11)1(n p n n 当p >1时绝对收敛, 当0<p ≤1时条件收敛, 当p ≤0时发散.(2)∑∞=+++-1111sin )1(n n n n ππ; 解 因为1111|1s i n )1(|+++≤+-n n n n πππ, 而级数∑∞=+111n n π收敛, 故由比较审敛法知级数|1sin )1(|111∑∞=+++-n n n n ππ收敛, 从而原级数绝对收敛.(3)∑∞=+-11ln )1(n n n n ; 解 因为1ln )11ln(lim 1ln lim 1|1ln )1(|lim ==+=+=+-∞→∞→∞→e n n n n nn n n n n n n , 而级数∑∞=11n n发散, 故由比较审敛法知级数|1ln )1(|1∑∞=+-n n n n 发散, 即原级数不是绝对收敛的. 另一方面, 级数∑∞=+-11ln )1(n n n n 是交错级数, 且满足莱布尼茨定理的条件, 所以该级数收敛, 从而原级数条件收敛. (4)∑∞=++-11)!1()1(n n nn n . 解 令1)!1()1(++-=n n n n n u . 因为 11)11(112lim )1(12lim )!1()1()!2(lim ||||lim 121<=+⋅++=+⋅++=+⋅++∞→∞→++∞→+∞→enn n n n n n n n n n u u n n n n n n n n n n , 故由比值审敛法知级数|)!1()1(|11∑∞=++-n n n nn 收敛, 从而原级数绝对收敛. 6. 求下列级限:(1)∑=∞→+n k k k n k n 12)11(311lim ;解 显然∑=+=nk k k n k s 12)11(31是级数∑∞=+12)11(31n n n n 的前n 项部分和.因为13)11(31lim )11(31lim 2<=+=+∞→∞→e n n n n nn n n , 所以由根值审敛法, 级数∑∞=+12)11(31n n n n 收敛, 从而部分和数列{s n }收敛.因此01lim )11(311lim 12=⋅=+∞→=∞→∑n n nk k k n s n k n .(2)])2( 842[lim 31111n nn ⋅⋅⋅⋅⋅∞→.解n n nn3 27392313127191312)2( 842+⋅⋅⋅+++=⋅⋅⋅⋅⋅.显然n n n s 3 2739231+⋅⋅⋅+++=是级数∑∞=13n n n 的前n 项部分和.设∑∞=-=11)(n n nxx S , 则210)1(1]111[][])([)(x x x dx x S x S n n x-='--='='=∑⎰∞=. 因为43)311(131)31(31)31(3132111=-⋅===∑∑∞=-∞=S n n n n n n , 所以43lim =∞→n n s , 从而4331271913122lim ])2( 842[lim ==⋅⋅⋅⋅⋅∞→∞→n n s n nn .7. 求下列幂级数的收敛域:(1)∑∞=+153n n n n x n ; 解 51)53(5)53(31lim 53153lim ||lim 111=++⋅+=+⋅++=∞→++∞→+∞→n n n n n n n n n n n n n n n a a , 所以收敛半径为51=R .因为当51=x 时, 幂级数成为]1)53[(11+∑∞=n n n , 是发散的;当51-=x 时, 幂级数成为]1)53[()1(1+-∑∞=n n n n , 是收敛的, 所以幂级数的收敛域为)51,51[-.(2)∑∞=+12)11(n n n x n ; 解 n n n x nu 2)11(+=, 因为||||)11(lim ||lim x e x nu n n n n n =+=∞→∞→, 由根值审敛法, 当e |x |<1, 即ex e 11<<-时, 幂级数收敛; 当e |x |>1, 时幂级数发散. 当e x 1-=时, 幂级数成为∑∞=+1)1()11(2n n n e n ; 当e x 1=时, 幂级数成为∑∞=+-1)1()11()1(2n n n n e n .因为21)1ln(lim 11)11ln(lim ])11ln([lim 2022-=-+=-+=-++→+∞→+∞→t t t x x x x x x t x x , 所以 0l i m )1()11(l i m21)11l n (22≠==+--+∞→∞→e e en n n n n n n n , 因此级数∑∞=+-1)1()11()1(2n n n ne n 和∑∞=+1)1()11(2n n n e n 均发散, 从而收敛域为)1 ,1(e e -. (3)∑∞=+1)1(n n x n ; 解u n =n (x +1)n . 因为 |1||1|1lim ||lim 1+=++=∞→+∞→x x nn u u n n n n ,根据比值审敛法, 当|x +1|<1, 即-2<x <0时, 幂级数收敛; 当|x +1|>1时, 幂级数发散. 又当x =0时, 幂级数成为∑∞=1n n , 是发散的; 当x =-2时, 幂级数成为∑∞=-1)1(n n n , 也是发散的, 所以幂级数的收敛域为(-2, 0). (4)∑∞=122n n n x n .解 n nn x n u 22=. 因为 221121221lim ||lim x x n n u u n n n n n n =⋅⋅+=+∞→+∞→,根据比值审敛法, 当1212<x , 即22<<-x 时, 幂级数收敛; 当1212>x 时, 幂级数发散.又当2±=x 时, 幂级数成为∑∞=1n n , 是发散的, 所以收敛域为)2 ,2(-.8. 求下列幂级数的和函数: (1)∑∞=--1)1(2212n n n x n ;解 设幂级数的和函数为S (x ), 则])2(2[]21[])([)(1121120'='='=∑∑⎰∞=-∞=-n n n n n xx x x dx x S x S)12( )2(2]2112[22222<-+='-⋅=x x x x x , 即 )22( )2(2)(222<<--+=x x x x S . (2)∑∞=----112112)1(n n n xn ; 解 设幂级数的和函数为S (x ), 则 )1( arctan 11)1()()(20212210<=+=-='=⎰⎰∑⎰∞=--x x dx x x dx x S x S xx n n n x.因为当x =±1时, 幂级数收敛, 所以有S (x )=arctan x (-1≤x ≤1). (3)∑∞=-1)1(n n x n ; 解 设幂级数的和函数为S (x ), 则 ])1()[1()1()1()1()(1111'--=--=-=∑∑∑∞=∞=-∞=n n n n n nx x x n x x n x S)1|1(| )2(1])1(11)[1(])1()1)[(1(211<---='----='---=∑∞=-x x x x x x x x x n n , 即 )20( )2(1)(2<<--=x x x x S . (4)∑∞=+1)1(n n n n x . 解 易知幂级数的收敛域为[-1, 1].设幂级数的和函数为S (x ), 则当x ≠0时∑∑∞=+∞=+=+=111)1(11)1(1)(n n n n x n n x x n n x Sdx dx x x dx x n x x x n n x n n][111001101⎰⎰∑⎰∑∞=-∞===dx x x dx dx x x x x x ⎰⎰⎰--=-=000)1ln(1]11[1 )]1ln()1ln([1x x x x x-----= )1ln(11x xx --+=, x ∈[-1, 0)⋃(0, 1], 又显然S (0)=0, 因此⎪⎩⎪⎨⎧=⋃-∈--+=0 0]1 ,0()0 ,1[ )1ln(11)(x x x xx x S .9. 求下列数项级数的和: (1)∑∞=12!n n n ;解 ∑∑∑∑∞=∞=∞=∞=+-=+-=11112!!)1(!)1(!n n n n n n n n n n n n n n n . 因为n n xx n e ∑∞==1!1, 两边求导得11!-∞=∑=n n x x n n e , 再求导得22!)1(-∞=∑-=n n x x n n n e , 因此x x n n n n n n n n n n e e x x n n x n n n x x n n x n n n x n n +=+-=+-=∑∑∑∑∑∞=∞=-∞=∞=∞=221221112!!)1(!!)1(!,从而e S n n n 2)1(!12==∑∞=. (2)∑∞=++-0)!12(1)1(n n n n . 解 ∑∑∑∞=∞=∞=+-+++-=++-000)!12(1)1(21)!12(12)1(21)!12(1)1(n n n n n nn n n n n 1sin 211cos 21)!12(1)1(21)!2(1)1(2100+=+-+-=∑∑∞=∞=n n n n n n . 提示: ∑∞=++-=012)!12(1)1(sin n n nx n x , ∑∞=++-=02)!12(12)1(cos n n n x n n x .10. 将下列函数展开成x 的幂级数: (1))1ln(2++x x ; 解 ⎰⎰+='++=++xxdxx dx x x x x 0202211])1[ln()1ln(,因为 ∑∞=---+=+=+122122!)!2(!)!12()1(1)1(11n n x n n x x , |x |≤1,故 ∑∞=++--+=++1122)12(!)!2(!)!12()1()1ln(n n nx n n n x x x (-1≤x ≤1).(2)2)2(1x -.解 ∑∞='='-='-=-02])2([21)211(21)21()2(1n n x x x x ∑∑∞=-+∞=+='=111012]21[n n n n n n x n x (-2≤x ≤2). 11. 设f (x )是周期为2π的函数, 它在[-π, π)上的表达式为 ⎩⎨⎧∈-∈=) ,0[ )0 ,[ 0)(ππx e x x f x. 将f (x )展开成傅里叶级数.解 πππππππ11)(100-===⎰⎰-e dx e dx x f a x ,n n xn a n e nxdx e nxdx x f a 201)1(cos 1cos )(1---===⎰⎰-πππππππ, 即 ππ)1(1)1(2+--=n e a n n (n =1, 2, ⋅ ⋅ ⋅ ), ⎰⎰==-πππππ0sin 1sin )(1nxdx e nxdx x f b x nn x na nxdx e n -=-=⎰ππ0cos 1)((n =1, 2, ⋅ ⋅ ⋅ ).因此 ∑∞=-+--+-=12)sin (cos )1(1)1(21)(n n x n nx n e e x f ππππ (-∞<x <+∞且x ≠n π, n =0, ±1, ±2, ⋅ ⋅ ⋅).12. 将函数 ⎩⎨⎧≤<≤≤=πx h hx x f 00 1)(分别展开成正弦级数和余弦级数.解 若将函数进行奇延拓, 则傅里叶系数为 a n =0(n =0, 1, 2, ⋅ ⋅ ⋅), ππππn nh nxdx nxdx x f b hn )cos 1(2sin 2sin )(2-===⎰⎰.因此, 函数展开成正弦级数为∑∞=-=1sin cos 12)(n nx nnh x f π, x ∈(0, h )⋃(h , π),当x =h 时, 21)(=h f . 若将函数进行偶延拓, 则傅里叶系数为 ππππh dx dx x f a h 22)(2000===⎰⎰, ππππn nh nxdx nxdx x f a hn sin 2cos 2cos )(200===⎰⎰(n =1, 2, ⋅ ⋅ ⋅), b n =0(n =1, 2, ⋅ ⋅ ⋅), .因此, 函数展开成余弦级数为∑∞=+=1cos sin 2)(n nx nnh h x f ππ, x ∈[0, h )⋃(h , π), 当x =h 时, 21)(=h f .。
同济大学《高等数学第五版》上下册习题答案(可编辑)
同济大学《高等数学第五版》上下册习题答案习题 1?11. 设 A?∞, ?5∪5, +∞, B[?10, 3, 写出 A∪B, A∩B, A\B及 A\A\B的表达式解 A∪B?∞, 3∪5, +∞, A∩B[?10, ?5, A\B?∞, ?10∪5, +∞, A\A\B[?10, ?5C C C2. 设A、B是任意两个集合, 证明对偶律: A∩B A ∪B证明因为C C C C Cx∈A∩B ?x?A∩B? x?A或x?B? x∈A 或x∈Bx∈A ∪B ,C C C所以 A∩B A ∪B 3. 设映射 f : X →Y, A?X, B?X证明1fA∪BfA∪fB; 2fA ∩B?fA∩fB 证明因为 y∈fA∪B??x∈A∪B, 使 fxy?因为 x∈A 或 x∈B y∈fA或 y∈fB? y∈ fA∪fB,所以 fA∪BfA∪fB 2因为y∈fA∩Bx∈A∩B, 使fxy?因为 x∈A且 x∈B y∈fA且 y∈fB? y∈ fA∩fB,所以 fA∩B?fA∩fB 4. 设映射f : X→Y, 若存在一个映射g: Y→X, 使 g f I , f g I , 其中I 、I 分别是X、X YX YY上的恒等映射, 即对于每一个x∈X, 有I xx; 对于每一个y∈Y, 有I yy. 证明: f是双射, 且gX Y?1是f的逆映射: gf证明因为对于任意的y∈Y, 有xgy∈X, 且fxf[gy]I yy, 即Y中任意元素都是X中某y元素的像, 所以f为X到Y的满射又因为对于任意的x ≠x , 必有fx ≠fx , 否则若fx fx ?g[ fx ]g[fx ]x x1 2 1 2 1 2 1 2 1 2 因此 f 既是单射, 又是满射, 即 f 是双射对于映射g: Y→X, 因为对每个y∈Y, 有gyx∈X, 且满足fxf[gy]I yy, 按逆映射的y定义, g是f的逆映射 5. 设映射 f : X→Y, A?X证明: ?1 1f fA?A; ?1 2当f是单射时, 有f fAA ?1 ?1 证明 1因为x∈Afxy∈fAf yx∈f fA, ?1 所以 f fA?A1 2由1知f fA?A1 ?1 另一方面, 对于任意的x∈f fA?存在y∈fA, 使f yx?fxy因为y∈fA且f是单1 ?1射, 所以x∈A. 这就证明了f fA?A. 因此f fAA6. 求下列函数的自然定义域: 1 y 3x+2 ;2 2 解由 3x+2≥0 得 x 函数的定义域为[? , +∞3 31 2 y ;21?x2 解由 1?x ≠0得x≠±1函数的定义域为?∞, ?1∪?1, 1∪1, +∞12 3 y 1?x ;x2 解由x≠0 且 1?x ≥0得函数的定义域D[?1, 0∪0, 1]1 4 y ;24?x2 解由 4?x 0 得 |x|2函数的定义域为?2, 2 5 y sin x ;解由 x≥0 得函数的定义 D[0, +∞ 6 ytanx+1;ππx≠kπ + ?1解由 x+1≠ k0, ±1, ±2,得函数的定义域为 k0, ±1, ±2,2 2 7 yarcsinx?3; 解由|x?3|≤1 得函数的定义域 D[2, 4]1 8 y 3? x +arctan ;x 解由 3?x≥0 且 x≠0 得函数的定义域 D?∞, 0∪0, 3 9 ylnx+1; 解由 x+10 得函数的定义域 D?1, +∞1x 10 ye解由 x≠0 得函数的定义域 D?∞, 0∪0, +∞ 7. 下列各题中, 函数 fx和 gx是否相同?为什么? 2 1fxlg x , gx2lg x;2 2 fxx, gx x ;3 34 3 3 f x xx , gx x x?12 2 4fx1, gxsec x?tan x解 1不同因为定义域不同 2不同因为对应法则不同, x0时, gx?x 3相同因为定义域、对应法则均相相同 4不同因为定义域不同π|sin x| |x|πππ3 8. 设?x , 求? , ? , ?? , ??2, 并作出函数 y?x的图形π 64 4?0 |x|≥3ππ 1 ππ 2 ππ 2 解 ? |sin | , ? |sin | , ?? |sin? | , ??206 6 2 4 4 2 4 4 2 9. 试证下列函数在指定区间内的单调性:x 1 y , ?∞, 1;1? x 2yx+ln x, 0, +∞证明 1对于任意的x , x ∈?∞, 1, 有 1?x 0, 1?x 0. 因为当x x 时,1 2 1 2 1 2x x xx1 2 1 2yy 0,1 21? x 1? x 1? x 1? x1 2 1 2x所以函数 y 在区间?∞, 1内是单调增加的1? x 2对于任意的x , x ∈0, +∞, 当x x 时, 有1 2 1 2x1yy x +ln x ?x +ln x xx +ln 0,1 2 1 1 2 2 1 2x2所以函数 yx+ln x 在区间0, +∞内是单调增加的 10. 设 fx为定义在?l, l内的奇函数, 若 fx在0, l内单调增加, 证明 fx在?l, 0内也单调增加证明对于?x , x ∈?l, 0且x x , 有?x , ?x ∈0, l且?x ?x1 2 1 2 1 2 1 2 因为 fx在0, l内单调增加且为奇函数, 所以f?x f?x ,fx ?fx , fx fx ,2 1 2 1 2 1这就证明了对于?x , x ∈?l, 0, 有fx fx , 所以fx在?l, 0内也单调增加1 2 1 2 11. 设下面所考虑的函数都是定义在对称区间?l, l上的, 证明: 1两个偶函数的和是偶函数, 两个奇函数的和是奇函数; 2两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数证明1设Fxfx+gx. 如果fx和gx都是偶函数, 则F?xf?x+g?xfx+gxFx,所以 Fx为偶函数, 即两个偶函数的和是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x+g?x?fx?gx?Fx,所以 Fx为奇函数, 即两个奇函数的和是奇函数2设Fxfx?gx. 如果fx和gx都是偶函数, 则F?xf?x?g?xfx?gxFx,所以 Fx为偶函数, 即两个偶函数的积是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x?g?x[?fx][?gx]fx?gxFx,所以 Fx为偶函数, 即两个奇函数的积是偶函数如果fx是偶函数, 而gx是奇函数, 则F?xf?x?g?xfx[?gx]?fx?gx?Fx,所以 Fx为奇函数, 即偶函数与奇函数的积是奇函数 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?2 21yx 1?x ;2 32y3x ?x ;21?x3 y ;21+x4yxx?1x+1; 5ysin x?cos x+1;x ?xa +a6 y22 2 2 2 解 1因为f?x?x [1??x ]x 1?x fx, 所以fx是偶函数2 3 2 3 2由f?x3?x ??x 3x +x 可见fx既非奇函数又非偶函数221??x1? x 3因为 f ?x f x , 所以 fx是偶函数221+ x1+x 4因为f?x?x?x?1?x+1?xx+1x?1?fx, 所以fx是奇函数5由f?xsin?x?cos?x+1?sin x?cos x+1 可见 fx既非奇函数又非偶函数?x ??x ?x xa +a a +a 6因为 f ?x f x , 所以 fx是偶函数2 2 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: 1ycosx?2; 2ycos 4x; 3y1+sin πx; 4yx cos x;25ysin x 解 1是周期函数, 周期为 l2ππ 2是周期函数, 周期为 l2 3是周期函数, 周期为 l2 4不是周期函数 5是周期函数, 周期为 lπ 14. 求下列函数的反函数:3 1 y x+1 ;1?x 2 y ;1+xax+b 3 y ad?bc≠0;cx+d 4 y2sin3x; 5 y1+lnx+2;x2 6yx2 +13 33 3 解 1由 y x+1得xy ?1, 所以 y x+1的反函数为yx ?11? y1?x 1?x 1?x 2由 y 得 x , 所以 y 的反函数为 y1+x 1+ y 1+x 1+x?dy+bax+b ax+b ?dx+b 3由 y 得 x , 所以 y 的反函数为 ycy?acx+d cx+d cx?ay1 1 x 4由 y2sin 3x 得 x arcsin, 所以 y2sin 3x的反函数为 y arcsin3 2 3 2y?1 x?1 5由y1+lnx+2得xe ?2, 所以y1+lnx+2的反函数为ye ?2x xy2 2 x 6由 y 得 xlog , 所以 y 的反函数为 ylog2 2x x2 +1 1? y 2 +1 1? x 15. 设函数 fx在数集 X 上有定义, 试证: 函数 fx在 X 上有界的充分必要条件是它在 X上既有上界又有下界证明先证必要性. 设函数 fx在 X 上有界, 则存在正数 M, 使|fx|≤M, 即?M≤fx≤M. 这这就证明了 fx在 X 上有下界?M 和上界 M 再证充分性. 设函数fx在X 上有下界K 和上界K , 即K ≤fx≤ K取M|K |, |K |,1 2 1 2 1 2则M≤ K ≤fx≤ K ≤M ,1 2即 |fx|≤M这就证明了 fx在 X 上有界 16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 和x 的函数值:1 22 ππ 1 yu , usin x, x , x ;1 26 3ππ 2 ysin u, u2x, x , x ;1 28, 42 3 y u, u1+x , x 1, x 2;1 2u 2 4 ye , ux , x 0, x 1;1 22 x 5 yu , ue , x 1, x ?11 22 π 1 1 π3 32 2 2 2 解 1ysin x, y sin , y sin1 26 2 4 3 2 4ππ 2 ππ 2ysin2x, y sin2? sin , y sin2? sin 11 28 4 2 4 22 2 23 y, 1+ x y 1+1 2 , y 1+2 51 22 2 2x 0 1 4 y e , y e 1 , y e e1 22x 2?1 2 2??1 ?2 5ye , y e e , y e e1 2 17. 设 fx的定义域 D[0, 1], 求下列各函数的定义域:2 1 fx ; 2 fsinx; 3 fx+aa0; 4fx+a+fx?aa02 2 解 1由 0≤x ≤1 得|x|≤1, 所以函数fx 的定义域为[?1, 1] 2由0≤sin x≤1 得 2nπ≤x≤2n+1π n0, ±1, ±2 ?, 所以函数 fsin x的定义域为[2nπ, 2n+1π] n0, ±1, ±2 ?3由 0≤x+a≤1 得?a≤x≤1?a, 所以函数fx+a的定义域为[?a, 1?a]1 1 1 4由 0≤x+a≤1 且 0≤x?a≤1 得: 当 0a≤时, a≤x≤1?a; 当 a 时, 无解. 因此当 0a≤时2 2 21函数的定义域为[a, 1?a], 当 a 时函数无意义21 |x|1?x18. 设 f x 0 |x|1, gxe , 求f[gx]和g[fx], 并作出这两个函数的图形1 |x|1x1 |e |1 1 x0x解 f [gx] 0 |e |1 , 即 f [gx] 0 x0x1 |e |1 ?1 x0?1e |x| 1 e |x| 1f x 0 g[ f x ]e e |x|1, 即 g[ f x ] 1 |x|11 ?1?e |x|1 e |x|119. 已知水渠的横断面为等腰梯形, 斜角?40°图 1?37. 当过水断面ABCD的面积为定值S 时, 求湿周LLAC+CD+DB与水深h之间的函数关系式, 并说明定义域0图 1?37h 解 AbDC , 又从sin401h[BC +BC +2cot40 ?h]S 得2SBC ?cot40 ?h , 所以hS2?cos40L + hh sin 40 自变量 h 的取值范围应由不等式组Sh0, ?cot40 ?h0h确定, 定义域为 0h S cot400 20. 收敛音机每台售价为 90 元, 成本为 60 元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过 100 台以上的, 每多订购 1台, 售价就降低 1 分, 但最低价为每台 75 元 1将每台的实际售价 p 表示为订购量 x 的函数; 2将厂方所获的利润 P表示成订购量 x 的函数; 3某一商行订购了 1000 台, 厂方可获利润多少?解 1当 0≤x≤100时, p90令 0. 01x ?10090?75, 得x 1600. 因此当x≥1600 时, p750 0 当 100x1600 时, p90?x?100×0. 0191?0. 01x 综合上述结果得到90 0≤ x≤100 p 91?0.01x 100 x1600?75x≥1600 30x 0≤ x≤1002P p?60x 31x?0.01x 100 x1600 215xx≥16002 3 P31×1000?0. 01×1000 21000元习题 1 ?21. 观察一般项x 如下的数列x 的变化趋势, 写出它们的极限:n n1 1 x ;nn21n 2 x ?1 ;nn1x 2 + 3 ;n2nn ?1 4 x ;nn +1n 5 x n ?1n1 1x lim 0 解 1 当 n →∞时, →0,nn nn →∞2 21 1n n 2 当 n →∞时, x ?1 →0, lim ?1 0 nn →∞n n1 1 3 当 n →∞时, x2 + →2,lim2 + 2 n2 2n →∞n nn ?1 2 n ?1x 1lim 1 4 当 n →∞时, →0,nn →∞n +1 n +1 n +1n 5 当n→∞时, x n ?1 没有极限nn πcos2 2. 设数列x 的一般项 x 问 lim x ? 求出N, 使当nN 时, x 与其极限之差的n nn nn →∞n绝对值小于正数ε , 当ε 0.001 时, 求出数N 解 lim x 0nn →∞n π|cos |1 1 1 12 |x ?0| ≤? ε 0, 要使|x ?0| ε , 只要ε , 也就是 n 取 N [ ], nnn nn εε则?nN, 有|x ?0| εn1N [ ] 当ε 0.001 时, 1000ε 3. 根据数列极限的定义证明: 1 1 lim 0 ;2n →∞n3n +1 3lim 2 ;n →∞2n +1 22 2n +a 3 lim 1n →∞n 4 lim 0.999 9 1n →∞n 个1 1 1 12| ?0| ε n 1 分析要使 , 只须 , 即 n2 2εn n ε1 11 证明因为ε0,N [ ], 当 nN 时, 有| ?0| ε , 所以 lim 02 2n →∞1 13n +1 3 1 1 2 分析要使|| ε , 只须ε , 即 n2n +1 2 22n +1 4n4n 4 ε3n +1 31 3n +1 3 证明因为ε0,N [ ] , 当 nN 时, 有|| ε , 所以 lim n →∞4 ε 2n +1 2 2n +1 22 2 2 2 2 2 2n +a n +a ?n a a a 3 分析要使|, ?1| ε只须 n2 2n n n εn n +a +n2 2 2 2 2an +a n +a证明因为? ε0,N [ ] , 当?nN 时, 有| ?1| ε , 所以 lim 1n →∞ε n n11 1 4 分析要使|0.99 9 ?1| , 只须ε , 即 n 1 +lgεn ?1 n ?1ε1证明因为? ε0,N [1 +lg ] , 当?nN 时, 有|0.99 9 ?1| ε , 所以 lim 0.999 9 1n →∞εn 个 4. lim u a , 证明 lim |u | |a|并举例说明: 如果数列|x | 有极限, 但数列x 未必有n nn nn →∞ n →∞极限证明因为 lim u a , 所以? ε0, ?N ∈N, 当 nN 时, 有|u ?a| ε , 从而n nn →∞||u | ?|a|| ≤|u ?a| εn n这就证明了 lim|u | |a|nn →∞n n 数列|x | 有极限, 但数列x 未必有极限. 例如 lim| ?1 | 1, 但lim ?1 不存在n nn →∞ n →∞ 5. 设数列x 有界, 又 lim y 0 , 证明: lim x y 0 nn →∞ n →∞证明因为数列x 有界, 所以存在M, 使?n ∈Z, 有|x | ≤Mn nε又 lim y 0 , 所以ε0, ?N ∈N, 当 nN 时, 有| y | 从而当 nN 时, 有n nn →∞Mε |x y ?0| |x y | ≤M | y | M ε ,n n n n nM所以 lim x y 0n nn →∞ 6. 对于数列x 若x →a k →∞, x →a k →∞, 证明: x →a n →∞n 2k 2k +1 n 证明因为x →a k →∞, x →a k →∞, 所以ε0,2k 2k +1?K , 当 2k2K 时, 有| x ?a | ε ;1 1 2kK , ?当 2k+12K +1 时, 有| x ?a | ε2 2 2k+1取N 2K , 2K +1, 只要nN, 就有|x ?a | ε因此x →a n →∞1 2 n n 习题 1 ?31. 根据函数极限的定义证明: 1 lim3x ?1 8;x →3 2 lim5x +2 12;x →22x ?4 3 lim ?4;x → ?2x +231 ?4x 4 lim 21x →2x +121 证明 1 分析 |3x ?1 ?8| |3x ?9| 3|x ?3|, 要使|3x ?1 ?8| ε , 只须|x ?3| ε31 证明因为ε 0,δε , 当 0 |x ?3| δ时, 有|3x ?1 ?8| ε , 所以 lim3x ?1 8x →331 2 分析 |5x +2 ?12| |5x ?10| 5|x ?2|, 要使|5x +2 ?12| ε , 只须|x ?2| ε51δε证明因为ε 0,, 当 0 |x ?2| δ时, 有|5x +2 ?12| ε , 所以 lim5x +2 12x →252 2 2x ?4 x +4x +4 x ?4 3 分析 ? ?4 |x +2| |x ? ?2| , 要使 ? ?4 ε , 只须x +2 x +2 x +2|x ? ?2| ε2 2x ?4 x ?4 证明因为ε 0,δε , 当 0 |x ? ?2| δ时, 有 ? ?4 ε ,所以 lim ?4x → ?2x +2 x +2331 ?4x 1 1 ?4x 1 1 4 分析 , 要使 ?2 ε , 只须|x ?| ε 2 |1 ?2x ?2| 2|x ?|2x +1 2 2x +1 2 23 31 1 1 ?4x 1 ?4x 证明因为ε 0,δε , 当 0 |x ?| δ时, 有 ?2 ε , 所以 lim 212 2 2x +1 2x +1x →2 2. 根据函数极限的定义证明:31 + x 1 1 ;lim3x →∞22xsin x 2 lim 0x → +∞x33 3 31 + x 1 1 + xx 1 1 + x 1 1 证明 1 分析 , 要使ε , 只须ε , 即3 3 3 3 32 22x 2x 2|x| 2x 2|x|1|x| 32 ε 331 1 + x 11 + x 1 证明因为ε 0,X , 当|x| X 时, 有ε , 所以 lim3 33x →∞2 22x 2x2 εsin x |sin x| 1 sin x 1 1 2 分析 ?0 ≤ , 要使 ?0 ε , 只须ε , 即 x 2εx x x x x1sin x sin x 证明因为ε 0,X , 当 x X 时, 有 ?0 ε , 所以 lim 0 2x → +∞εx x2 3. 当x →2 时, y x →4. 问δ等于多少, 使当|x ?2| δ时, |y ?4|0. 001 ?2 解由于x →2, |x ?2| →0, 不妨设|x ?2| 1, 即 1 x 3. 要使|x ?4| |x +2||x ?2| 5|x ?2| 0. 001, 只要0.0012|x ?2| 0.0002, 取δ 0. 0002, 则当 0 |x ?2| δ时, 就有|x ?4| 0. 00152x ?1 4. 当x →∞时, y →1, 问X 等于多少, 使当|x|X 时, |y ?1|0.012x +32x ?1 44 解要使 ?1 0.01, 只 ,|x| ?3 397 X 3972 20.01x +3 x +3 5. 证明函数 fx |x| 当 x →0 时极限为零x |x| 6. 求 f x , ?x 当 x →0 时的左?右极限, 并说明它们在 x →0 时的极限是否存在x x 证明因为xlim f x lim lim 1 1,x →0 x →0 x x →0xlim f x lim lim 1 1,+ + +x →0 x →0 x x →0lim f x lim f x,? +x →0 x →0所以极限 lim f x 存在x →0 因为|x| ?xlim ?x lim lim ?1,x →0 x →0 x →0x x|x| xlim ?x lim lim 1,+ + +x →0 x →0 x →0x xlim ?x ≠ lim ?x,? +x →0 x →0所以极限 lim ?x 不存在x →0 7. 证明: 若 x →+ ∞及 x →?∞时, 函数 fx 的极限都存在且都等于 A, 则 lim f x Ax →∞证明因为 lim f x A , lim f x A , 所以? ε0,x → ?∞ x →+∞?X 0, 使当x ?X 时, 有|fx ?A| ε ;1 1?X 0, 使当x X 时, 有|fx ?A| ε2 2取XX , X , 则当|x| X时, 有|fx ?A| ε , 即 lim f x A1 2x →∞ 8. 根据极限的定义证明: 函数fx 当x →x 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性. 设fx →Ax →x , 则? ε0,δ 0, 使当 0|x ?x | δ时, 有0 0|fx ?A| ε因此当xδxx 和x xx + δ时都有0 0 0 0|fx ?A| ε这说明fx 当x →x 时左右极限都存在并且都等于A0 再证明充分性. 设fx ?0 fx +0 A, 则? ε0,0 0? δ 0, 使当xδ xx 时, 有| fx ?A ε ;1 0 1 0? δ 0, 使当x xx + δ时, 有| fx ?A| ε2 0 0 2取δ min δ , δ , 则当0|x ?x | δ时, 有xδ xx 及x xx + δ , 从而有1 2 0 0 1 0 0 0 2| fx ?A| ε ,即fx →Ax →x0 9. 试给出 x →∞时函数极限的局部有界性的定理, 并加以证明解 x →∞时函数极限的局部有界性的定理 : 如果 fx 当 x→∞时的极限存在 , 则存在 X0 及M 0 , 使当|x|X 时, |fx| M证明设 fx →Ax →∞ , 则对于ε 1 , ?X0 , 当|x| X 时, 有|fx ?A| ε 1所以|fx| |fx ?A+A| ≤|fx ?A| +|A| 1 +|A| 这就是说存在 X0 及 M 0 , 使当|x| X 时, |fx| M , 其中 M 1 +|A|习题1 ?41. 两个无穷小的商是否一定是无穷小?举例说明之解不一定αx 2 αx 例如, 当 x →0 时, αx 2x, βx 3x 都是无穷小, 但 lim , 不是无穷小x →0β x 3 β x 2. 根据定义证明:2x ?9 1 y 当 x →3 时为无穷小;x +31 2 y xsin 当 x →0 时为无穷小x2x ?9 证明 1 当 x ≠3 时| y| |x ?3|因为ε 0,δε , 当 0 |x ?3| δ时, 有x +32x ?9| y| |x ?3| δε ,x +32x ?9所以当 x →3 时 y 为无穷小x +31 2 当 x ≠0 时| y| |x||sin | ≤|x ?0|因为? ε 0,δε , 当 0 |x ?0| δ时, 有x1| y| |x||sin | ≤|x ?0| δε ,x1所以当 x →0 时 y xsin 为无穷小x1 +2x 3. 根据定义证明: 函数 y 为当x →0 时的无穷大. 问x 应满足什么条件, 能使x4|y|10 ?1 +2x 1 1 1 1 证明分析| y|2 + ≥ ?2 , 要使|y| M, 只须 ?2 M , 即|x|x x |x| |x| M +21 1 + 2x 证明因为 ?M 0,δ , 使当 0 |x ?0| δ时, 有 M ,M +2 x1 +2x所以当 x →0 时, 函数 y 是无穷大x1 14 4 取M 10 , 则δ当 0 |x ?0| 时, |y|104 410 +2 10 +2 4. 求下列极限并说明理由:2x +1 1 lim ;n →∞x21x 2 limx →01x2x +1 1 1 2x +1 解 1 因为 2 + , 而当 x→∞时是无穷小, 所以 lim 2n →∞x x x x2 21x 1x 2 因为 1 + x x ≠1, 而当 x →0 时 x 为无穷小, 所以 lim 1 x →01x 1x 5. 根据函数极限或无穷大定义, 填写下表: 6. 函数 y xcos x 在?∞, +∞内是否有界?这个函数是否为当 x →+∞时的无穷大?为什么?解函数 y xcos x 在?∞, +∞内无界这是因为?M 0, 在 ?∞, +∞内总能找到这样的 x, 使得|yx| M. 例如y2k π 2k π cos2k π 2k π k 0, 1, 2,,当 k 充分大时, 就有| y2k π| M 当 x →+ ∞时, 函数 y xcos x 不是无穷大这是因为?M 0, 找不到这样一个时刻 N, 使对一切大于 N 的 x, 都有|yx| M. 例如πππy2k π + 2k π + cos2k π + 0 k 0, 1, 2,,2 2 2π对任何大的 N, 当 k 充分大时, 总有 x 2k π + N , 但|yx| 0 M21 1+ 7. 证明: 函数 y sin 在区间0, 1] 上无界, 但这函数不是当x →0 时的无穷大x x1 1 证明函数 y sin 在区间0, 1] 上无界. 这是因为x xM 0, 在0, 1] 中总可以找到点x , 使yx M. 例如当k k1x k 0, 1, 2,kπ2k π +2时, 有πyx 2k π + ,k2当k 充分大时, yx Mk+当x →0 时, 函数 y sin 不是无穷大. 这是因为x xM 0, 对所有的δ 0, 总可以找到这样的点x , 使 0 x δ, 但yx M. 例如可取k k k1x k 0, 1, 2,,k2k π当k 充分大时, x δ, 但yx 2k πsin2k π 0 Mk k习题 1 ?51. 计算下列极限:2x +5 1 lim ;x →2x ?32 2x +5 2 +5 解 lim ?9x →2x ?3 2 ?32x ?3 2 lim ;2x → 3 x +1223 ?3x ?3 解 lim 02x → 3 x +13 +12x ?2x +1 3 lim ;2x →1x ?122x ?2x +1 x ?1 x ?1 0 解 lim lim lim 0 2x →1 x →1 x →1x ?1 x ?1x +1 x +1 23 24x ?2x +x 4 lim ;2x →03x +2x3 2 24x ?2x +x 4x ?2x +1 1 解 lim lim2x →0 x →03x + 2x 3x + 2 22 2x +h ?x 5 lim ;h →0h2 22 2 2x +h ?xx +2hx +h ?x 解 lim lim lim2x +h 2x h →0 h →0 h →0h h1 1 6 lim2+ ;2x →∞x x1 1 1 1 解 lim2+ 2lim + lim 22 2x →∞ x →∞ x →∞x x x x2x ?1 7 lim ;2x →∞2x ?x ?11122x 解 lim lim2x →∞ x ?xx →∞ 1 1 22 12?2x x2x +x 8 lim ;4 2x →∞x ?3x ?12x +x 解 lim 0 分子次数低于分母次数, 极限为零4 2x →∞x ?3x ?11 1+22 3x +xx x 或 lim lim 04 2x →∞ x →∞ 2 11?2 4x x2x6x + 8 9 lim ;2x →4x5x + 42x ?2x ?4x ?6x +8 x ?2 4 ?2 2lim lim lim 解2x →4 x →4 x →4x ?5x +4 x ?1x ?4 x ?1 4 ?1 31 1 10 lim1 +2 ;2x →∞x x1 1 1 1 解 lim1 +2 lim1 + lim2 1 ×2 22 2x →∞ x →∞ x →∞x x x x1 1 1 11 lim1 + + + + ;nn →∞2 4 21n +11 ?1 1 12 解 lim1 + + + + lim 2 nn →∞ n →∞ 12 4 2121 +2 +3 + +n ?1 12 lim ; 2n →∞nn ?1n1 +2 +3 + +n ?1 1 n ?1 12 解lim lim lim2 2n →∞ n →∞ n →∞n n 2 n 2n +1n +2n +3 13 lim ;3n →∞5nn +1n +2n +3 1 解 lim 分子与分母的次数相同, 极限为最高次项系数之比3n →∞ 5n 5n +1n +2n +31 123 1 或 lim lim1 + 1 + 1 +3n →∞ n →∞5n 5 n n n 51 3 14 lim ;3x →11 ?x 1 ?x21 ?xx +21 3 1 +x +x ?3 x +2lim lim ?lim ?lim ?1 解3 2 2 2x →1 x →1 x →1 x →11 ?x 1 ?x 1 ?x1 +x +x 1 ?x1 +x +x 1 +x +x 2. 计算下列极限:3 2x +2x 1 lim ;2x →223 2x ?20 x +2x 解因为 lim 0 , 所以 lim ∞3 2 2x →2 x →2x +2x 16 x ?22x 2 lim ;x →∞2x +12x 解 lim ∞因为分子次数高于分母次数x →∞2x +13 3 lim2x ?x +1x →∞3 解 lim2x ?x +1 ∞因为分子次数高于分母次数x →∞ 3. 计算下列极限:12 1 limx sin ;x →0x1 2 12 解 limx sin 0 当x →0 时, x 是无穷小, 而 sin 是有界变量x →0arctanx 2 limx →∞xarctanx 1 1 解 lim lim ?arctanx 0 当 x →∞时, 是无穷小, 而arctan x 是有界变量x →∞ x →∞x x x 4. 证明本节定理 3 中的2. 习题 1 ?61. 计算下列极限:sin ωx 1 lim ;x →0xsin ωx sin ωx 解 lim ω lim ωx →0 x →0x ωxtan3x 2 lim ;x →0xtan3x sin3x 1 解 lim 3lim3x →0 x →0x 3x cos3xsin2x 3 lim ;x →0sin5xsin2x sin2x 5x 2 2 解 lim lim?x →0 x →0sin5x 2x sin5x 5 5 4 lim x cot x ;x →0x x 解 lim xcot x lim ?cosx lim ?limcosx 1x →0 x →0 x →0 x →0sin x sin x1 ?cos2x 5 lim ;x →0xsin x21 ?cos2x 1 ?cos2x 2sin x sin x2 解法一 lim lim lim 2lim 22 2x →0 x →0 x →0 x →0xsin x x x x21 ?cos2x 2sin x sin x 解法二 lim lim 2lim 2x →0 x →0 x →0xsin x xsin x xxn 6 lim 2 sin x 为不等于零的常数nn →∞2xsinnxn2 解 lim2 sin lim ?x xnxn →∞ n →∞2n2 2. 计算下列极限:1x 1 lim1 ?x ;x →01 11?1?1?1?x ?xx 解 lim1x lim[1 + ?x] lim[1 + ?x] e x →0 x →0 x →01x 2 lim1 +2x ;x →01 1 1?222x 2x 2x 解 lim1 +2x lim1 +2x [ lim1 +2x ] ex →0 x →0 x →01 + x2x 3 lim ;x →∞x1 + x 1 22x x 2[ ] 解 lim lim1 + ex →∞ x →∞x x1kx 4 lim1 k 为正整数x →∞x1 1kx ?x ?k ?k 解 lim1 lim1 + ex →∞ x →∞xx 3. 根据函数极限的定义, 证明极限存在的准则 I ′解 4. 利用极限存在准则证明:1 1 lim 1 + 1;n →∞ n1 1 证明因为1 1 + 1 + ,n n1而lim1 1 且 lim1 + 1,n →∞ n →∞ n1由极限存在准则 I, lim 1 + 1n →∞n1 1 12 limn + + + 1;2 2 2n →∞n + π n +2 π n +n π证明因为2 2n 1 1 1 nn + + + ,2 2 2 2 2n +n π n + π n +2 π n +n π n + π2 2n n而lim 1, lim 1,2 2n →∞ n →∞n +n π n + π1 1 1所以 limn + + + 12 2 2n →∞ n + π n +2 π n +n π 3 数列 2 , 2 + 2 , 2 + 2 + 2 , 的极限存在; 证明 x 2 , x 2 + x n 1, 2, 3,1 n +1 n 先证明数列x 有界. 当n 1 时 x2 2 , 假定n k 时x 2, 当n k +1 时,n k1x 2 + x 2 +2 2,k +1 k所以x 2n 1, 2, 3,, 即数列x 有界n n 再证明数列单调增22 + xx ?x ?2x +1n n n nxx 2 + xx ,n +1 n n n2 + x + x 2 + x + xn n n n而x ?2 0, x +1 0, 所以x ?x 0, 即数列x 单调增n n n +1 n n 因为数列x 单调增加有上界, 所以此数列是有极限的nnlim 1 + x 1 4 ;x →0 证明当|x| ≤1 时, 则有n 1 +x ≤1 +|x| ≤1 +|x| ,n 1 +x ≥1 ?|x| ≥1 ?|x| ,n从而有 1 ?|x| ≤ 1 + x ≤1 +|x|因为 lim1 ?|x| lim1 +|x| 1,x →0 x →0根据夹逼准则, 有nlim 1 + x 1x →01 5 lim x [ ] 1+x →0 x1 1 1 1 证明因为 ?1 [ ] ≤ , 所以1x x [ ] ≤1x x x x1 又因为 lim 1x lim 1 1 , 根据夹逼准则, 有 lim x [ ] 1+ + +x →0 x →0 x →0x习题 1?72 23 1. 当x→0 时, 2x?x 与x ?x 相比, 哪一个是高阶无穷小?2 3 2x ?x x?x 解因为 lim lim 0,2x→0 x→02?x2x?x2 3 2 3 2所以当x→0 时, x ?x 是高阶无穷小, 即x ?x o2x?x13 2 2. 当x→1 时, 无穷小 1?x 和11?x , 2 1x 是否同阶?是否等价? 23 21?x 1?x1+x+x2 解 1 因为 lim lim lim1+x+x 3,x→1 x→1 x→11?x 1?x3所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 但不是等价无穷小121?x12 2 因为 lim lim1+x1,x→1 x→11?x 212所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 而且是等价无穷小2 3. 证明: 当x→0 时, 有: 1 arctanx~x;2x 2 secx?1~2arctanx y 证明 1 因为 lim lim 1 提示: 令yarctan x, 则当x→0 时, y →0,x→0 y→0x tany所以当x→0 时, arctanx~xx x22sin 2sin2secx?1 1?cosx2 2 2 因为 lim 2lim lim lim 1,2 2x→0 x→0 x→0 x→01 x2 x cosx xx2 222x所以当x→0 时, secx?1~2 4. 利用等价无穷小的性质, 求下列极限:tan3x 1 lim ;x→02xnsinx 2 lim n, m 为正整数;mx→0sinxtanx?sinx 3 lim ;3x→0sin xsinx?tanx 4 limx→0 3 21+x ?1 1+sinx ?1tan3x 3x 3 解 1 lim lim x→0 x→02x 2x 21 nmnnsinx x 2 lim lim 0 nmm mx→0 x→0sinx x∞nm1 12sinx ?1 xtanx?sinx 1?cosx 1cosx2 3 lim lim lim lim3 3 2 2x→0 sin x x→0 sin x x→0 cosxsin x x→0x cosx 2 4 因为。
高等数学同济第五版第11章答案
高等数学同济第五版第11章答案习题11?11.写出以下系列的前五个术语?(1)? 1.N21? nn?11? n1?11? 21? 31? 41?5.2222221? 11? 21? 31? 41? 5n?11? n1?n3456?1.251026371? nn?11? 3.(2n?1)2?4.2n解决方案解决方案(2)n?1解?n?1?1?3(2n?1)2?42n1?3(2n?1)2?42n?11?31?3?51?3?5?71?3?5?7?9?? .22?42?4?62?4?6?82?4?6?8?101315105945??.28483843840解?n?1??(3)?n?1?(?1)n?15n(?1)n?15n?解决方案N1.11111? 2.3.4.5.55555? 解决方案N1.(?1)n?15n?11111. 5251256253125(4)? N嗯?1n!1.2.3.4.5.1.2.3.4.5.nn12345n?1.解决方案解决方案N12624120. n14272563125nn?12? 写出以下系列的一般术语?(1)113151 7.解决方案的一般术语是un?1.2n?1(2)? 213456 2345解决方案的一般术语是un?(?1)n?1n?1.Nxxxx2(3)22?42?4?62?4?6?8解一般项为un?(4)nx22n!。
a2a3a4a53579n?1解一般项为un?(?1)an?1.2n?13?根据级数收敛与发散的定义判定下列级数的收敛性?(1) (n?1?n)?n?1解因为sn?(2?1)? (3?2)? (4?3) (n?1?n)?(n?1?1)??(n??)?那么级数散度呢?(2)11111?33?55?7(2n?1)(2n?1)1111???????1?33?55?7(2n?1)(2n?1)111111111 111(?)?(?)?(?)(?)21323525722n?12n?1111111111(?)21335572n?12n?11 11(1?)?(n??)?22n?122?3?n??sinsin?666解因为sn所以级数收敛?(3)sin?6?sin解sn?sin?12sin?6?sin(2sin2?3?n??sinsin666?12?12sin?6?2sin?12sin2??n??2si nsin)6126?12sin?12[(cos?12?cos3?3?5?2n?12n?1)?(cos?cos)(cos??cos?)]121212 1212?12sin?12(cos?12?cos2n?1?).12因为limcosn??2n?1?不存在?所以limsn不存在?因而该级数发散?N12n8283n8(?1); 23n9994?确定下列序列的收敛性?(1)?? 这是等比级数吗?常见的比率是q??(2)? 13111; 693n88?那么| Q |??1.那么这个系列会聚了吗?99.这个系列有分歧吗?这是因为这样的级数收敛吗?那么阶段的数量是??11111? 3() n3693nn?1.还有收敛?矛盾(3)? 1313? 3131n3;1n?1n解决方案因为通用术语UN?3.3.1.0(n?所以由级数收敛的必要条件可知?此级数发散?332333n(4)?2.3.N2222解这是一个等比级数?公比q?(5)(?)?(?3?1?所以此级数发散?21213111111?)?(?)(?)????.223223332n3n?11解因为?n和?n都是收敛的等比级数?所以级数N12n?13?? (n?11111111?n)?(?)? (2?2)? (3?3) (n?n)N3232323是否收敛?习题11?21.用比较收敛法或极限形式比较收敛法确定下列级数的收敛性?(1)113151?????(2n?1)1?112n?1.因为Lim??还有连续剧?发散那么给定的序列会出现分歧?12n??N1nn(2)1?1.21? 31? N1.221? 321? 氮气?1.n1?N11解决方案,因为UN??那么级数发散度呢n1?n2n?n2nn?1.因此,给定的序列发散?(3)1112?53?6(n?1)(n?4)1?(n?1)(n?4)n21?lim2?1?而级数?2收敛?解因为lim1n??n??n?5n?4n?1n2n故所给级数收敛?(4)sin?2?sin?22?sin?23sin?2n罪2n??画罪因为LiMn??12n12n序列收敛了吗??N2n?1n2?那么给定的级数收敛了吗?(5)? 1(a?0)?n1?一1.解决原因00a11n1an1alimlimla1n12nn1aan1a111.什么时候开始?1小时系列?N收敛?什么时候?A.1小时系列?N散度?n?1an?1a1当a?1时收敛?当0?a?1时发散?nn?11?a所以级数?2?用比值审敛法判定下列级数的收敛性?332333n(1)1?22?223?23n?2n解级数的一般项为un?limn??3n?因为nn?2un?1un?lim3n?1n?2n3n3??lim1?n?1n2n?12n??(n?1)?2n??3所以级数发散?n2(2)?Nn?13un?1un(n?1)23n1n?121?lim??lim?()??1?n?123n3n??3n??n?解因为limn??所以级数收敛?2n?N(3)? Nn?1nun?1un2n?1?(n?1)!(n?1)n?1nnnn2?2lim()??1?nn?1en??2?n!?解因为limnlimn所以级数收敛?(3) 恩坦恩?1.2n?1.解因为limn??un?1un(n?1)tan?limn??2n?2?limn?1?2n?2?1?1?2n??丹恩?122n?那么级数收敛呢?3?用根值审敛法判定下列级数的收敛性?(1) (n?1nn)?2n?1n溶液,因为limn??联合国?画n1??1.那么级数收敛呢?2n?12(2)? 1.n[ln(n?1)]n?1n?因为limn??联合国?lim1?0 1? 那么级数收敛呢?n??ln(n?1)。
同济大学《高等数学第五版》习题答案
A\(A\B)=[−10, −5).
2. 设A、B是任意两个集合, 证明对偶律: (A∩B)C=AC ∪B C .
证明 因为
x∈(A∩B)C⇔x∉A∩B⇔ x∉A或x∉B⇔ x∈AC或x∈B C ⇔ x∈AC ∪B C, 所以 (A∩B)C=AC ∪B C .
F(−x)=f(−x)⋅g(−x)=f(x)[−g(x)]=−f(x)⋅g(x)=−F(x),
所以 F(x)为奇函数, 即偶函数与奇函数的积是奇函数.
12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?
(1)y=x2(1−x2);
(2)y=3x2−x3;
(3)
y
= 1− x2 1+ x2
(6)因为 f (−x)= a(−x) + a−(−x) = a−x + ax = f (x) , 所以 f(x)是偶函数.
பைடு நூலகம்
2
2
13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y=cos(x−2); (2)y=cos 4x; (3)y=1+sin πx; (4)y=x cos x; (5)y=sin2 x. 解 (1)是周期函数, 周期为 l=2π. (2)是周期函数, 周期为 l = π . 2 (3)是周期函数, 周期为 l=2. (4)不是周期函数. (5)是周期函数, 周期为 l=π.
(4)f(x)=1, g(x)=sec2x−tan2x . 解 (1)不同. 因为定义域不同. (2)不同. 因为对应法则不同, x<0 时, g(x)=−x. (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.
高等数学下(同济大学第五版)课后习题答案解析
word 完美格式第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数word 完美格式本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂word 完美格式4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y -+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
同济第五版高数答案(高等数学课后习题解答)
(7) yarcsin(x3);
解 由|x3|1 得函数的定义域 D[24]. 1 (8) y 3 x arctan ; x 解 由 3x0 且 x0 得函数的定义域 D(0)(03).
(9) yln(x1);
解 由 x10 得函数的定义域 D(1).
解 (1)是周期函数周期为 l2.
(2)是周期函数周期为 l . 2 (3)是周期函数周期为 l2. (4)不是周期函数. (5)是周期函数周期为 l. 14. 求下列函数的反函数 (1) y 3 x 1 (2) y 1 x 1 x (3) y ax b (adbc0); cx d (4) y2sin3x; (5) y1ln(x2); 2x . (6) y x 2 1
解 (1)由 y 3 x 1 得 xy31所以 y 3 x 1 的反函数为 yx31.
1 y (2)由 y 1 x 得 x 所以 y 1 x 的反函数为 y 1 x . 1 x 1 x 1 x 1 y dy b 所以 y ax b 的反函数为 y dx b . (3)由 y ax b 得 x cx d cy a cx d cx a
F(x)f(x)g(x)f(x)g(x)F(x)
所以 F(x)为偶函数即两个偶函数的和是偶函数. 如果 f(x)和 g(x)都是奇函数则
F(x)f(x)g(x)f(x)g(x)F(x)
所以 F(x)为奇函数即两个奇函数的和是奇函数.
解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 . 4 4 2 4 4 6 6 2 2
9. 试证下列函数在指定区间内的单调性: x (1) y , (, 1); 1 x (2)yxln x, (0, ).
同济大学《高等数学》第五版[上册]的答案解析
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 11-7
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 10-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
<<
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
专业整理 知识分享
练习 9-3
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
总习题八
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 6-3
高等数学教材第五版答案
高等数学教材第五版答案首先,我将按照教材的章节顺序,为你提供高等数学教材第五版的答案。
请注意,由于篇幅限制,我无法提供完整的答案,但会尽量为你提供一些重要的问题和答案示例。
第一章:函数与极限1.1 函数概念与基本性质- 问题:给出函数f(x) = 3x + 2,求f(2)的值。
- 答案:将x = 2代入函数中,得到f(2) = 3(2) + 2 = 8。
1.2 一元函数的极限- 问题:求函数f(x) = (x^2 - 1)/(x - 1)在x = 1处的极限。
- 答案:由于在x = 1时,分母为0,可以通过简单的化简来求解。
将x = 1代入函数中,得到f(1) = (1^2 - 1)/(1 - 1) = 0/0。
通过因式分解或洛必达法则等方法,最终可以得到极限的结果。
第二章:导数与微分2.1 导数的概念与计算- 问题:求函数f(x) = x^3 - 4x^2 + 3x - 2的导数。
- 答案:根据导数的定义,对每一项进行求导,最终得到f'(x) =3x^2 - 8x + 3。
2.2 函数的微分- 问题:求函数f(x) = sin(x) + cos(x)在x = π/4处的微分。
- 答案:首先求出函数在x = π/4处的导数,然后代入函数和导数的值,得到微分的结果。
第三章:积分与定积分3.1 不定积分与定积分的概念- 问题:求函数f(x) = 3x^2的不定积分和定积分。
- 答案:对于不定积分,求出每一项的积分,得到F(x) = x^3 + C;对于定积分,根据积分的性质和定理,求出积分的结果。
3.2 定积分的计算- 问题:计算函数f(x) = x^2在区间[0, 2]上的定积分。
- 答案:将函数代入积分公式中,并进行积分计算,最终得到定积分的结果。
第四章:常微分方程4.1 一阶常微分方程- 问题:求解微分方程dy/dx = 2x。
- 答案:对方程进行分离变量和积分处理,最终得到y = x^2 + C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(n1 2
(n1 2
所以f(x的傅里叶级数展开式为
(x(2n1n0 1 2
2将下列函数f(x展开成傅里叶级数
(1 (x
解将f(x拓广为周期函数F(x则F(x在(中连续在x间断且
故F(x的傅里叶级数在(中收敛于f(x而在x处F(x的傅里叶级数不收敛于f(x
计算傅氏系数如下
因为 (x是奇函数所以an0(n0 1 2
因而取n6此时
(2 (误差不超过0001
解
由于
故
因此取n4得
(3 (误差不超过000001
解
由于
故
(4cos 2(误差不超过00001
解
由于
故
2利用被积函数的幂级数展开式求下列定积分的近似值
(1 (误差不超过00001
解
因为
所以
(2 (误差不超过00001
解
因为
所以
3将函数excosx展开成x的幂级数
(n1 2
所以 (x
(2
解将f(x拓广为周期函数F(x则F(x在(中连续在x间断且
故F(x的傅里叶级数在(中收敛于f(x而在x处F(x的傅里叶级数不收敛于f(x
计算傅氏系数如下
(n1 2
(n1 2
所以
(x
3设周期函数f(x的周期为2证明f(x的傅里叶系数为
(n0 1 2
(n1 2
证明我们知道若f(x是以l为周期的连续函数则
7将函数f(x2x2(0x分另别展开成正弦级数和余弦级数
解对f(x作奇延拓则an0(n0 1 2而
(n1 2
故正弦级数为
(0x
级数在x0处收敛于0
对f(x作偶延拓则bn0(n1 2而
(n1 2
故余弦级数为
(0x
8设周期函数f(x的周期为2证明
(1如果f(xf(x则f(x的傅里叶系数a00a2k0b2k0(k1 2
(2
解
(2x2
11设f(x是周期为2的函数它在[上的表达式为
将f(x展开成傅里叶级数
解
即 (n1 2
(n1 2
因此
(x且xnn0 1 2
12将函数
分别展开成正弦级数和余弦级数
解若将函数进行奇延拓则傅里叶系数为
an0(n0 1 2
因此函数展开成正弦级数为
x(0h(h
当xh时
若将函数进行偶延拓则傅里叶系数为
习题112
1用比较审敛法或极限形式的比较审敛法判定下列级数的收
敛性
(1
解因为 而级数 发散故所给级数发散
(2
解因为 而级数 发散
故所给级数发散
(3
解因为 而级数 收敛
故所给级数收敛
(4
解因为 而级数 收敛
故所给级数收敛
(5
解因为
而当a1时级数 收敛当0a1时级数 发散
所以级数 当a1时收敛当0a1时发散
又当x0时幂级数成为 是发散的当x2时幂级数成为 也是发散的所以幂级数的收敛域为(2 0
(4
解 因为
根据比值审敛法当 即 时幂级数收敛当 时幂级数发散
又当 时幂级数成为 是发散的所以收敛域为
8求下列幂级数的和函数
(1
解设幂级数的和函数为S(x则
即
(2
解设幂级数的和函数为S(x则
因为当x1时幂级数收敛所以有
另一方面级数 是交错级数且满足莱布尼茨定理的条件所以该级数收敛从而原级数条件收敛
(4
解令 因为
故由比值审敛法知级数 收敛从而原级数绝对收敛
6求下列级限
(1
解显然 是级数 的前n项部分和
因为 所以由根值审敛法级数 收敛从而部分和数列{sn}收敛
因此
(2
解
显然 是级数 的前n项部分和
设 则
因为 所以 从而
2利用逐项求导或逐项积分求下列级数的和函数
(1
解设和函数为S(x即 则
(2
解设和函数为S(x即 则
提示由 得
(3
解设和函数为S(x即
则
提示由 得
习题114
1求函数f(xcosx的泰勒级数并验证它在整个数轴上收敛于这函数
解 (n1 2
(n1 2
从而得f(x在x0处的泰勒公式
因为 (01
而级数 总是收敛的故 从而
的值与a无关且
因为f(xcosnxsinnx均为以2为周期的函数所以f(xcosnxf(xsinnx均为以2为周期的函数从而
(n1 2
同理 (n1 2
4将函数 (x展开成傅里叶级数
解因为 为偶函数故bn0(n1 2而
(n1 2
由于 在[ ]上连续所以
(x
5设f(x的周期为2的周期函数它在[上的表达式这
7求下列幂级数的收敛域
(1
解 所以收敛半径为
因为当 时幂级数成为 是发散的
当 时幂级数成为 是收敛的
所以幂级数的收敛域为
(2
解 因为 由根值审敛法当e|x|1即 时幂级数收敛当e|x|1时幂级数发散
当 时幂级数成为
当 时幂级数成为
因为
所以
因此级数 和 均发散从而收敛域为
(3
解unn(x1n因为
根据比值审敛法当|x1|1即2x0时幂级数收敛当|x1|1时幂级数发散
4判定下列级数的收敛性
(1
解这里 因为
所以级数收敛
(2
解这里 因为
所以级数收敛
(3
解因为 而级数 发散
故所给级数发散
(4
解因为
所以级数收敛
(5
解因为
所以级数发散
(6
解因为 而级数 发散
故所给级数发散
5判定下列级数是否收敛?如果是收敛的是绝对收敛还是
条件收敛?
(1
解这是一个交错级数 其中
因为显然unun+1并且 所以此级数是收敛的
因此
x(
2将下列函数展开成x的幂级数并求展开式成立的区间
(1
解因为
x(
所以 x(
故 x(
(2ln(ax(a0
解因为
(1x1
所以 (axa
(3ax
解因为 x(
所以 x(
(4sin2x
解因为
x(
所以 x(
(5(1xln(1x
解因为 (1x1
所以
(1x1
(6
解因为 (1x1
所以 (1x1
3将下列函数展开成(x1的幂级数并求展开式成立的区间
解 故收敛半径为R收敛域为(
(4
解 故收敛半径为R3
因为当x3时幂级数成为 是发散的当x3时幂级数成为 也是收敛的所以收敛域为[3 3
(5
解 故收敛半径为
因为当 时幂级数成为 是收敛的当x1时幂级数成为 也是收敛的所以收敛域为
(6
解这里级数的一般项为
因为 由比值审敛法当x21即|x|1时幂级数绝对收敛当x21即|x|1时幂级数发散故收敛半径为R1
(n1 2
bn0(n1 2
因此函数展开成余弦级数为
x[0h(h
当xh时
当0p1时级数 是交错级数且满足莱布尼茨定理的条件因而收敛这时是条件收敛的
当p0时由于 所以级数 发散
综上所述级数 当p1时绝对收敛当0p1时条件收敛当p0时发散
(2
解因为 而级数 收敛故由比较审敛法知级数 收敛从而原级数绝对收敛
(3
解因为 而级数 发散故由比较审敛法知级数 发散即原级数不是绝对收敛的
(n1 2
由于f(x在(内连续所以
x(
(2
解
(n1 2
(n1 x2k k0 1 2
(3
解
(n1 2
(n1 2
而在(上f(x的间断点为
x3(2k1k0 1 2
故
(x3(2k1k0 1 2
2将下列函数分别展开成正弦级数和余弦级数
(1
解正弦级数
对f(x进行奇延拓则函数的傅氏系数为
a00(n0 1 2
(n1 2
故 x[0l]
余弦级数
对f(x进行偶延拓则函数的傅氏系数为
(n1 2
bn0(n1 2
故 x[0l]
(2f(xx2(0x2
解正弦级数
对f(x进行奇延拓则函数的傅氏系数为
a00(n0 1 2
故
x[0 2
余弦级数
对f(x进行偶延拓则函数的傅氏系数为
(n1 2
bn0(n1 2
故
习题111
1写出下列级数的前五项
(1
解 .
解 .
(2
解 .
解 .
(3
解 .
解 .
(4
解 .
解 .
2写出下列级数的一般项
(1
解一般项为 .
(2
解一般项为 .
(3
解一般项为 .
(4
解一般项为 .
3根据级数收敛与发散的定义判定下列级数的收敛性
(1
解因为
所以级数发散
(2
解因为
所以级数收敛
(3
解
.
因为 不存在所以 不存在因而该级数发散
解
因为
所以
因此
习题117
1下列周期函数f(x的周期为2试将f(x展开成傅里叶级数如果f(x在[上的表达式为
(1f(x3x21(x
解因为
(n1 2
(n1 2
所以f(x的傅里叶级数展开式为
(2f(xe2x(x
解因为
(n1 2
(n1 2
所以f(x的傅里叶级数展开式为
(x(2n1n0 1 2
(3 (ab为常数且ab0
2用比值审敛法判定下列级数的收敛性
(1
解级数的一般项为 因为