小学数学应用题分类题型知识讲解

合集下载

小学数学应用题类型讲解——和倍问题

小学数学应用题类型讲解——和倍问题

和倍问题含义:已知两个数的和,以及它们的倍数关系,求这两个数各是多少,这样的问题叫做和倍问题。

数量关系:和÷(倍数+1)=较小数较小数×倍数=较大数和-较小数=较大数和倍问题类型一:基本型【例1】工厂有职工480人,其中男职工人数是女职工人数的3倍,工厂的男、女职工各有多少人?解题思路1:已知男、女职工的人数和是480,两者的倍数关系是3。

由公式直接求解。

列式:女职工480÷(3+1)=120(人)男职工120×3=360(人)或 480-120=360(人)答:女职工有120人,男职工有360人。

解题思路2:画线段图分析由图可知,将女职工的人数看作1份,男职工的人数是女职工的3倍,男职工的人数就是3份,总共是4份,总人数是480人,先求出1份的人数,再求出几份的人数。

列式:女职工480÷(3+1)=120(人)男职工120×3=360(人)或 480-120=360(人)答:女职工有120人,男职工有360人。

【例2】在一道除法算式中,已知被除数和除数的和为360,商是5,被除数和除数各是多少?解题思路1:在除法算式中,被除数÷除数=商,此题中商是5,说明被除数是除数的5倍,已知被除数和除数的和是360,由公式直接求解。

列式:除数 360÷(5+1)=60被除数 60×5=300 或 360-60=300答:被除数是300,除数是60。

解题思路2:画线段图分析由图可知,被除数是除数的5倍,除数和被除数的和为360,直接用公式求解。

列式:除数 360÷(5+1)=60被除数 60×5=300 或 360-60=300答:被除数是300,除数是60。

总结:基本的和倍问题是题目中直接给出两个数的和与倍数关系,那么我们可以直接利用数量关系式求出这两个数各是多少,同时也可以利用画线段图的方式去理解分析。

小学六年级数学应用题分类答案与详细讲解

小学六年级数学应用题分类答案与详细讲解

小学六年级数学应用题分类(答案及详解)公约公倍问题需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。

【数量关系】绝大多数要用最大公约数、最小公倍数来解答。

【解题思路和方法】先确定题目中要用最大公约数或者最小公倍数,再求出答案。

最大公约数和最小公倍数的求法,最常用的是“短除法”。

例1、一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。

问正方形的边长是多少?解:硬纸板的长和宽的最大公约数就是所求的边长。

60和56的最大公约数是4。

答:正方形的边长是4厘米。

例2、甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?解:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。

因为问至少要多少时间,所以应是36、30、48的最小公倍数。

36、30、48的最小公倍数是720。

答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。

例3、一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?解:相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。

所以,至少应植树(60+72+96+84)÷12=26(棵)答:至少要植26棵树。

例4、一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。

又知棋子总数在150到200之间,求棋子总数。

解:如果从总数中取出1个,余下的总数便是4、5、6的公倍数。

因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为60×3+1=181(个)答:棋子的总数是181个。

小学三年级数学应用题分类及解法

小学三年级数学应用题分类及解法

小学三年级数学应用题分类及解法一、引言小学三年级是学生们开始接触数学应用题的初始阶段。

这一阶段的学习对于学生来说至关重要,因为它不仅为学生打下了数学基础,还培养了他们解决问题的能力。

本文将数学应用题分为几类,并给出相应的解题方法。

二、分类1、计算类应用题:这类应用题主要考察学生的计算能力,如加减乘除、分数、小数等。

例如:“小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?”这类问题的解决方法主要是通过正确的计算步骤得出答案。

2、比较类应用题:这类应用题通过比较两个或多个数量或数值来考察学生的比较能力。

例如:“一斤苹果的价格是5元,一斤香蕉的价格是3元,哪种水果更便宜?”解决这类问题,学生需要掌握比较的方法,并能够确定哪个数量或数值更大或更小。

3、图形类应用题:这类应用题通过图形或几何问题来考察学生的空间观念和推理能力。

例如:“一个长方形的长是5厘米,宽是3厘米,请问这个长方形的面积是多少?”解决这类问题,学生需要理解图形的性质和相关的几何公式。

4、逻辑推理类应用题:这类应用题通过一系列的信息或条件,要求学生推断出某种结论或结果。

例如:“在1,2,3,4,5,6,7,8,9中,不重复的三个数字可以组成一个三位数,请问有多少种可能的组合方式?”解决这类问题,学生需要运用逻辑推理的能力,从给定的信息中推导出正确的答案。

三、解题方法对于每一类应用题,我们都有相应的解题方法:1、计算类应用题:首先要理解题目中的数学表达式或方程,然后使用正确的计算步骤得出答案。

如果遇到困难,可以重新阅读题目或寻求帮助。

2、比较类应用题:首先需要确定哪个数量或数值更大或更小,然后通过比较得出答案。

如果遇到困难,可以重新阅读题目或寻求帮助。

3、图形类应用题:首先需要理解图形的性质和相关的几何公式,然后使用这些公式来解决问题。

如果遇到困难,可以借助模型或重新阅读题目。

4、逻辑推理类应用题:首先需要仔细阅读题目,理解所有的信息和条件,然后使用逻辑推理的方法得出答案。

小学数学各类应用题讲解+例题分析

小学数学各类应用题讲解+例题分析

小学数学各类应用题讲解+例题分析01简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

(2)解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。

读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。

也可以复述条件和问题,帮助理解题意。

b选择算法和列式计算:这是解答应用题的中心工作。

从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

c检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。

如果发现错误,马上改正。

02复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

(4)解答连乘连除应用题。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

答案:根据计算的结果,先口答,逐步过渡到笔答。

( 7 ) 解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

(8)解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学数学应用题知识点总结

小学数学应用题知识点总结

小学数学应用题知识点总结数学应用题是小学数学教学中的一个重要环节,通过实际问题的解决,培养学生的问题思维能力与数学思维能力,并将数学知识应用于实际生活中。

在解决数学应用题的过程中,学生需要掌握一些基本的数学应用题知识点。

本文将对小学数学应用题常见的知识点进行总结。

一、整数运算整数运算是数学应用题中常见的知识点之一。

在解决整数运算的应用题时,学生需要掌握加法、减法、乘法和除法的运算规则,并能根据实际问题选择合适的运算方法。

同时,学生还需要注意运算过程中的正负号的处理,以及如何利用整数运算解决实际问题。

二、分数运算分数运算也是小学数学应用题中常见的知识点之一。

在解决分数运算的应用题时,学生需要掌握分数的基本概念和运算规则,能够进行分数的加减乘除运算,并能够根据实际问题进行分数的化简和比较。

三、面积和周长面积和周长是应用题中常见的计算题型。

学生需要掌握矩形、三角形和圆形的面积和周长的计算公式,能够根据实际问题进行计算,并且能够理解面积和周长的意义和应用。

四、时、空、量的应用时、空、量的应用题是数学应用题中的重要内容。

学生需要掌握时间、速度、距离、体积等概念,并能够根据实际问题进行计算和应用。

在解决时、空、量的应用题时,学生需要注意单位的转换和问题的实际意义。

五、图表的分析图表的分析是数学应用题中常见的题型。

学生需要能够读懂图表,理解图表中的数据和信息,并能够利用图表中的数据解决实际问题。

在解决图表的分析题时,学生需要注意图表的类型,如柱状图、折线图和扇形图,并能够根据图表中的数据进行计算和推理。

六、排列组合排列组合是数学应用题中的一种题型。

学生需要掌握排列和组合的基本概念,并能够根据实际问题进行排列组合的计算。

在解决排列组合的应用题时,学生需要注意问题中的条件和要求,灵活运用排列组合的方法进行计算。

总之,小学数学应用题的解题过程中,学生需要掌握整数运算、分数运算、面积和周长的计算、时、空、量的应用、图表的分析和排列组合等基本知识点。

新人教版六年级数学上册应用题分类题型

新人教版六年级数学上册应用题分类题型

新人教版六年级数学上册应用题分类题型六年级上册数学应用题分类题型类型一:求一个数是另一个数的几分之几或百分之几的应用题解题规律:一个数除以另一个数等于几分之几(百分之几)1)求甲比乙多几分之几或百分之几的问题解题规律:甲-乙)除以乙或甲除以乙-12)求甲比乙少几分之几或百分之几的问题解题规律:甲-乙)除以乙或1-甲除以乙例题1:商店有一种衣服,原价40元,降价后每件只卖34元,便宜了百分之几?类型二:求一个数的几分之几是多少的问题的解题规律:一个数(单位“1”)乘以几分之几等于部分量(与几分之几相对应的量)例题2:XXX五月份制造机床108台,六月份比五月份多制造9/4台,六月份一共制造了多少台机床?例题3:一套衣服裤子单价是125元,上衣的价钱比裤子贵5/21,这套衣服一共多少钱?例题4:工地运来水泥32吨,第一天用去全部的1/9,第二天比第一天多用去54吨,第二天用去多少吨?类型三:已知一个数的几分之几是多少,求这个数。

此类问题的解题规律为:部分量除以分率等于一个数(单位“1”)。

部分量要与分率相对应。

例题5:打一份稿件,第一天打了7/12,第二天打的和第一天同样多,现在还剩39页。

这份稿件共有多少页?例题6:春蕾书店新到一批儿童读物,第一天卖出比总数的2/9,少100本,这样剩下1500本,新到的这批儿童读物总共是多少本?例题7:某校有女生160人,正好占男生人数的2/9,全校有多少人?类型四:比与分数的应用题例题8:林林读一本故事书,已读的页数与余未读的页数之比是1:5,如果再读30页,则已读的页数与余未读的页数之比是3:5.这本书一共有多少页?例题9:希望小学美术课外小组男生比女生少18人,男女生人数的比是3:5.美术课外小组里男女各有多少人?例题10:甲乙两车同时从AB两地相对开出,经过2小时,甲车已行的路程与全程的比是2:5,乙车行了全程的3/4,这时两车还相距96千米,AB两地相距多少千米?类型五:有关百分率的应用题(常见的百分率有哪些)例题11:六年级一班今天出勤48人,缺勤2人,出勤率是多少?去年,青和村种植了96户油菜,收获了千克油菜籽。

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题. 以下主要研究30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25 、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

(完整版)小学数学30种典型应用题分类讲解附带例题和解题过程

(完整版)小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题以下主要研究30类典型应用题:1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量士份数=1份数量1 份数量x所占份数=所求几份的数量另一总量士(总量士份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6 - 5 = 0.12 (元)(2)买16支铅笔需要多少钱?0.12 X 16= 1.92 (元)列成综合算式0.6 -5X 16= 0.12 X 16= 1.92 (元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1) 1台拖拉机1天耕地多少公顷?90 -3-3= 10 (公顷)(2)5台拖拉机6天耕地多少公顷?10 X 5X 6= 300 (公顷)列成综合算式90 - 3- 3X 5X 6= 10X 30= 300 (公顷)答:5台拖拉机6天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1) 1辆汽车1次能运多少吨钢材?100 - 5-4= 5 (吨)(2)7辆汽车1次能运多少吨钢材? 5 X 7 = 35 (吨)(3)105吨钢材7辆汽车需要运几次?105 - 35= 3 (次)列成综合算式105 + (100- 5-4X 7) =3 (次)答:需要运3次。

2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学三年级数学应用题分类及解法

小学三年级数学应用题分类及解法

小学三年级数学应用题分类解法一、一步简单应用题(一)、求一个数的几倍,用乘法计算(解题方法:小数乘以倍数=大数)1、小明今年9岁,爸爸的年龄是小明的5倍,爸爸今年多少岁?分析:根据爸爸的年龄是小明的3倍,用乘法算出爸爸的年龄。

列式解答:2、买一支笔2元钱,买60支这样的笔要多少钱?分析:根据单价×数量=总价,即可解答。

列式解答:(二)、求一个数是另一个数的几倍,用除法计算(解题方法:大数除以小数=倍数)3、小明今年9岁,爸爸今年45。

爸爸的年龄是小明的几倍?分析:用爸爸的年龄除以小明的年龄即可求出爸爸年龄是小明的几倍。

列式解答:4、买一支笔2元钱,花120元可以买多少支这样的笔?分析:根据总价除以单价=数量,即可解答。

列式解答:5、三个同学做纸花。

做了24朵红花,6朵黄花。

红花是黄花的几倍?分析:根据倍数除法的意义求解。

列式解答:(三)已知一个数是另一个数的几倍,求另一个数,用这个数除以倍数(解题方法:大数除以倍数=小数)6、爸爸今年45岁,是小明年龄的5倍,小明今年多少岁?列式解答:7、买一朵玫瑰花需要2元钱,用140元可以买多少支玫瑰花?分析:根据总价÷单价=数量,即可解答。

列式解答:8、饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只?列式解答:9、图书馆买来40本故事书,是科技书的5倍,科技书几本?列式解答:10、一只海狮重378千克,是一只企鹅体重的9倍。

这只企鹅的体重是多少千克?列式解答:二、两步应用题(一)几倍多几(解题方法:单位量乘以倍数加多的量)1、文具店运来三箱红墨水,每箱100瓶。

运来的蓝墨水比红墨水多200瓶,运来蓝墨水多少瓶?分析:根据题意,用每箱红墨水的数量乘以3,再加200,即为蓝墨水瓶数。

列式解答:2、一只猴子重25千克,一头熊猫的体重比猴子的6倍还多12千克一头熊猫的体重是多少?列式解答:(二)几倍少几(单位量乘以倍数减去少的量)3、王大伯前年养猪2头,去年养猪头数是前年的3倍,到年底卖了4头,还有几头?分析:根据题意,用前年养猪头数乘以3,再减去卖掉的4头,即剩下猪的头数。

六年级数学上册汇总_ 应用题常见题型解析

六年级数学上册汇总_ 应用题常见题型解析

六年级数学上册应用题常见题型解析+练习题分类汇总!六年级数学应用题4大题型解析一般应用题一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。

要点:从条件入手?从问题入?从条件入手分析时,要随时注意题目的问题从问题入手分析时,要随时注意题目的已知条件。

例题如下:某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。

剩下的如果平均每天生产150个,还需几天完成?思路分析:已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。

已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。

典型应用题用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。

(一)求平均数应用题解答求平均数问题的规律是:总数量÷对应总份数=平均数注:在这类应用题中,我们要抓住的是对应,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。

例题一如下:一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?思路分析:要求这天平均每小时碾米约多少千克,需解决以下三个问题:1、这一天总共碾了多少米?(一天包括上午、下午)。

2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。

3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。

)(二)归一问题归一问题的题目结构是:题目的前部分是已知条件,是一组相关联的量;题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。

解题规律是,先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。

例题如下:6台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?思路分析:先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。

小学数学典型应用题例题分类详解

小学数学典型应用题例题分类详解

小学数学典型应用题详解平均数问题算数平均数:数量之和÷数量的个数=算术平均数。

例:已知10,13,17,16,求它们的平均数。

解:(10+13+17+16)÷4=14 (各数之和除以数的个数)答:它们的平均数是14。

加权平均数:(部分平均数×权数)的总和÷(权数的和)=加权平均数。

例:某班期末数学考试中,60分的有3人,70分的有5人,80分的有4人,90分的有2人,求平均每人多少分?解:平均每人的分数为(60×3+70×5+×80×4+90×2)÷(3+5+4+2)=73.6(分)(这里的3人、5人、4人、2人分别是60分、70分、80分、90分的权数)答:平均每人73.6分差额平均数:最大数与各数之差的和÷总份数=最大数应给数最大数与各数之差的和÷总份数=最小数应得数。

例:小明有45张邮票,小华有35张邮票,小军有25张邮票,小明应该给小军多少张邮票,他们的邮票数才相等?解:(45-35+45-25)÷3=10(张)(最大数与各数之差的和除以总份数)答:小明应该给小军10张邮票,他们的邮票数才相等。

归一问题单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例:一个织布工人,在七月份织布4774 米,照这样计算,织布6930 米,需要多少天? 解:6930÷(4774÷31)=45(天)(先算出每天织布的米数,再算出织布6930米需要的天数)答:织布6930 米,需要45天。

归总问题单位数量×单位个数÷另一个单位个数= 另一个单位数量例:修一条水渠,原计划每天修800 米,6 天修完。

实际4 天修完,每天修了多少米? 解:800×6÷4=1200(米)(先算出总长,再算出4天修完,每天修多少米)答:每天修了1200米。

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题分类讲解附带例题和解题过程
解题思路:一般采用比例法或方程法进行求解,需要先列出方程或比例关系,然后求解未知数。
常见题型:例如,一项工程甲单独做需要10天完成,乙单独做需要15天完成,如果甲先做了3天后, 乙加入一起做,还需几天完成?
解题方法:先计算甲、乙两人单独完成工程所需的时间和效率,然后根据题目条件列出方程,最后 求解未知数。
题目:钟表上分针 转动的速度是时针 的几倍。
题目:钟表上时针 转动的速度是分针 的几分之几。
题目:钟表上分针 转动一圈,时针转 动多少度。
添加 标题
定义:日历问题是指与日期有关的数学问题,通常涉及到平年、闰年的计算以及日历的转换等。
添加 标题
解题思路:首先确定问题的类型,然后根据不同的类型采用不同的计算方法。对于平年或闰年的计算,需要 了解平年或闰年的天数和月份的天数;对于日历的转换,需要了解不同年份或月份的转换规则。
添加标题
添加标题
添加标题
添加标题
应用题的作用是帮助学生理解数学 概念,提高数学思维能力。
应用题在小学数学教学中占有重要 地位,是提高学生数学素养的重要 途径。
01
代数应用题:涉及代数方程、不等式、函数等数学 概念的问题,如鸡兔同笼问题。
03
概率与统计应用题:涉及概率、统计、数据分析等 概念的问题,如扔骰子求概率。
解题方法:解决 比例应用题的方 法通常包括找出 比例关系,建立 数学模型,然后 求解。
常见题型:例如 “一杯水中有 200克糖,糖和 水的比例是1:5, 求水的重量是多 少克?”
解题思路:首先 找出比例关系, 然后根据比例关 系建立数学模型, 最后求解。
定义:工程问题是指与工程项目相关的数学问题,涉及到工作量、工作效率和工作时间等概念。

小学一年级数学应用题详解

小学一年级数学应用题详解

小学一年级数学应用题详解在小学一年级的数学学习中,应用题是培养学生数学思维和应用能力的重要部分。

通过实际问题的解决,孩子们能够将数学知识应用于实际生活当中,提高他们的数学素养。

本文将详细解析小学一年级数学应用题,帮助孩子们更好地理解和掌握这一知识点。

第一节加减法应用题在小学一年级,加减法应用题是最基础的数学应用题之一。

通过这类题目的解答,学生可以对加法和减法的运算规则有更深入的理解。

1. 小明有3个苹果,他吃掉了1个苹果,还剩下几个苹果?解析:根据题意,小明原本有3个苹果,吃掉了1个苹果,剩下的苹果数目可用减法来计算。

3减去1等于2,所以小明还剩下2个苹果。

2. 爸爸给小红买了5个苹果,她已经吃了3个苹果,还剩下几个苹果?解析:这个问题同样可以使用减法来解答。

开始有5个苹果,吃了3个苹果之后,剩下的就是5减去3,等于2个苹果。

通过这样的数学应用题,孩子们可以通过实际的情境来巩固加减法的基本运算能力,并提高解决问题的能力。

第二节组合问题小学一年级的数学应用题中,组合问题也是非常常见的一种类型。

这类题目要求学生根据给定的条件,进行组合计算。

1. 有3个小朋友,要排队去买冰激凌。

他们有4种颜色的冰激凌可以选择,每个人只能选择一种颜色。

那么一共有多少种不同的排队方式?解析:这个问题中,要求计算不同的排队方式。

首先,第一个小朋友有4种颜色的选择,第二个小朋友有3种颜色的选择,第三个小朋友有2种颜色的选择。

因此,总共的排队方式应该是4乘以3乘以2,等于24种不同的排队方式。

2. 小明有3个颜色的铅笔,小红有2个颜色的橡皮,两人可以挑选一只铅笔和一块橡皮,一共有几种不同的组合方式?解析:根据题意,小明有3种铅笔的选择,小红有2种橡皮的选择。

所以,一共的组合方式应该是3种铅笔乘以2种橡皮,等于6种不同的组合方式。

通过这样的组合问题,学生可以培养他们的逻辑思维能力和组合计算的能力,提高他们的数学思维水平。

结语小学一年级数学应用题是培养学生数学思维和应用能力的重要环节。

完整版)小学数学典型应用题归纳汇总30种题型

完整版)小学数学典型应用题归纳汇总30种题型

完整版)小学数学典型应用题归纳汇总30种题型小学数学典型应用题归纳汇总30种题型1.归一问题归一问题是指在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

解决这类问题需要掌握以下数量关系:总量÷份数=1份数量,1份数量×所占份数=所求几份的数量,另一总量÷(总量÷份数)=所求份数。

例如,如果买5支铅笔需要0.6元钱,那么买同样的铅笔16支需要多少钱呢?我们可以先求出买1支铅笔多少钱,即0.6÷5=0.12(元),再用该单价乘以16支铅笔的数量,即0.12×16=1.92(元),得出需要1.92元。

2.归总问题归总问题是指解题时,常常先找出“总数量”,然后再根据其他条件算出所求的问题。

这里的“总数量”可以是货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

解决这类问题需要掌握以下数量关系:1份数量×份数=总量,总量÷1份数量=份数,总量÷另一份数=另一每份数量。

例如,如果服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套呢?我们可以先求出这批布总共有多少米,即3.2×791=2531.2(米),再用每套衣服用布的米数除以总米数,即2531.2÷2.8=904(套),得出现在可以做904套。

3.和差问题和差问题是指已知两个数量的和与差,求这两个数量各是多少。

解决这类问题需要掌握以下数量关系:大数=(和+差)÷2,小数=(和-差)÷2.例如,如果甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?我们可以先用公式求出甲班人数,即(98+6)÷2=52(人),再用公式求出乙班人数,即(98-6)÷2=46(人),得出甲班有52人,乙班有46人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学应用题分类题型小学数学典型应用题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?_________________(2)买16支铅笔需要多少钱?____________________列成综合算式________________________________(元)答:需要______元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1:服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做91套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? _______________________(米)(2)现在可以做多少套?_______________________(套)列成综合算式_______________________________(套)答:现在可以做______套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷ 2小数=(和-差)÷ 2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=_________________________(人)乙班人数=_________________________(人)答:甲班有52人,乙班有46人。

4 和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵? _____________________(棵)(2)桃树有多少棵?______________________(棵)答:杏树有_____棵,桃树有______棵。

5 差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。

求杏树、桃树各多少棵?解(1)杏树有多少棵? ___________________(棵)(2)桃树有多少棵?____________________(棵)答:果园里杏树是______棵,桃树是_____棵。

6 倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

例1: 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍? ____________________(倍)(2)可以榨油多少千克?___________________(千克)列成综合算式: __________________________(千克)答:可以榨油_________千克。

7 相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解_________________________(小时)答:经过_____小时两船相遇。

8 追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。

这类应用题就叫做追及问题。

【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米? 75×12=900(千米)(2)好马几天追上劣马? 900÷(120-75)=20(天)列成综合算式 75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。

9 植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。

【数量关系】线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。

例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解 136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。

10 年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

【解题思路和方法】可以利用“差倍问题”的解题思路和方法。

例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?解 35÷5=7(倍)(35+1)÷(5+1)=6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。

11 行船问题【含义】行船问题也就是与航行有关的问题。

解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

【数量关系】(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2 【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?解由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时 320÷8-15=25(千米)船的逆水速为 25-15=10(千米)船逆水行这段路程的时间为 320÷10=32(小时)答:这只船逆水行这段路程需用32小时。

12 列车问题【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

【数量关系】火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。

这列火车长多少米?解火车3分钟所行的路程,就是桥长与火车车身长度的和。

(1)火车3分钟行多少米? 900×3=2700(米)(2)这列火车长多少米? 2700-2400=300(米)列成综合算式 900×3-2400=300(米)答:这列火车长300米。

13 时钟问题【含义】就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。

时钟问题可与追及问题相类比。

【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。

通常按追及问题来对待,也可以按差倍问题来计算。

【解题思路和方法】变通为“追及问题”后可以直接利用公式。

例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。

每分钟分针比时针多走(1-1/12)=11/12格。

4点整,时针在前,分针在后,两针相距20格。

所以分针追上时针的时间为 20÷(1-1/12)≈ 22(分)答:再经过22分钟时针正好与分针重合。

14 盈亏问题【含义】根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。

【数量关系】一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数=(盈+亏)÷分配差如果两次都盈或都亏,则有:参加分配总人数=(大盈-小盈)÷分配差参加分配总人数=(大亏-小亏)÷分配差【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。

问有多少小朋友?有多少个苹果?解按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:(1)有小朋友多少人?(11+1)÷(4-3)=12(人)(2)有多少个苹果? 3×12+11=47(个)答:有小朋友12人,有47个苹果。

相关文档
最新文档