微积分2期末复习提纲答案(1)
微积分二期末复习题归纳

12
2. 已知生产某种产品必须投入两种要素,投入量分别为 x1和x2 ,生产函数为 Q = 2x13 x23 ,
其中 Q 为产出量。假设两种要素的价格分别为 4 和 1。试问当产出量 Q=12 时,两要素各投入多少可以使 总费用最小。(04)
12
解:总费用函数为 L
=
4 x1
+
x2
+
λ
(2
x13
x
3 2
,
∂2z ∂x∂y
=
f1′ex
+
y(ex )2
f1′1′ + (2x −
y)ex
f1′2′
−
2
xf
′′
22
4.设 w = f (x + y + z, x y z) , f 具有二阶连续导数,求 ∂w , ∂2 w .(05)续 F 偏导数, ∂x ∂x∂z
解:
∂w = ∂x
f1′⋅1 +
f2′⋅ y z
为偶函数(
Q
(1
+
e−x e−x
)
2
=
e−x (1 + e−x
⋅ e2x )2 ⋅e2x
= ex (1 + e x )2
)
∫∴
π 4 −π
4
sin
x
⋅
ex (1 + e x
)2
dx = 0 ,故原式=
2 2
∫2
2.
x
dx (03)(根式代换: u = x − 1 )
1 x −1
1
∫ 3. 已知 y′(x) = arctan(x −1)2 , y(0) = 0,求 y(x)dx. (03)(先自己做吧~) 0
重庆工商大学期末复习资料微积分近十份大学微积分下期末试题汇总(含答案)

19、将函数
展开成
的幂级数.
20、某工厂生产甲、乙两种产品,单位售价分别为40元和60元,若生产 单位甲产品,生产 单位
乙产品的总费用为 时该工厂取得最大利润.
21、设
,证明
,试求出甲、乙两种产品各生产多少
.
22、若
与
都收敛,则
收敛.
(可能会有错误大家一定要自己核对)
试题和答案⑤
一、填空题(每小题3分,共15分)
1、 A、0
的值为 B、3
( B) C、2
D、不存在
2、
和
在
A.必要非充分的条件; C.充分且必要的条件;
存在且连续是函数
B.充分非必要的条件; D.即非充分又非必要的条件。
在点
可微的 ( B )
3、由曲面
和
及柱面
所围的体积是 ( B )
A.
;
B.
;
C、
;
D.
4、 设 二 阶 常 系 数 非 齐 次 微 分 方 程
[]
8.设
为
的以 2为周期的余弦级数,则
<
1/1
(A) . (B) . (C) . (D) .
[]
9.设
则
在点 O 处
(A)偏导数存在,函数不连续 (C)偏导数存在,函数连续
三、解答题
(B)偏导数不存在,函数连续 (D)偏导数不存在,函数不连续
[]
10.(本题满分 10分)求曲线 L:
在其上点 M(1,-1,2)处的切线方
与
证:由于
都收敛,则
收敛. ,
(3分)
并由题设知
与
都收敛,则
收敛,
从而
微积分II期末模拟试卷3套含答案.docx

17、求曲线x3-xy+y3=l(x>0,y>0)±的点到坐标原点的最长距离和最短距离。
微积分II期末模拟试卷3(满分:100分;测试时间:100分钟) 三、填空题(3X5=15)
『1-/_“2
1、曲线<X=Joe du在(0, 0)处的切线方程为
y = t2ln(2-r2)
”=i2”=]n
(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与入有关
7、曲线y=y(x)经过点(0,-1),且满足微分方程y'+2y = 4兀,则当兀=1时,y=()
(A)0;(B)l;(C)2;(D)4
8、设q,是圆域D = {(x,y)|/+y2 si}的第£象限的部分,记Ik=^{y-x)dxdy.则
(A)/, >/2>1.(B) l>/j >/2.(C)I2>/j >1.(D)l>/2>/,.
五、计算题(5X10=50)
12、计算下列定积分
1
(1)j2|ycsi:兀力.(2)求y=cos x - sin x, y = 0(0 < x < —) ^ x轴旋转的旋转体体积
12、计算下列多元微积分
(1)设z=f[x2-y.(p{xy)],其中f(〃,0具有二阶连续偏导数,(p(u)二阶可导,求
y = Jo ln(l + u)du
dx cf
2te= 0< dt
x —o = °
16、设非负函数y = y(x)(xnO)满足微分方程尢y"-y+2 = 0,当曲线y = y(x)过原点
时,其与直线x = \&y =0围成平面区域Q的面积为2,求D绕y轴旋转所得旋转体体积。
微积分下册期末试卷(1-4缺2答案)及答案

安徽财经大学微积分(下)期末总复习练习卷(1)及参考答案二、填空题(每小题3分,共15分)1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知π=⎰∞+∞--dx e x 2,则=⎰∞+--dx e x x0 21___________.3、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是_________________. 二、选择题(每小题3分,共15分)6 知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛,则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p >7 二元函数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰, 则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I>>(C) 123I I I << (D) 213I I I<<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) xe b ax y 3)(+=(C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nn a ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.12、求二重极限 11lim 22220-+++→→y x y x y x .13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2.14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值.15、计算⎰⎰1 212dxe dy yyyx .16、计算二重积分22()Dx y dxdy +⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x -31展开成x 的幂级数,并求展开式成立的区间. 20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略.四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z z x y x y ∂∂+=∂∂. 22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.练习卷(1)答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 23、)32,31(-. 4、1. 5、"6'0y y y -+=. 二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D). 三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。
微积分第四版答案(二)曲面的概念+曲面的第一基本形式

§1曲面的概念1.求正螺面={ u ,u , bv }的坐标曲线.解u-曲线为={u ,u ,bv }={0,0,bv}+u {, ,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线.2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。
证 u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2 }表示过点{ a, b,0}以{a,b,2}为方向向量的直线;v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a, b,0)以{a,-b,2}为方向向量的直线。
3.求球面=上任意点的切平面和法线方程。
解=,=任意点的切平面方程为即 xcos cos + ycos sin + zsin - a = 0 ;法线方程为。
4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。
解椭圆柱面的参数方程为x = cos, y = asin, z = t ,, 。
所以切平面方程为:,即x bcos + y asin- a b = 0此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。
5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。
证,。
切平面方程为:。
与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。
于是,四面体的体积为:是常数。
§2曲面的第一基本形式1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式.解,∴ I = 2。
2.求正螺面={ u ,u , bv }的第一基本形式,并证明坐标曲线互相垂直。
解,,,,∴ I =,∵F=0,∴坐标曲线互相垂直。
3.在第一基本形式为I =的曲面上,求方程为u = v的曲线的弧长。
解由条件,沿曲线u = v有du=dv ,将其代入得=,ds = coshvdv , 在曲线u = v上,从到的弧长为。
微积分Ⅱ期末考试试卷总集

微积分Ⅱ期末考试试卷1一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.若c x g dx x f +=⎰)()(,则=⎰dx x xf )(cos sin ________.2.极限=⎰→xtdt xx 020cos lim________.3.已知xy z =而)tan(t s x +=,)cot(t s y +=则=∂∂sz________. 4.设{}10,10),(≤≤≤≤=y x y x D 则=⎰⎰Dxy d xe σ________.5.微分方程02=+''y y 的通解为________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1.设⎰=+21xdx ________.A. c x +arctanB. c x x +++)1ln(2C. c x ++212D. c x ++)1ln(212.2.下列积分值为0的是________.A. ⎰+∞+0211dx xB. ⎰-1121dx xC. ⎰-++ππdx x x x )cos 1sin (2D. ⎰--1121dx x . 3.函数),(y x f z =在点),(00y x 处可微的充分条件是函数在该点处________. A.有极限 B.连续 C.偏导数存在 D.有连续的偏导数. 4. =⎰⎰10),(xdy y x f dx ________.A. ⎰⎰1010),(dx y x f dy B. ⎰⎰y dx y x f dy 01),(C. ⎰⎰100),(y dx y x f dy D. ⎰⎰101),(ydx y x f dy .5.下列级数收敛的是________.A .∑∞=-+-12123n n n n B. nn n n∑∞=+1)1(C . ∑∞=⎥⎦⎤⎢⎣⎡-1)32(1n n n D. ∑∞=1!n n nn .三、(计算题请写出主要步骤及结果,每小题6分,共18分.) 1. ⎰dx e x x 2 2. ⎰+41)1(x x dx 3.请给出第七章(定积分)的知识小结.四、(请写出主要计算步骤及结果,6分.) 已知方程z x e z xy +=+ 确定函数),(y x z z = 求dz . 五、(请写出主要计算步骤及结果,8分.)求⎰⎰++Dd y x σ)1ln(22,其中D 为圆周122=+y x 围成的区域.六、(请写出主要计算步骤及结果,8分.) 求初值问题的解⎩⎨⎧=+==0)2(0x y dx y x dy 七、(请写出主要计算步骤及结果,8分.) 求幂级数∑∞=-0)1(n nnnx 的收敛半径,收敛区间.并求∑∞=03n nn的和. 八、(请写出主要计算步骤及结果,8分.)求由2x y =与2y x =所围成的平面图形的面积,并求此平面图形分别绕x 轴,y 轴旋转所成的体积.九、经济应用题(请写出主要计算步骤及结果,8分.)某厂生产某种产品的生产函数为y x Q 2005.0=,若甲、乙两种原料的单价分别为1万元和5万元,现用150万元购原料,求两种原料各购多少时,能使生产量最大?最大生产量为多少? 十、证明题(请写出推理步骤及结果,6分.)设)(x f 在],[b a 上连续,在),(b a 内可导,且有M x f ≤'(及0)(=a f ,试证:⎰-≥b adx x f b a M )()(22微积分Ⅱ期末考试试卷1答案一、1.c x g +-)(cos 2.1 3.)(csc )tan()cot()(sec 22t s t s t s t s ++-++4.2-e5.x c x c y 2sin 2cos 21+= 二、1.B 2.C 3.D 4.D 5.D三、1. ce xe e x dxe xe e x xde e x dx xe e x de x dx ex xxxx x x x x x x x x++-=+-=-=-==⎰⎰⎰⎰⎰2222222222222. x t =2t x =⎰⎰⎰=-=+=+-=+=+41212121234ln 221ln 232ln 21ln 2)111(2)1(2)1(t t dt t t t t tdt x x dx四、z x e z xy z y x F +-+=),,(z x x e y F +-= x F y = z x z e F +-=111-+--=---=-=∂∂++z xy zxy y e e y F F x z zx z x Z x 11-+=--=-=∂∂+z xy xe x F F y z z x Z y dy z xy xdx z xy z xy y dy y z dx x z dz 11-++-+--=∂∂+∂∂=五、⎰⎰⎰⎰+=++Drdr r d d y x 122022)1ln()1ln(πθσ⎥⎦⎤⎢⎣⎡+-+=+=⎰⎰⎰1022210221022201)1ln()1ln(21dr r r r r dr r d πθπ 1021021022)1ln(2ln )111ln(2ln r r dr r ++-=⎥⎦⎤⎢⎣⎡+--=⎰ππππ )12ln 2(2ln 22ln 2ln -=-=+-=ππππππ六、x y y 2=-'⎥⎦⎤⎢⎣⎡+⎰=⎰---c dx xe e y dx dxf )1()1(2[]c dx xe exx +=⎰-2[][]⎰⎰++-=+-=---c dx e xee c xde e x xxxx222x ce x +--=22因为00==x y 所以c =2 所求特解为)1(2--=x e y x七、111=+==+n na a R n n 当1±=x 时∑±nn )1(发散 收敛区间为)1,1(- 设∑∑∞=-∞===10)(n n n nnx x nxx S设∑∞=-=1)(n n nxx T则xx xdx nxdx x T n n x n n x n n x-====∑∑⎰∑⎰∞=∞=∞=-11)(012)1(1)(x x T -=所以2)1()()(x xx xT x S -==31=x 时 439431)311(31)31(320==-==∑∞=S n n n 八、31)(102=-=⎰dx x x S()dx x x V x ⎰⎥⎦⎤⎢⎣⎡-=10222)(ππ103=()ππ103)(10222=⎥⎦⎤⎢⎣⎡-=⎰dy y yV y九、解 )1502(005.0),,(2-++=y x y x y x F λλ 0001.0=+=λxy F x02005.02=+=λx F y ⎩⎨⎧==⇒25100y x01502=-+=y x F λ ==25*100*005.02Q 十、b a a x f a f x f x f <<-'=-=ξξ))(()()()(M x f ≤')()()(a x M x f -≤22)(212)()()(a b M a x M dx a x M dx x f baba b a-=-⋅=-≤⎰⎰dx x f dx x f b ab a⎰⎰≥)()(2)(2)(a b Mdx x f b a-≤⎰dx x f b a M b a⎰-≥)()(22微积分Ⅱ期末考试试卷 2一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.已知cos()z xy =,而()y x ϕ=可导,则dzdx=________. 2.若2()1f x xdx c x x =++⎰,则()f x =________.3.p ________时,广义积分22111(1)p dx x --⎰发散.4.若20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑,则函数2sin x 的麦克劳林级数等于________. 5.微分方程0y ay y '''+-=的通解为12x x y c e c e -=+,则a =________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.)1.设xy z xe =,则'x z =________.A.xy xyeB.xy e x 2C.xy eD.xy e xy )1(+ . 2.=________.A.x c + B. arcsinc +C.c +3x c +.3.下列结论正确的个数是________.(1)11230x dx x dx <⎰⎰ (2)22211x e e dx e ---<<⎰(3)cos 0x xdx ππ-=⎰(4)2221[sin ]2sin x t dt x x '=⎰A.0B.1C.2D.3. 4.1200(cos ,sin )d f r r rdr πθθθ=⎰⎰ ________.A. 110(,)dy f x y dx ⎰⎰ B. 10(,)dx f x y dy ⎰⎰C. 110(,)dx f x y dy ⎰⎰ D. 1(,)dy f x y dx ⎰⎰.5.微分方程1y y '-=的通解是________. A .x y ce = B. 1x y ce =+ C .1x y ce =- D. (1)x y c e =+.三、(请写出主要计算步骤及结果,每小题8分,共16分.) 1. arctan x xdx ⎰ 2. 41⎰.四、(请写出主要计算步骤及结果,8分.)已知方程sin xy x z yz += 确定函数(,)z f x y = ,求dz . 五、(请写出主要计算步骤及结果,8分.)求2()Dx y d σ-⎰⎰,其中D 是由直线2y =,y x =及2y x =围成的区域.六、(请写出主要计算步骤及结果,8分.)求由y =与3y x =所围成的平面图形的面积,并求此平面图形绕x 轴旋转所形成的立体的体积.七、(请写出主要计算步骤及结果,8分.)判断级数n ∞=的敛散性.八、(请写出主要计算步骤及结果,8分.)求幂级数1(1)nn n e x n∞=-∑的收敛半径,收敛区间.九、经济应用题(请写出主要计算步骤及结果,8分.)某工厂生产A 、B 两种产品,单位成本分别为2元和14元,需求量分别为1Q 件和2Q 件,价格分别为1P 元和2P 元,且满足关系式1214()Q P P =-,2128048Q P P =+-,试求A 、B 两种产品的价格1P ,2P ,使该厂总利润最大(要求利用极值的充分条件). 十、证明题(请写出推理步骤及结果,6分.) 设)(x f 为连续函数,试证:()()(())x x tf t x t dt f u du dt -=⎰⎰⎰.微积分Ⅱ期末考试试卷2答案一、填空题(每小题3分,共15分)1.sin[()][()()]x x x x x ϕϕϕ'-+2. 21x x ⎛⎫ ⎪+⎝⎭ 3.1p ≥4.()()1212121,(2)!n n n n x x n --∞=-∈-∞+∞∑ 5.0二、单项选择题(每小题3分,共15分) 1.D 2.C 3.B 4.B 5.C三、(请写出主要计算步骤及结果,每小题8分,共16分.)1.2222222221arctan arctan (1211arctan (32211111arctan (5221111arctan arctan 22211(1)arctan (822x xdx xdx x x x dx x x x x dx x x x x x c x x x c ==-++-=-+=-++=+-+⎰⎰⎰⎰分)分)分)分)2.44114141(2(42ln(1(632ln(82===+=⎰⎰⎰分)分)分)分).四、(请写出主要计算步骤及结果,8分.)sin (1sin cos (4sin (5cos (6cos sin (8cos cos x y z x z y z F xy x z yz F y z F x z F x z y F z y z x F x z yF z x z y F x z y y z x zdz dx dyx z y x z y=+-'''=+=-=-'∂+=-='∂-'∂-=-='∂-+-=+--分),,分)分)分)分)五、(请写出主要计算步骤及结果,8分.)图(1分)22222220222303420()()(31()(5231()(68211()(7881(8yy Dy y x y d dy x y dx x xy dyy y dy y y σ-=-=-=-=-=-⎰⎰⎰⎰⎰⎰分)分)分)分)分)六、(请写出主要计算步骤及结果,8分.)图(1分)130341201260)(321()(4345(512](75(814x S x dxx x V x dx ππ=-=-==-=⎰⎰分)分)分)分)分)七、(请写出主要计算步骤及结果,8分.)1(4n =分)由比较判别法的极限形式知级数3121,n n n∞∞==∑敛散性相同,因为3121,n n∞=∑所以0n ∞=收敛。
微积分2答案完整版

知识点:积分收敛性,中。
4.
答案:C
学霸解析:
可微
可微
可微
知识点:二元函数可微性,中。
5.
答案:C
学霸解析
知识点:求原函数,中。
三、计算题(共8题,每题6分,满分48分)
1.答案:
学霸解析:令
则
知识点:求定积分,中。
2.答案:
学霸解析:
3.
解:
知识点:二重积分,中。
4.
答案:
学霸解析:
二 、
1答案:A
学霸解析: 为偶函数, 为奇函数,且 有意义,则 是偶函数。
知识点:组合函数,易。
2、
答案:B
学霸解析:若函数 在 处不可导,则 在 处一定不可微。
知识点:可导和可微积,易。
3、
答案:D
学霸解析:收益与成本的情况下,获得最大利润的必要条件是 .
知识点:二重求导,中。
4、
答案:B
学霸解析:
考查知识点:敛散性
(2)答案:
学霸解析:
考查知识点:级数收敛的函数
六、
答案:480
学霸解析:
考查知识点:求导运用
七、
答案:2/15
学霸解析:
考查知识点:双边求导
八、
1.答案:
右式
=左式
2.答案:
① 在(a,b)上恒成立
由于f(x)-x在(a,b)上连续
可知
故只能有f(x)=0
② 在(a,b)上恒成立
考查知识点:间断点
3.答案:B
学霸解析:可微的定义
考查知识点:可微的定义
4.答案:D
学霸解析:R(Q)导数减去C(Q)导数为0点为题目所求点
微积分(二)课后题答案,复旦大学出版社_第十章[1]
![微积分(二)课后题答案,复旦大学出版社_第十章[1]](https://img.taocdn.com/s3/m/992ef9c06137ee06eff91822.png)
1 y 2 ec1 ( x2 1) ,记 c ec1 有 y 2 c( x 2 1) 1.
(4) 分离变量得,
1 dy sin x c dx ,两边积分得, tan y 2 2 cos x cos y c.
x 1 y 3
作变换
x u 1 ,原方程化为 y v 3
dv v u du u v
这是一个齐次方程,按齐次方程的解法: 令
v 1 du , 方程可化为 d 2 u 1 u
5
两边积分可得,整理可得, 2arctan ln u 2 (1 2 ) c 将
x y dx dy 0, y x 0 1 ; 1 y 1 x
y(1)0;
(6) yy′xey0, (7) y′e2xy,
y x 0 0 .
dy dx 1 y 1 x (1 y 0) ,两边积分得
解: (1) 原方程分离变量得
2
ln 1 y ln 1 x c1
y 2x
y
(7) 分 离 变 量 得 e dy e dx , 两 边 积 分 得 e
1 2x e c , 由 y 2
x 0
0 得
3
c
1 1 2x y ,所以,原方程满足初始条件的特解为 e (e 1) . 2 2
2. 物体冷却速度与该物质和周围介质的温差成正比,具有温度为 T0 的物体放在保持常温 为的室内,求温度 T 与时间 t 的关系. 解: 设 t 时刻物体的温度为 T,由题意有
(5) 原方程可化为: y(1 y)dy x(1 x)dx ,两边积分得 由 y
y 2 y3 x 2 x3 c 2 3 2 3
最新微积分2复习提纲1

微积分2复习提纲1微积分复习提纲一、多元函数微分学及其应用1、会求多元函数的偏导数,进而会求函数的全微分«Skip Record If...»或者梯度函数«Skip Record If...»①多元显函数的偏导数,见P16 例1---例3,P24习题1②多元抽象函数的偏导数,见P28 例5---例7,P36 习题3③高阶偏导数,见P19 例8,P24习题2,P36 习题4④复合函数的偏导数,见P26例1,例3,例4,P36习题1,22、会求由方程确定的隐函数的偏导数①“显”方程确定的隐函数求偏导数,(公式法),见P34 例12,P36习题6,7②抽象方程确定的隐函数求偏导数,(直接法),见P34 例13,P36习题8③由方程组«Skip Record If...»确定的隐函数«Skip Record If...»的导数«Skip Record If...»,(直接法:在方程两端同时对«Skip Record If...»求导,求导过程中把«Skip Record If...»都看做是«Skip Record If...»的函数,然后解方程组即可),见P35例14,P37习题9④由方程组«Skip Record If...»确定的隐函数«Skip Record If...»的偏导数(直接法)见P37习题93、多元函数微分学的几何应用①空间曲线«Skip Record If...»在点«Skip Record If...»处的切线方程及法平面方程,见P46 例1,例2, P50习题1、2②空间曲线«Skip Record If...»在点«Skip Record If...»处的切线方程及法平面方程见P46 例3, P50习题2③曲面«Skip Record If...»在点«Skip Record If...»处的切平面方程与法线方程见P46 例5,例6, P50习题34、方向导数与梯度二、多元函数积分学及其应用1、二重积分的计算步骤:1)画出积分区域«Skip Record If...»,2)根据积分区域选择适当的坐标系来计算此二重积分3)化二重积分为二次积分4)做两次定积分,计算此积分的值注:多元函数对某个自变量积分的时候,要把其他的自变量看做常数。
2019《微积分II》期末复习题一 - 参考答案

.
M
gradu
u i x
u y
j
u k z
u x
,
u y
,
u z
2 9
,
4 9
,
4 9
u
2x
x x2 y2 z2
u
2y
y x2 y2 z2
u
2z
z x2 y2 z2
gradu M
S
曲面方程, x用 x替换, 曲面边界方程不变化.
(1)被积函数f ( x, y, z)关于x是奇函数 (即f ( x, y, z) f ( x, y, z)),
则 f ( x, y, z)dS 0;
S
(2)被积函数f ( x, y, z)关于x是偶函数 (即f ( x, y, z) f ( x, y, z)),
x2 y2 1以及平面z 0围成.
法一: 积分区域为圆柱去掉圆锥的部分,
z
用先一后二法
V
:
0
z
x2 y2
Dxy : 0 x2 y2 1
I
2
d
1
rdr
r z r 2dz
0
0
0
2 1 r 3 1 z2 r dr 1 r 5dr
0 0
1 x cos 2x 1
cos 2xd 2x
0 2 0
1 1 sin 2x
2
0
1
11/24
三、设z
xn
f
微积分(二)课后题答案,复旦大学出版社 第九章

第9章习题9 11. 判定下列级数的收敛性:(1) 115nn a ∞=⎛⎫⋅ ⎪⎝⎭∑(a >0); (2) ∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4)∑∞=-+12)1(2n nn; (5) ∑∞=+11ln n n n; (6)∑∞=-12)1(n n;(7) ∑∞=+11n nn ; (8)0(1)21n n nn ∞=-⋅+∑. 解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a <,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散.(2)n S =+++1= lim n n S →∞=∞∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n∞=∑发散,故原级数113n n ∞=+∑发散. (4) 1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2mnn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛.(5) lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln3)[ln ln(1)]n S n n =-+-+-+ ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞=-∞,所以级数1ln1n nn ∞=+∑发散. (6) 2210,2n n S S +==-∴lim n n S →∞不存在,从而级数1(1)2n n ∞=-∑发散.(7) 1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8) (1)(1)1, l i m 21212n n n n n n U n n →∞--==++∴ l i m 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2)∑∞=++1)2)(1(1n n n n ; (3) ∑∞=⋅12sin n n n π; (4)πcos2n n ∞=∑. 解: (1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32. (2)11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭∴121112111211121122322342345212n S n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-+++-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11112212n n ⎛⎫=-+ ⎪++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin 2n n n ∞=⋅∑发散.(4)πcos 2n n U =,而4lim lim cos 2π1k k k U k →∞→∞==,42lim lim cos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散. 3. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >= ,故存在0n ,使11n n k t k t S U A s ∞===<<∑∑又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim nn S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2)∑∞=+1n n n 1; (3) ∑∞=++1n n n n )2(2; (4)∑∞=+1n n n )5(12;(5) 111nn a∞=+∑ (a >0); (6) ∑∞=+1n nba 1(a , b >0);(7)()∑∞=--+1n a n a n 22 (a >0); (8)∑∞=-+1n nn 1214; (9) ∑∞=⋅1n nnn 23; (10) ∑∞=1n nn n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753 ; (12)∑∞=1n nn 3; (13)∑∞=1n n n 22)!(2; (14) ∑∞=⎪⎭⎫⎝⎛+1n nn n 12;(15)∑∞=1πn nn3sin2; (16) ∑∞=1πn nn n 2cos 32. 解:(1)因为211(1)(2)n n n <++而211n n∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim 10n n n U →∞==≠,故原级数发散. (3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散. (4)321n<=,而1n ∞=p -级数3(1)2p =>,由比较判别法知,级数1n ∞=.(5)因为111lim lim lim(1)111n n n n n n n a a a aa→∞→∞→∞+==-++ 11112001a a a >⎧⎪⎪==⎨⎪<<⎪⎩而当1a >时,11n n a ∞=∑收敛,故111nn a∞=+∑收敛; 当1a =时,11n n a∞=∑=11n ∞=∑发散,故111nn a ∞=+∑发散; 当01a <<时1lim101n n a →∞=≠+,故1lim 1nn a →∞+发散;综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛.(6)因为1lim lim lim(1)n n n nn n n nb a a b a b a b b →∞→∞→∞+==-++1111101b b a b >⎧⎪⎪==⎨+⎪<<⎪⎩ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为n n n→∞=0n a ==>而11n n∞=∑发散,故级数10)n a ∞=>∑发散.(8)因为434431121lim lim 212n n n n n n n n→∞→∞++-==-而311n n ∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132nnn n ∞=⋅∑发散. (10)因为11(1)!1lim lim lim(1)1(1)!n n n n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!nn n n ∞=∑发散.(11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+ 232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13nn n∞=∑收敛. (13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n nU n U ++→∞→∞+==<由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫⎪+⎝⎭∑收敛.(15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n nn ∞=∑收敛. (16)因为2πcos 322n n n n n ≤而与(12)题类似地可证级数12n n n ∞=∑收敛,由比较判别法知级数1πcos 32nn n n ∞=∑收敛. 2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n nn x ; (2)nn x n ∑∞=⎪⎭⎫ ⎝⎛123. 解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散;当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n ∞=∑,它是发散的. 综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散;当012x<<即02x <<时,原级收敛. 而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2nn x n ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2)11(1)2(1)2n n n n ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx; (4) 111π(1)sin πn n n n∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6)∑∞=+-1)1(n n xn ; (7) ∑∞=⋅1!)2sin(n n n x ; (8)∑∞=1sin n n nx(0<x <π). 解:(1)这是一个交错级数121n U n =-, 1lim lim021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21n n n ∞=--∑.又1111(1)2121n n n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛. (2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故 11111(1)21111(1)22(1)22(1)2n n n n n n n n n ------+--=+≤+-⋅-⋅-⋅ 1113222n n n-=+=而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n n n ∞-=-+-⋅∑绝对收敛. (3)因为22sin 1,nx n n ≤而级数211n n∞=∑收敛,由比较判别法知21sin n nx n ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛. (4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n ∞+=-∑收敛,从而级数11π(1)sin πn n n+-绝对收敛. (5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛.(7)因为sin(2)1!!n x n n ⋅≤ 由比值判别法知11!n n ∞=∑收敛( 1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛.(8)因为1n 单调下降趋于零,且部分和1sin Nn nx =∑有界(0π)x <<,故由迪里黑里判别法知级数1sin n nxn ∞=∑收敛. 又2sin sin 1cos 21cos 2222nx nx nx nxn n n n n -≥==-,由于112n n ∞=∑发散,因12n 单调趋于零,且1cos 2Nn nx =∑有界,故由迪里黑里判别法知1cos 22n nx n ∞=∑收敛,从而11cos 222n nx nn ∞=⎛⎫- ⎪⎝⎭∑发散,由比较判别法知,1sin n nx n ∞=∑发散,所以,原级数1sin n nxn ∞=∑ (0π)x <<条件收敛. 注:迪里黑里判别法,若级数1n nn u v∞=∑满足条件:(1)部分和1nn ii S u==∑是有界的;(2)当n →∞时,n v 单调地趋于零; 则级数1n nn u v∞=∑收敛.2. 讨论级数∑∞=--111)1(n p n n的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p p u u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n pn n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n∞∞-==-=∑∑发散,故此时,级数111(1)n pn n ∞-=-∑条件收敛. 综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n nn ba 及()∑∞=+12n n nb a也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n n n n a b ∞∞==∑∑,以及1n n n a b ∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n nn x (0!=1); (2)∑∞=0!n nnx nn ; (3) ∑∞=⋅022n n nnx ; (4)∑∞=++-01212)1(n n nn x . (5) ∑∞=⋅+02)2(n n nn x ; (6)∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!nn x n ∞=∑的收敛区间为(,)-∞+∞. (2)因为-111lim lim lim 1e 11n nn n n n na n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p ==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u eu n+=+,因为1(1)n n +是单调递增数列,且1(1)nn+<e 所以1n nu u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数!nn n n x n ∞=∑的收敛区间为(-e,e).(3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n n n n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而21(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛.综上所述,级数21(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为1(1)nn n∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n ∞=∑,它是发散的. 综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数12limlim 21n n n n a np a n +→∞→∞===+ 故收敛半径12r =. 于是当1|1|2x -<即1322x <<时,原级数绝对收敛.当1|1|2x ->即12x <或32x >时,原级数发散.当32x =时,原级数变为01n n ∞=∑是调和级数,发散.当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数. 综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭. 2. 求下列幂级数的和函数:(1) ∑∞=-1)1(n nnn x ; (2)∑∞=-1122n n nx;(3) n n x n n ∑∞=+1)1(1; (4)∑∞=+0)12(n nxn .解:(1)可求得所给幂级数的收敛半径r =1.设1()(1)nnn x S x n ∞==-∑,则1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ ∴001()()d d ln(1) (||1)1x x S x S x x x x x x-'===-+<+⎰⎰又当x =1时,原级数收敛,且()S x 在x =1处连续.∴1(1)l n (1) (11)nnn x xx n ∞=-=-+-<≤∑(2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有2121011()d 2d 2d xx xn n n n S x x nxx nx x ∞∞--====∑∑⎰⎰⎰22211nn x x x ∞===-∑ 于是22222()1(1)x xs x x x '⎛⎫== ⎪--⎝⎭ 又当1x =±时,原级数发散.故2122122 (||1)(1)n n xnx x x ∞-==<-∑(3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑01()d ()(0)d 1xxg x x g x g x x''''=-=-⎰⎰(0)0,()ln(1)g g x x ''==--()d ()(0)ln(1)d ,(0)0xxg x x g x g x x g '=-=--=⎰⎰所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰;所以1()11ln(1),||1,S x x x x ⎛⎫=+--<⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)nn n n ∞=-+∑,它们都收敛.且显然有(0)0S =.故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设1()n n S x nx∞-==∑,则1()d .1xn n s x x x x∞===-∑⎰于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以111(21)2nn n n n n n xx nxx ∞∞∞-===+=+∑∑∑221112(1)1(1)xx x x x +=⋅+=--- (||1)x <3. 求下列级数的和:(1) ∑∞=125n n n ; (2)∑∞=-12)12(1n nn ; (3) ∑∞=--112212n n n ; (4)1(1)2nn n n ∞=+∑. 解:(1)考察幂级数21nn n x ∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2n n u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21nn n x∞=∑的收敛区间为(-1,1).设21() (||1)nn S x n xx ∞==<∑,则211()n n S x x n x ∞-==∑令2111()n n S x n x∞-==∑,则11011()d xnn n n S x x nx x nx ∞∞-====∑∑⎰.再令121()n n S x nx∞-==∑,则201()d 1xn n xS x x x x∞===-∑⎰.故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰. 1231() (||1)(1)(1)x xS x x x x '⎛⎫+==< ⎪--⎝⎭ 于是 213()() (||1)(1)x x S x xS x x x +==<-取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 2211111() (||1)2121nn n n S x x x x x n n ∞∞-====<--∑∑令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 1200d 11()d ln 1-21xxx x S x x x x+'==-⎰⎰即 1111()(0)ln (,(0)0)21xS x S s x+-==-. 于是 111()ln,(||<1)21xS x x x+=-,从而 11()()ln (||1)21x xS x xS x x x+==<-取x =则11(21)21nn S n ∞===-∑=+ (3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑令2111()2n n S x nx∞-==∑,则22121()d 1xnn x S x x x x ∞===-∑⎰. 所以212222() (||1)1(1)x xS x x x x '⎛⎫==< ⎪--⎝⎭,于是212121111(21)2n n n n n n n xn xx ∞∞∞---===-=-∑∑∑3222222 (||1)(1)1(1)x x x x x x x x +=-=<--- 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭-⎪⎝⎭∑.(4)考察幂级数1(1)nn n n x∞=+∑,可求得其收敛半径r =1.设1()(1) (||1)nn S x n n xx ∞==+<∑则12111()d xn n n n S x x nxxnx∞∞+-====∑∑⎰.又设111()n n S x nx∞-==∑则101()d 1xn n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 2212()d ()(1)xx S x x x S x x ==-⎰2232() ||1(1)(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭取12x =,则31121(1)2822112n n n n S ∞=⨯+⎛⎫=== ⎪⎝⎭⎛⎫- ⎪⎝⎭∑ 习题9-51. 将下列函数展开成x 的幂级数: (1) 2cos2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!nn n x x x n ∞=+==+-∑ 211(1) (-)2(2)!nnn x x n ∞==+-∞<<+∞∑(2)2101sin (1) ()2(21)!2n nn x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑(3)22210011e()(1) ()!!x nn n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑(4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦002011(1)221[(1)]2 ||1n n n n n nn n n n n x x x x x x ∞∞==∞=∞==+-=+-=<∑∑∑∑(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭2210sin )(1) ()2(2)!(21)!n n n n x x x x x n n +∞==+⎡⎤=-+-∞<<+∞⎢⎥+⎣⎦2. 将下列函数在指定点处展开成幂级数,并求其收敛区间: (1)x -31在x 0=1; (2) cos x 在x 0=3π;(3)3412++x x 在x 0=1; (4) 21x 在x 0=3. 解:(1)因为11113212x x =⋅---,而 0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑. 收敛区间为:(-1,3). (2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦22100()()133(1)(1)2(2)!(21)!n n n n n n x x n n ππ+∞∞==--=-+-+∑221011(1)())2(2)!33nn n n x x n ππ∞+=⎡⎤=--+-⎢⎥⎣⎦∑ ()x -∞<<+∞ 收敛区间为(,)-∞+∞. (3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 001111(1)(1)4284n nn n n n x x ∞∞==--⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭∑∑223011(1)(1)22n n n n n x ∞++=⎛⎫=--- ⎪⎝⎭∑由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n nn x x x ∞=-=⋅=-⋅-+∑ 1(3)(1)3n nn n x ∞+=-=-∑而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑ 111(1)(3)3nn n n n x ∞-+=-=-⋅-∑1111(1)(3)3n n n n n x +∞-+=-=-∑ 2(1)(1)(3)3n n n n n x ∞+=-+=-∑ 由313x -<得06x <<. 故收敛区间为(0,6).3. 求下列各数的近似值,精确到104: (1) e ; (2) I =⎰+41031x x d .解:(1)2e 1 (-)2!!nxx x x x n =+++++∞<-<+∞ 令1x =得111e 112!3!!n =++++++ 取前1n +项作为e 的近似值,有111e 112!3!!n ≈+++++ . 其误差为 111(1)!(2)!n R n n +=++++1111(1)!2(2)(3)n n n n ⎡⎤=+++⎢⎥++++⎣⎦ 2311111(1)!1(1)(1)n n n n ⎡⎤<++++⎢⎥++++⎣⎦1111(1)!!11n n n n =⋅=+⋅-+ 要求误差不超过10-4,而4111066!4320-=>⋅, 54113101077!35230--=<⨯<⋅. 故取7n =,即取级数的前8项作近似值计算.11111111 2.718282!3!4!5!6!7!e ≈+++++++≈(2)由公式21 222(21)2(21)(21)(1)12 112!!nn x x x x x n ---++=+++++-<<有1336912211 1.3135(1)12242462468x x x x x ⋅⋅=+=+-+-+⋅⋅⋅⋅⋅⋅136912401113135(1)d 2242462468I x x x x x x ⋅⋅⋅=+-+-+⋅⋅⋅⋅⋅⋅⎰144710130111113113512424724610246813x x x x x ⋅⋅⋅⎡⎤=+⋅-⋅+⋅-⋅+⎢⎥⋅⋅⋅⋅⋅⋅⎣⎦4710131111131151484564480449924⎛⎫⎛⎫⎛⎫⎛⎫=+⋅-⋅+-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 因为74110.0000010910564-⎛⎫⋅=< ⎪⎝⎭.由交错级数的理论知,取前两项作为近似值,可保证误差74211||10564r -⎛⎫<⋅< ⎪⎝⎭ 所以41110.25049484I ⎛⎫=+⋅≈ ⎪⎝⎭.。
微积分II课后答案详解

2 4 4 4 = + + = )1,1,1( | z u + y u + x u ∴ 3 3 2 1
3
z + y + x +1 = zu z3
2 2
3
z + y + x +1 = yu y2
2
3
z + y + x +1 = x u �解 1
2
z
u + y u + x u求处� � 1 � 11 �点在 ,) 3 z + 2 y + x + 1(nl = u 设�3
z2
) yx (nl y 2 yx 2 y∂ = x. . 2 ]) yx (nl[ = 1 1 1− 1 z∂ ) yx (nl x 2 yx 2 x∂ = y . . 2 ]) yx (nl[ = �解 1 1 1− 1 z∂ y∂ x∂ , 求 , ) yx (nl = z ② z∂ z∂
2
yx 3 − 3 x =
�y + x � )y + x ( 2 )y + x ( y + x � x∂ y∂ y∂x∂ 2 � y∂ + + = = + = y x = ) ( n l ) ( y x−0 z∂ ∂ z2 ∂ 1 � x � ∂
)y + x ( 2 )y + x ( y + x x∂ y +x x∂ x∂ x∂ 2 = + =) + ) y + x (nl( = ) ( = 2 y2 + x x−y +x x ∂ z∂ ∂ z2 ∂ 1 y +x x∂ .x + ) y + x (nl = �解 z∂ 1 y∂x∂ 2 x∂ 求 ,) y + x (nl x = z ③ , ∂ z2 ∂
微积分II期末练习题1答案

《微积分II 》练习题1答案一、 填空题1.1>+y x2.{(,)0,0}x y y x x y ≤≥+> 3. 4. 1 ; 5 .=)1,1(dz 2211(ln 2)22e dx e dy ++ 6.dz=dx+2ln2dy 7. 0 8.dx y x f dy y y ⎰⎰10),( ; 9.sin ()x y x c e -=+ 10. x e y -=二、 选择题1. D2.B3. D4.D5.B6.B7.D8.C三、解答题1.222222)sin(0y x y x y x y x +≤+≤x yx xy x 2122≤+≤ ---------(4分) 且.0lim 0=→x x ---------(5分) 所以0)sin(lim 22200=+→→y x y x y x ---------(6分) 2、解:ln(2)2u x x y x x y∂=-+∂---------------(2’) 22u x y x y∂-=∂- -----------------------------------(4’) 2222(2)24(2)(2)u x y x y y x x y x y ∂--+==∂∂-- -------(6’) 3、两边求全微分02)(=+---dz e dz xy d e z xy -------------- (3’)02)(=+-+--dz e dz xdy ydx e z xy ----------------------(4’)2)(-+=-z xy e xdy ydx e dz 层 -----------------------------------(6’)5. 解 设,,x y v xy u == 则),(v u f z = -------------- (1分) 则),()3(.433a d xyz z d =-由,033332=---xydz xzdy yzdx dz z ,22dy xy z xz dx xy z yz dz -+-=,2xy z yz x z -=∂∂.2xy z xz y z -=∂∂222)()2())((xy z x y z z yz xy z y z y z --∂∂⋅--∂∂+=y x z ∂∂∂222222)()2())((xy z x xy z xz z yz xy z xy z xz y z ---⋅---+=.)()2(322224xy z y x xyz z z ---=x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂,2v u f x y yf -=22x z ∂∂v f x y 32+⎪⎭⎫ ⎝⎛-=uv uu f x y yf 2⎪⎭⎫ ⎝⎛-vv vu f x y yf 22x y -vv uv uu v f x y f x y f y f x y x z 4222232222+-+=∂∂y x z∂∂∂2⎥⎦⎤⎢⎣⎡++uv uu f x xf y 1v f x 21-.12⎥⎦⎤⎢⎣⎡+-vv vu f x xf x y .11),(2x y y y x f -+=6.解:dxdy x x I D⎰⎰=sin ⎰⎰=x dy x x dx 010sin ----------------------( 2分 ) ⎰⋅=100sin dx x y x x -------------( 3分 ) ⎰=10sin xdx ----------------------( 4分7.解:e e x dx e dx e dy xe dx dxdy xe x x xy xy D xy 1)()1()(101001011010=+=-===----⎰⎰⎰⎰⎰⎰(5’) 8. 解:⎰⎰⎰⎰-+-=D r D y x rdrd e dxdy eθ22)2( ---------------------------( 2分 ) ⎰⎰-=30202rdr e d r πθ --------------------------------( 3分) ⎰--=πθ2003)21(2d e r ---------------------------( 4分 ) ).1(9--=e π -------------------------------------( 5分 ) 9.2323x 023232323(1)(1)(1)(1)111123235y 0C 56y 11151123623323250x xdx y y dyx xdx y ydyx x C y y x x y y y y x x =17,将原始变形得到:两边积分得到:即:(4)将=代入上式,即得:=()从而在初始条件:=的特解为:等价于:-+=++=+++=+----------------------------++=++--=---------蝌7()--- 10.将方程标准化为,1ln 1xy x x y =+'于是 ⎪⎪⎭⎫ ⎝⎛+=⎰⎰⎰-C dx e x e y x x dx x x dx ln ln 1⎪⎭⎫ ⎝⎛+=⎰-C dx e x e x x ln ln ln ln 1.ln 21ln 12⎪⎭⎫ ⎝⎛+=C x x 由初始条件,1==e x y 得,21=C 故所求特解为.ln 1ln 21⎪⎭⎫ ⎝⎛+=x x y 11.解:原方程可改写成 代入原方程得 .132vv uu v u f x y xyf f x f -+-=u f =122+-=x y x y dx dy 有设,x y u =,ux y =dx du x u dx dy +=dx du x u +,12+-=u u 122+-=u u dx du x 即xdx u du =-2)1(分离变量得两端积分得 则原方程通解为 12.解:这是一个贝努利方程。
(整理)微积分2复习提纲1

(整理)微积分2复习提纲1微积分复习提纲⼀、多元函数微分学及其应⽤1、会求多元函数的偏导数,进⽽会求函数的全微分df 或者梯度函数f ①多元显函数的偏导数,见P16 例1---例3,P24习题1 ②多元抽象函数的偏导数,见P28 例5---例7,P36 习题3 ③⾼阶偏导数,见P19 例8,P24习题2,P36 习题4④复合函数的偏导数,见P26例1,例3,例4,P36习题1,2 2、会求由⽅程确定的隐函数的偏导数①“显”⽅程确定的隐函数求偏导数,(公式法),见P34 例12,P36习题6,7 ②抽象⽅程确定的隐函数求偏导数,(直接法),见P34 例13,P36习题8③由⽅程组()()==0,,0,,z y x G z y x F 确定的隐函数==)()(x z z x y y 的导数dx dz dx dy ,,(直接法:在⽅程两端同时对x 求导,求导过程中把z y ,都看做是x 的函数,然后解⽅程组即可),见P35例14,P37习题9④由⽅程组()()==0,,,0,,,v u y x G v u y x F 确定的隐函数==),(),(y x v v y x u u 的偏导数(直接法)见P37习题93、多元函数微分学的⼏何应⽤①空间曲线??===)()()(x z x y t x ωφ?在点()0000,,z y x M 处的切线⽅程及法平⾯⽅程,见P46 例1,例2, P50习题1、2②空间曲线()()==0,,0,,z y x G z y x F 在点()0000,,z y x M 处的切线⽅程及法平⾯⽅程见P46 例3, P50习题2③曲⾯()0,,=z y x F 在点()0000,,z y x M 处的切平⾯⽅程与法线⽅程见P46 例5,例6, P50习题3 4、⽅向导数与梯度⼆、多元函数积分学及其应⽤ 1、⼆重积分的计算步骤:1)画出积分区域D ,2)根据积分区域选择适当的坐标系来计算此⼆重积分 3)化⼆重积分为⼆次积分4)做两次定积分,计算此积分的值注:多元函数对某个⾃变量积分的时候,要把其他的⾃变量看做常数。
微积分II期末模拟试卷三套及答案

微积分II 期末模拟试卷1(满分:100分;测试时间:100分钟) 一、填空题(3X5=15)1、幂级数∑∞=-112n n n n x 的收敛区间为__________2、由曲线23x y -=及直线x y 2=所围成平面区域的面积是____________ 3、改变⎰⎰--21222x x xfdy dx 的积分次序_______________________4、微分方程02=-'+''y y y 的通解=y5、设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于____________ 二、选择题(3X5=15) 6、定积分()dx ex x x⎰-+22的值是( )。
(A ) 0 ; (B ) 2 ; (C ) 2e 2+2; (D ) 26e7、一曲线在其上任意一点),(y x 处的切线斜率等于yx2-,这曲线是( ) (A)直线; (B)抛物线; (C)圆; (D)椭圆 8、设函数()xy f xyz =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 9、设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点.()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点10、设级数10nn na∞==∑,且()11n n n n a a ∞-=-∑收敛,则级数1n n a ∞=∑( )(A )收敛 (B ) 发散 (C )不定 (D ) 与n a 有关 三、计算题(5X10=50)11、计算下列定积分 (1)⎰-2234dx x x ;(2)求抛物线342-+-=x x y 及其在)3,0(-和)0,3(处的切线所围成图形的面积。
微积分2习题答案

微积分2习题答案⼀、填空题 1.2. 设P(x)是x 的多项式,且lim 凡门⼆6 '—= 2, lim — = 3 ,则P(x) = 0 X7Tlim (arcsin(vx 2+x ⼀ x))= .YT4-X 6A 3 + 2x 2 + 3x t3. lim 1 ⼀ — .V —4. x )设lim ⼀ "" ⼀ * + 4= A ,则有"=5. 6. 7. 8. 9. j X — 1 .? “ \ ? 2 sinx 设 / (A ) = xsm — d -----X X ? 3.1L +sin x-sin — lim ------------ ------ - = t 3*函数v = ⼀上]⼀的间断点是(x-l)(x + 2)为使函数/(x) = - ? tanx 在点x = 0处连续,应补充左义/(0)= x 3设函数y = ^-x )xK则 lim f (x)=X->X%⼯°在兀=0处连续,则参数K =x = 0 x + ae x +\⼆、单项选择题 1 ?设x n >Q,且lim x 存在,则 lim x HTX n->x @>0 ② no ③=0 2?极限 lim e 7^ = XT I ①8 ②1 10.函数f(x)= < x < 0 在点x = 0处连续,则“=x>0④<03. 4. ③不存在 lim(1 + x) x + lim xsiii —= -V — ②": Jx 3 4, -2③ €+1: ④』+ly =-——-——-的连续区间是_ (x + lXx + 2)①(-s,-2)u (- 2,-l)U (- 1,T ③(-oo,-2)U (-2,400) ②[3,T④ co ⼚i)u(_l,+oo)函数『⼆⼆2X-l .Y+1 ①2个②3个 6.下列函数中,?当XT0时,与⽆穷⼩量x 相⽐是髙阶⽆穷⼩咼的是. 价⽆穷⼩量的是 ______________ ① l-cosxx + X 25. ④4个以上④ sin 2x__ ■⽦有①,②=24.7. 8. 9. 当x->0-时,sin 仮与Ixl 相⽐是_ ①髙阶⽆穷⼩咼③同阶但不等价的⽆穷⼩量当XT O 时,l —cos2x 与/相⽐是①髙阶⽆穷⼩量③低阶⽆穷⼩量(sin 3x 设 f(x) = ] x x = 0 ②⼀3 ②低阶⽆穷⼩量④等价⽆穷⼩量②同阶但不等价的⽆穷⼩量④等价⽆穷⼩量为连续函数,则k = ①1 10?函数/(x)在点勺处有⽴义是f(x)当x ->⼼时极限存在的. ①充分但⾮必要条件③充分必要条件 11?当JVT 0时,① x + sinx12.当XT0时, ?x + sin — x 13?当XT 8时,①x + sin 丄 x ②必要但⾮充分条件④既⾮充分⼜⾮必要条件下列函数中⽐x 髙阶的⽆穷⼩量是 ________ ② x-siiix ③ ln(l + x)下列函数中为⽆穷⼩量的是 ________②x ?sin 丄③丄+ sinx X X 下列函数中为⽆穷⼩量的是 _____ _ ② x-sin — ③—+ sinxX X14. 15. 16. ②④ hi(l-x)②④—?sin x x ③④—-siiix x 设在某个极限过程中函数/(X )与g(x)均是⽆穷⼤量,则下列函数中哪⼀个也必是⽆穷⼤量___________ ③④爲设/(x (J = c lim f(x) = b t lim f(x) = c ,则函数/(x)在点⼈)处连续的充分必要 .v —>.rj XfY :① /(Q+g(x) ② /(x)-g(x) ③/(Q ?g ⑴②a = c v 2 -1 4------ C E X-l 0 ④a=b=c②跳跃间断点①连续点三、求下列极限 lim (Jx 2 +1 - x) = lim ________ ⼀⼀⼛? + 1lim (Jx 2 +1 - x) = +xlini (J+ 2x + 2 - J③可去间断点④⽆穷间断点1.2. 3. =lim ,( ?— = = lim ⼀ y/x 2+2x + 2 + J ,—2x + 2 —1 lim arctanx-arcsin — =0 x)L r (x + l)2 +(2x + l)2 +(3x + l)2 + …+ (10x + l)2 z 7、 5. lim -- ----------- ------------- ---------------------------- -- (=—) — (10x-l)(lLv-l) 2 n n 、tr +n [解]记⽿=G+t+…+⽃ ir +1 ir +2 n +ne .. n n n n n n 因为——+ —— + …+ —n +n ir +n n +n n ir即—< x /2 < 1,由于lim — = 1,所以由夹逼定理,得lim 兀=1 n +1〃―30n +1“a7?设辄⼚2叽求〃由于极限存在,故a = {3 — \°—=2006p = —, a : P 2006四、分析题1 .讨论极限lim " "[解]因为lim 1!巴丄1 = 1, Um ⼔巴⼝ = ⼀1,故原极限不存在。
微积分II课程微积分2答案

I 10.令 x = asect第四章 不定积分答案2 24. I = sin x sinxdx = - 1-cosxdcosx 、填空题 2.F x |亠 C 3.1 二-cosx — \ 3 1 31 3 cos x J ■ C cos x-cosx C3 3x C 5.4. -C In 2 」x 335.一丄Cxxe (e x ) +1dx 二一de _2 二 arctang XC ’1+(e x ) 6. 6e x C 7.-3sin x C I 二 t 2—1 t 2tdt =2 t 4 -t 2 dt8. 3x x arcta n x C 39.x r 2 C1-In 3x + 2x +C 2 1 2 10. In 2x C 2 -cos2x C 12. le 7x C7114. 丄 In 1+2x+C 2 13. 7. 令 t = 6x11.15.1—2x C 1 316. 「cosx cos x C 3 8. 17. e" 1 x C 18. 6"dt t 123t 2—6t +6ln t +1 +C1 13x^ -6x® +6 In x令 x= si nt3I =1 - sin 2t 2costdt - I i cost dt二、 单项选择题 1 . C 2 . A 3 . D 4 7 . D 8 . D 9 . 12.B 三、 计算题 1 .A10.A.B11.Bx二 sec 2 tdt 二 tant CCTT79 .令 x =ta ntseC tdt (1+tan 2t j2 .■sec 4-dt二 costdt sec t2 -.2 -x 2d 2 -x2 -x 2 C2. 1 x 2 = l n 1 x 2 C-exd ;1 111 cos2t dt t —sin2t C2 2 4 11 1x t sintcost C arctanx 2 C 2 2 21 x 23.1-e" C.a2 sect -1 asectantdt =a tarn tdtasec=a lise^t -1 dt =a tant -t Cf'-2—2 、x -a aarccos a x4C=Jx2 217. a-a -aarccos Cx2x 2 _xI = - x de = x e_ 2xe*dx-x2e» -2 xde^-x2e» -2xe" 2 e^dx_x2 _2x_2 e」C11. I =dx2、厂1_ 1 sect tant3 ta nt22令x^sect secttantdt 18.=1J322Jsec t -1dt^1sectdt31=Tn sect +tant 3 C = 】ln33x站4219.12.1 d 3x-1 _J(3X-12+6 3=]| n j9x2-6x+7+3x-1+C13. 2 2I =xln 1 X - xdln 1 x2 =xln 1 x2 =xln 1 x -x^dx;_2x 2arctanx C20.14.xde x = xe x - e x dx =xe x-e x C15.I = x arccosx - xd arccosxx arccosx dx1-x21「1 ,2 .= xarccosx-—J ;2d(1-x )21.16.x arccosx - 1 - x2 CI = lnxdl 」一hx ^dx — Sx」C x x x x x4 4二(ln x)2d£4(ln x)2-4 41 3x ln xdx = — (ln x)21 4| 1x ln x8 81 4 1 4--x ln x x C8 324x 2(ln x)44=—(ln x)24x4 (ln x)4=sin xde xx41(2ln x)—dx44 x4、4 1 .x dxx=e x sin x - e x cosxdx=e x sin x - cosxde xX ・x x .=e sin x -e cosx e dcosx= e x(sin x-cosx) - ' e x sin xdxe x sin xdx = - e x(sin x -cosx) C2I = sec x secxdx = secxd tan x=secxtanx- 'tanx tanx secxdx=secxtanx- '(sec x-1)secxdx=secxtan x- sef xdx亠i secxdx3=secxtanx- Jsec xdx + In secx +31[sec xdx = —(secxtanx + ln secx +2x-8 ln xdx4tanxtanx C令t=, xI二.eStdt = 2 tdd =2td -2 ddt= 2td -2& C =2 =e x-2e x C22. l=Jlnlnxdlnx =(lnlnx)nx —J Inxd(lnlnx) 21.=lnlnx lnx- lnx —-dxlnx x =lnlnx lnx-lnx C 23.24.F b —F a1e --e22.5ln623.d cos2x = 4 xcos2x sin2xC4 825.1 26. JI227. e-2 28.4 29. 2,3-2arctan f 3 - arctan f 124. l = ln xd3 1 3x lnx x ——■C3 9第五章定积分及其应用答案32.5633.e 34. _135.<36. 1 37. 38. 12 2 3兀 139. 一2 _2二单项选择题30.0 31.0、填空题[f (x pxb a4.2.03.5.负6.正7. l1>l28. 1. A 2 . D 3 . B 4 . C 5 . A 6 . C7. C 8 . B9 . A 10.C 11.C 12.D 13.C 14.C 15.B 16.C17.A 18.B 19.B 20.A 21.B22.C 23.B 24.A 25.C 26.A三、证明题1冃2 9. l1>l2 证:令u=a, b-a,则10.- 11. 12. baf x dx du 二b-a dx,所以13. 2xe x14. sin xb - a ] I f || a b - a x dx =1 1f u du = 0 f x dx-x sin3fi x 16.10,1 2x1 cos2 x215.2.证:令u)]17.1 18.fx3f (x2=x2,则du = 2xdx ,所以1 a2.d^=- 0 uf udu=? 0 1 a220xf x dx19. f 12f0=03 20. 3.证:令u -二-x,则du - -dx,则IT- -2:xf sinxdx 二:】灵-u f sin u du 二負「x f sinx dx 23x2sin 1 x3 31 u 2所以 o xf sinx dx 二 o 2xf sinx dx - xf sin0 0 5fnxdx 飞2x -3-2x x-1x-2 e , x 二 = 二 02xf sinx ck 02 二-x f sinxck v 02得fin^dx 一1:: 0, f 2 二 e* 0, e JI 4.证:x 4令,有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分2期末复习提纲1、 本学期期末考试考察的知识点如下:第六章隐函数的偏导数求解P194例9-10,条件极值应用题(例10)求解,约占12% 第七章二重积分(二重积分的概念,比较大小P209课后习题,直角坐标系下的交换积分次序P212例题3&P213习题1(7),直角坐标与极坐标系下的二重积分计算)约占26%; 第八章无穷级数(无穷级数的概念,几何级数,P-级数,正项级数的比较判别法和比值判别法,任意项级数的敛散性,幂级数的收敛半径及收敛域,求幂级数的和函数,间接展开以1,,ln(1)1x e x x+-为主)约占35%; 第九章微分方程(微分方程及其解的概念,一阶分离变量,齐次和一阶线性微分方程求解(通解和特解),二阶常系数齐次,非齐次微分方程的通解(三角型的不要求)。
约占27%. 2、样题供参考(难度、题型) 一、填空题:(14小题) 1、若D :224x y y +≤,则Dd σ=⎰⎰4π。
(表示求解积分区域D 的面积——圆)● 或D :9122≤+≤y x ,则⎰⎰=Ddxdy 8π。
(表示求解积分区域D 的面积——圆环)● 或22:4D x y y +≤,将dxdy y D⎰⎰化为极坐标系下的累次积分4sin 20sin d r dr πθθθ⎰⎰.(判断θ的范围作为上下限,判断r 的范围作为上下限,y 用rsin θ代入)7.3极坐标系下二重积分的计算2、交换积分次序11(,)ydy f x y dx =⎰⎰1(,)xdx f x y dy ⎰⎰。
(依题得:010<<⎧⎨<<⎩x y x 推出01<<<y x ,再得011<<⎧⎨<<⎩y y x ,最后得:100(,)x dx f x y dy ⎰⎰)● 或110(,)xdx f x y dy -=⎰⎰111(,)-⎰⎰ydy f x y dx 。
(依题得:0101<<⎧⎨<<-⎩x y x 推出0101<<⎧⎨<<-⎩y x y ,得:1101(,)-⎰⎰y dy f x y dx )● 或66cos yxdy dx x ππ=⎰⎰12。
(依题得:066ππ⎧<<⎪⎪⎨⎪<<⎪⎩y y x 推出06π<<<y x ,再得060π⎧<<⎪⎨⎪<<⎩x y x ,最后得:6cos π⎰⎰xxdx dy x) 666600000cos cos 1cos sin 2ππππ====⎰⎰⎰⎰xxx x dx dy dx xdx x x x● 比较二重积分大小:()2σ+⎰⎰Dx y d 与()3σ+⎰⎰Dx y d ,其中D 是由直线x=0,y=0,x+y=1所围成的区域。
(由直线x=0,y=0,x+y=1所围成的区域满足1+<x y ,()2∴+≤x y ()3+x y )()2σ∴+≤⎰⎰Dx y d ()3σ+⎰⎰Dx y d P209课后两题 7.1交换积分次序&二重积分比较大小3、若级数1n n u ∞=∑的前n 项和1n ns n =+,则n u =1(n 1)n +,1n n u ∞=∑=111-+n 。
解:2211(1)11(n 1)(n 1)----=-=-==+++n n n n n n n u s s n n n n 11111111(n 1)11∞∞∞===⎛⎫==-=-⎪+++⎝⎭∑∑∑n n n n u n n n n 4、级数112nnn x n ∞=⋅∑的收敛域为[)2,2-。
解:()()1111122lim lim lim 21212+→∞→∞→∞+++⋅⋅====⋅+⋅n n n n n n n n n n a n R a n n 当x=-2时,()()1111112122∞∞∞====-=-⋅⋅∑∑∑n n n n nn n n x n n n 是交错级数,条件收敛 当x=2时,111111222∞∞∞=====⋅⋅∑∑∑n n n nn n n x n n n 是调和级数,发散,得收敛域为[)2,2- ●或级数∑∞=⋅1221n n n x n的收敛域为[]2,2-。
解:()()21221211122lim limlim21212+→∞→∞→∞+++⋅⋅====⋅+⋅n nn nn n n n n n an R a n n 当x=-2时,()()2221111112122∞∞∞====-=-⋅⋅∑∑∑n n nn nn n n x n n n 是交错级数,绝对收敛当x=2时,222111111222∞∞∞=====⋅⋅∑∑∑n nn n n n n x n n n是P>1的P 级数,收敛,得收敛域为[]2,2-8.4幂级数收敛半径&收敛域的计算5、级数1(1)n n u ∞=-∑收敛,则lim n n u →∞= 1 。
解:已知级数1(1)n n u ∞=-∑收敛,根据级数收敛的必要条件,可得:()lim 10→∞-=n n u ,得lim 1→∞=n n u 6、级数123nn ∞=⎛⎫= ⎪⎝⎭∑ 2 。
或11!n n ∞==∑ 。
或级数12(1)3n n nn ∞=+-=∑ 7/4 。
解:111122122(1)2(1)173332,2221344333111333∞∞∞∞====-+--⎛⎫====+=+=-= ⎪⎛⎫⎝⎭---- ⎪⎝⎭∑∑∑∑nn n n n n n n n n n n 8.1常数项级数7、方程4cot 2=-'y x y 满足条件2)0(=y 的特解是 。
8、方程x x y y sec tan =-'满足条件0)0(=y 的特解是 。
9.2一阶微分方程9、方程xxe y y y 396=+'-''的一个特解形式为=*y 。
10、若微分方程60y y ay '''-+=的通解为2412x xy C e C e =+,则a = 。
11、微分方程03512=+'-''y y y 的通解为 。
12、微分方程034=+'-''y y y 的通解为 。
13、方程xex y y y --=+'+'')1(2的一个特解形式为=*y 。
14、若通解为xe x C C 221)(+的微分方程为 。
9.3二阶常系数线性微分方程二、计算下列二重积分(5小题) 1、求22()DI x y dxdy =+⎰⎰,其中{}22(,)4D x y x y =+≤。
22300d r dr πθ=⎰⎰ 2、求⎰⎰--=Ddxdy y x I )4(,其中y y x D 2:22≤+。
()2sin 04cos sin d r r rdr πθθθθ=--⎰⎰7.3极坐标系下二重积分的计算3、求DI xydxdy =⎰⎰,其中D 由2,,2x y x y x ===所围。
220xxdx xydy =⎰⎰4、求⎰⎰=Ddxdy xy I 2,其中由212,2y x x ==所围。
21112222012y dx dy dy xy dx -==⎰⎰⎰5、求66cos ππ⎰⎰yx dy dx x 12= 7.2直角坐标系下二重积分的计算三、判断下列级数的敛散性(若收敛,指出是绝对收敛,还是条件收敛?)(9小题)1、113n n n ∞=+∑ 2、11(1)ln(1)nn n ∞=-+∑ 3、152∞=⎛⎫= ⎪⎝⎭∑nn 。
4、21(!)(2)!n n n ∞=∑ 5、∞=n 6、11(1)ln(1)nn n ∞=-+∑7、25127∞=+∑n n n 8、11sin ∞=∑n n 9、11n ∞=⎛- ⎝∑ 8.2正项级数&8.3任意项级数四、解下列各方程(7小题) 1、求微分方程28dyy dx+=满足初始条件(0)5y =的特解。
2、设函数()f x 可导,且满足()()xx f x f t dt e =+⎰,求()f x 。
3、设某曲线过点(0,1),且其上每一点的切线斜率都比该点的纵坐标大2,求该曲线方程。
4、求微分方程0=+'y y x 满足初始条件2)1(=y 的特解。
9.2一阶微分方程5、二阶常系数微分方程230y y y '''+-=满足(0)1,(0)1y y '==的特解。
6、求微分方程242y y x '''+=-的通解。
7、求微分方程xey y y 2244=+'-''的通解。
9.3二阶常系数线性微分方程五、 (12分)(7小题)1、求级数01nn x n ∞=+∑的和函数()s x ,并求112(1)n n n ∞=+∑的和。
2、求级数2111(1)21n n n x n -∞-=--∑的和函数()s x ,并求111(1)21n n n ∞-=--∑的和。
3、求级数2111(1)3nn n n x ∞+=-∑的收敛域,和函数,并求111(1)3n n n ∞+=-∑的和。
8.4幂级数和函数的计算4、将函数2()ln(23)f x x x =-++展开为x 的幂级数。
5、将函数21()2f x x =+展开为x 的幂级数。
6、将函数xxx f -=2)(展开为x 的幂级数。
8.5函数的幂级数展开7、设lim n n a →∞=∞,证明:(1)11()n n n a a ∞+=-∑发散;(2)1111n nn a a ∞=+⎛⎫- ⎪⎝⎭∑收敛,且和为11a .六、证明题(6分) 设(1,2,3,)n n na cb n ≤≤=,且级数1nn a∞=∑与1nn b∞=∑都收证明:级数1nn c∞=∑也收敛。
第8章幂级数证明题。