中考数学二次函数填空题(难度题)含答案

合集下载

中考数学《二次函数的最值》专项练习题及答案

中考数学《二次函数的最值》专项练习题及答案

中考数学《二次函数的最值》专项练习题及答案一、单选题1.定义:如果两个函数图象上至少存在一对点是关于原点对称的,我们则称这两个函数互为“守望函数”,这对点称为“守望点”.例如:点P(2,4)在函数y =x 2上,点 Q(−2,−4)在函数y =−2x −8上,点P 与点Q 关于原点对称,此时函数y =x 2和y =−2x −8互为“守望函数”,点P 与点Q 则为一对“守望点”.已知函数y =x 2+2x 和y =4x +n −2022互为“守望函数”,则n 的最大值为( ) A .2020B .2022C .2023D .40842.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值为( ) A .1或B .- 或C .D .13.已知二次函数y =ax 2+bx −1(a ,b 是常数,a ≠0)的图象经过A(2,1),B(4,3),C(4,−1)三个点中的其中两个点.平移该函数的图象,使其顶点始终在直线y =x −1上,则平移后所得抛物线与y 轴交点纵坐标的( ) A .最大值为-1B .最小值为-1C .最大值为−12D .最小值为−124.二次函数y=ax 2+bx+c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 y125﹣3﹣4﹣35121)二次函数y=ax 2+bx+c 有最小值,最小值为﹣3;2)当 −12<x <2 时,y <0;3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( ) A .3B .2C .1D .05.已知二次函数 y =−(x −ℎ)2+4 (h 为常数),在自变量 x 的值满足 1≤x ≤4的情况下,与其对应的函数值 y 的最大值为0,则 h 的值为( ) A .和B . 和C .和D . 和6.经过点A (m ,n ),点B (m ﹣4,n )的抛物线y =x 2+2cx+c 与x 轴有两个公共点,与y 轴的交点在x 轴的上方,则当m >﹣12时,n 的取值范围是( )A .14<n <4B .12<n <2C .18<n <8D .14<n <27.二次函数y =x 2+2x -5有A .最大值-5B .最小值-5C .最大值-6D .最小值-68.①4的算术平方根是±2;②√2与-√8是同类二次根式;③点P (2,3)关于原点对称的点的坐标是(-2,-3); ④抛物线y=-12(x-3)2+1的顶点坐标是(3,1).其中正确的是( ) A .①②④B .①③C .②④D .②③④9.童装专卖店销售一种童装,已知这种童装每天所获得的利润y (元)与童装的销售单价x (元)之间满足关系式y=-x 2+50x+500,则要想每天获得最大利润,单价需为( ). A .25元B .20元C .30元D .40元10.已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的y 与x 的部分对应值如表:x ﹣5 ﹣4 ﹣2 0 2 y6﹣6﹣468,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2;④方程ax 2+bx +c =﹣5有两个不相等的实数根.其中,正确结论的是( ) A .①②③B .①③④C .①②④D .②③④11.已知抛物线y=-2(x-3)2+5,则此抛物线( )A .开口向下,对称轴为直线x=-3B .顶点坐标为(-3,5)C .最小值为5D .当x >3时y 随x 的增大而减小12.如果抛物线 y =x 2−6x +c −2 的顶点到 x 轴的距离是3,那么 c 的值等于( )A .8B .14C .8或14D .-8或-14二、填空题13.二次函数y=2x 2﹣1,∵a= ,∴函数有最 值.14.公路上行驶的汽车急刹车时的行驶路程s (m )与时间t (s )的函数关系式为s=20t-5t 2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行 m 才能停下来.15.已知二次函数y = 12x ²+2若自变量x 的取值范围是-1≤x ≤2,则函数y 的取值范围是 .16.函数y =x 2−2x(0≤x ≤3)有最大值,也有最小值,则最小值是 . 17.若二次函数y =-x 2-4x +k 的最大值是9,则k = .18.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的范围是.三、综合题19.某农作物的生长率p与温度t ( C∘ )有如下关系:如图,当10≤t≤25 时可近似用函数p=150t−15刻画;当25≤t≤37 时可近似用函数p=−1160(t−ℎ)2+0.4刻画.(1)求ℎ的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p满足函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015②请用含t的代数式表示m③天气寒冷,大棚加温可改变农作物生长速度.在大棚恒温20℃时每天的成本为100元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天,问加温到多少度时增加的利润最大?并说明理由。

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

中考数学专题复习:二次函数练习题(含答案)

中考数学专题复习:二次函数练习题(含答案)

中考数学专题复习:二次函数练习题一.选择题1.对于二次函数y=﹣x2+x﹣4,下列说法正确的是()A.图象的开口方向向上B.当>0 时,y随x的增大而增大C.当x=2时,y有最大值﹣3D.图象与x轴有两个交点2.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表所示,下列结论,其中正确的个数为()x﹣1013y﹣1353①ac<0;②当x>1时,y的值随x值的增大而减小.③当﹣1<x<3时,ax2+(b﹣1)x+c>0;④对于任意实数m,4m(am+b)﹣6b<9a总成立.A.1个B.2个C.3个D.4个3.已知二次函数y=(x﹣p)(x﹣q)+2,若m,n是关于x方程(x﹣p)(x﹣q)+2=0的两个根,则实数m,n,p,q的大小关系可能是()A.m<p<q<n B.m<p<n<q C.p<m<n<q D.p<m<q<n 4.在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac >0,其中正确的命题有()A.1个B.2个C.3个D.4个5.已知点(﹣4,y1),(2,y2)均在抛物线y=x2﹣1上,则y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y26.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论中正确的是()A.a﹣b+c>0B.2a+b+c<0C.x(ax+b)>a+b D.a<﹣17.若关于x的一元二次方程x2+ax+b=0的两个实数根是﹣1和3,那么对二次函数y=a(x ﹣1)2+4的图象和性质的描述错误的是()A.顶点坐标为(1,4)B.函数有最大值4C.对称轴为直线x=1D.开口向上8.如图,已知二次函数y=﹣x2+bx+c,它与x轴交于A、B,且A、B位于原点两侧,与y 的正半轴交于C,顶点D在y轴右侧的直线l:y=4上,则下列说法:①bc<0,②0<b=8<4,③AB=4,④S△ABD其中正确的结论有()A.①②B.②③C.②③④D.①②③④9.如图,抛物线y=ax2+bx与直线y=kx相交于O,A(3,2)两点,则不等式ax2+bx﹣kx <0的解集是()A.0<x<3B.2<x<3C.x<0或x>3D.x<2或x>3 10.在同一直角坐标系中分别画出函数y=x,y=x2和y=的图象,对于自变量x=a有以下命题;①如果>a>a2,那么0<a<1;②如果a2,那么a>1;③如果>a2>a,那么﹣1<a<0;④如果a2时,那么a<﹣1,则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题只有①②D.错误的命题只有③二.填空题11.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上.设DE=x,矩形DEFG的面积为y,那么y关于x的函数关系式是.(不需写出x的取值范围).12.已知点P(x0,m),Q(1,n)在二次函数y=(x+a)(x﹣a﹣1)(a≠0)的图象上,且m<n下列结论:①该二次函数与x轴交于点(﹣a,0)和(a+1,0);②该二次函数的对称轴是x=;③该二次函数的最小值是(a+2)2;④0<x0<1.其中正确的是.(填写序号)13.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,将抛物线y=x2沿直线L:y=x向上平移,得到一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,则顶点M2020的坐标为.14.如图,二次函数y=x2+x﹣2的图象与x轴负半轴交于点A,与y轴负半轴交于点B.点P是线段OA上的动点,以OP为直径构造圆,连结BP交圆于点Q,连结AQ.则AQ 的最小值是.15.已知二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b<0;③a ﹣b+c<0;④a+c>0;⑤b2>4ac;⑥当x>1时,y随x的增大而减小.其中正确的说法有(写出正确说法的序号)三.解答题16.如图,抛物线y=x2+bx+c与x轴交于A,C两点,与y轴交于B点,抛物线的顶点为点D,已知点A的坐标为(﹣1,0),点B的坐标为(0,﹣3).(1)求抛物线的解析式及顶点D的坐标.(2)求△ACD的面积.17.某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式;(2)每件文具的售价定为多少元时,月销售利润为2520元?(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?18.某超市为了销售一种新型饮料,对月销售情况作了如下调查,结果发现每月销售量y(瓶)与销售单价x(元)满足一次函数关系.所调查的部分数据如表:(已知每瓶进价为4元,每瓶利润=销售单价﹣进价)单价x(元)567…销售量y(瓶)150140130…(1)求y关于x的函数表达式.(2)该新型饮料每月的总利润为w(元),求w关于x的函数表达式,并指出单价为多少元时利润最大,最大利润是多少元?(3)由于该新型饮料市场需求量较大,厂家进行了提价.此时超市发现进价提高了a元,每月销售量与销售单价仍满足第(1)问函数关系,当销售单价不超过14元时,利润随着x的增大而增大,求a的最小值.19.在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m 为常数),顶点为P.(1)当抛物线经过点A时,顶点P的坐标为;(2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q 为直线AC上方抛物线上一动点.①如图1,连接QA、QC,求△QAC的面积最大值;②如图2,若∠CBQ=45°,请求出此时点Q坐标.20.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的解析式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线BA段上一动点,当△ABP的面积为3时,求出点P的坐标.参考答案一.选择题1.解:A、由于a=﹣<0,所以该图象的开口方向向下,故本选项说法错误.B、y=﹣x2+x﹣4=﹣(x﹣2)2﹣3,其顶点坐标是(2,﹣3),则当x<2时,y随x的增大而增大,故本选项说法错误.C、y=﹣x2+x﹣4=﹣(x﹣2)2﹣3,其顶点坐标是(2,﹣3),则当x=2时,y有最大值﹣3,故本选项说法正确.D、由于△=1﹣4×(﹣)×(﹣4)=﹣3<0,则该函数图象与x轴没有交点,故本选项说法错误.故选:C.2.解:①由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故①正确;②∵二次函数y=ax2+bx+c开口向下,且对称轴为x=1.5,∴当x≥1.5时,y的值随x值的增大而减小,故②错误;③∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故③正确.④将x=﹣1、y=﹣1,x=0、y=3,x=1、y=5代入y=ax2+bx+c,得,解得:,∴y=﹣x2+3x+3=﹣(x﹣)2+,可知当x=时,y取得最大值,即当x=m时,am2+bm+c≤a+b+c,变形可得4m(am+b)﹣6b≤9a,故④错误;故选:B.3.解:∵二次函数y=(x﹣p)(x﹣q)+2,∴该函数开口向上,当x=p或x=q时,y=2,∵m,n是关于x方程(x﹣p)(x﹣q)+2=0的两个根,∴p、q一定一个最大,一个最小,m、n一定处于p、q中间,故选:C.4.解:由图象可知:抛物线开口向上,对称轴为直线x=﹣1,过(1,0)点,把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正确;对称轴为直线x=﹣1,即:﹣=﹣1,整理得,b=2a,因此②不正确;由抛物线的对称性,可知抛物线与x轴的两个交点为(1,0)(﹣3,0),因此方程ax2+bx+c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b2﹣4ac>0,故④正确;故选:C.5.解:把(﹣4,y1),(2,y2)分别代入抛物线y=x2﹣1得,y1=16﹣1=15,y2=4﹣1=3,∴y1>y2,故选:B.6.解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以B错误;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以A错误;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以C错误;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以D正确.故选:D.7.解:∵关于x的一元二次方程x2+ax+b=0的两个实数根是﹣1和3,∴﹣a=﹣1+3=2,∴a=﹣2<0,∴二次函数y=a(x﹣1)2+4的开口向下,对称轴为直线x=1,顶点坐标为(1,4),当x=1时,函数有最大值4,故A、B、C叙述正确,D错误,故选:D.8.解:①a<0,则b>0,c>0,故cb>0,故①错误,不符合题意;②c﹣=4,而1<c<2,故0<2<b<2<4,故正确,符合题意;③函数的表达式为:y=﹣(x﹣h)2+4,故x=h±2,故AB=x2﹣x1=4,正确,符合题意;④S=×AB×y D=8,正确,符合题意;△ABD故选:C.9.解:由ax2+bx﹣kx<0得到:ax2+bx<kx.∵抛物线y=ax2+bx与直线y=kx相交于O(0,0)和A(3,2)两点,∴关于x的不等式ax2+bx<kx的解集是0<x<3.即关于x的不等式ax2+bx﹣kx<0的解集是0<x<3.故选:A.10.解:①当0<a<1时,反比例函数的图象在最上方,一次函数的图象在中间,二次函数的图象在下方,故①正确;②当a>1或﹣1<a<0时,二次函数的图象在最上方,一次函数的图象在中间,反比例函数的图象在下方,故②错误;③当﹣1<a<0时,二次函数的图象在最上方,一次函数的图象在中间,反比例函数图象在下方,故③错误;④当a<﹣1时,二次函数的图象在最上方,反比例函数的图象在中间,一次函数的图象在最下方,故④错误;故选:B.二.填空题(共5小题)11.解:∵四边形DEFG是矩形,BC=12,BC上的高AH=8,DE=x,矩形DEFG的面积为y,∴DG∥EF,∴△ADG∽△ABC,∴,得DG=,∴y=x=+12x,故答案为:y=+12x.12.解:①∵二次函数y=(x+a)(x﹣a﹣1),∴当y=0时,x1=﹣a,x2=a+1,即该二次函数与x轴交于点(﹣a,0)和(a+1,0).故①结论正确;②对称轴为:x==.故②结论正确;③由y=(x+a)(x﹣a﹣1)得到:y=(x﹣)2﹣(a+)2,则其最小值是﹣(a+)2,故③结论错误;④当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得0<x0≤;当P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,所求x0的取值范围0<x0<1.故④结论正确.故答案是:①②④.13.解:∵抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,…,A n,…,∴点A n的坐标为(n,n2).设点M n的坐标为(a,a),则以点M n为顶点的抛物线解析式为y=(x﹣a)2+a,∵点A n(n,n2)在抛物线y=(x﹣a)2+a上,∴n2=(n﹣a)2+a,解得:a=2n﹣1或a=0(舍去),∴M n的坐标为(2n﹣1,2n﹣1),∴M2020的坐标为(4039,4039).故答案为:(4039,4039).14.解:以OB为直径作圆E,连接AE、QE;∵y=x2+x﹣2的图象与x轴负半轴交于点A,与y轴负半轴交于点B,∴A(﹣2,0),B(0,﹣2),∴E(0,﹣1),∴AE=,∵PO是直径,∴∠PQO=90°,∴∠OQB=90°,∴Q在圆E上,在△AQE中,AQ≥AE﹣QE,∴当A、Q、E在一条直线上时,AQ取最小值,∴AQ=﹣1,故答案为﹣1.15.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴a、b异号,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线的对称轴为直线x=﹣,∴0<﹣<1,∴b<﹣2a,即2a+b<0,所以②正确;∵x=﹣1时,y>0,∴a﹣b+c>0,所以③错误;∴a+c>b,而b>0,∴a+c>0,所以④正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,所以⑤正确;∵抛物线开口向下,在对称轴的右侧y随x的增大而减下,∴当x>1时,y随x的增大而减小,所以⑥正确.故选:②④⑤⑥.三.解答题(共5小题)16.解:(1)把(﹣1,0),(0,﹣3)分别代入y=x2+bx+c,得:.解得:b=﹣2,c=﹣3.故该二次函数解析式为:y=x2﹣2x﹣3;由于y=x2﹣2x﹣3=(x﹣1)2﹣4,则其顶点坐标是(1,﹣4);(2)由y=x2﹣2x﹣3知,C(0,﹣3).所以AC=4.∴S=AC•|y D|==8.△ACD∴△ACD的面积是8.17.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件文具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件文具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.18.解:(1)设y关于x的函数表达式为y=kx+b(k≠0)由题意得:解得:∴y关于x的函数表达式为y=﹣10x+200.(2)由题意得:w=(x﹣4)(﹣10x+200)=﹣10x2+240x﹣800=﹣10(x﹣12)2+640∵﹣10<0∴当x=12时,w有最大值640元.∴w关于x的函数表达式为w=﹣10x2+240x﹣800,单价为12元时利润最大,最大利润是640元.(3)由题意得:w=(x﹣4﹣a)(﹣10x+200)=﹣10x2+(240+10a)x﹣800二次函数的对称轴为:x=12+∵﹣10<0,当销售单价不超过14元时,利润随着x的增大而增大∴12+≥14∴a≥4∴a的最小值为4.19.解:(1)将点A坐标代入抛物线表达式并解得:m=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,函数的对称轴为:x=﹣1,故点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q作y轴的平行线交AC于点N,如图1,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得:直线AC的表达式为:y=x+3,设点Q(x,﹣x2﹣2x+3),则点N(x,x+3),△QAC的面积S=QN×OA=×(﹣x2﹣2x+3﹣x﹣3)×3=﹣x2﹣x,∵﹣<0,故S有最大值为:;②如图2,设直线BQ交y轴于点H,过点H作HM⊥BC于点M,tan∠OCB==,设HM=BM=x,则CM=3x,BC=BM+CM=4x=,解得:x=,CH=x=,则点H(0,),同理可得:直线BH(Q)的表达式为:y=﹣x+…②,联立①②并解得:x=1(舍去)或﹣,故点Q(﹣,).20.解:(1)∵抛物线y=ax2+bx过A(4,0)、B(1,3)两点,∴,解得,即抛物线的解析式是y =﹣x 2+4x ;(2)∵y =﹣x 2+4x =﹣(x ﹣2)2+4,∴该函数的对称轴为直线x =2,∵B (1,3),点C 、B 关于抛物线的对称轴对称,∴点C 的坐标为(3,3),∵点A (4,0),点B (1,3),点C 的坐标为(3,3),∴△ABC 的面积是:=3;(3)设直线AB 的解析式为y =mx +n ,, 解得,∴直线AB 为y =﹣x +4,过P 点作PE ∥y 轴交AB 于点E ,P 点在抛物线y =﹣x 2+4x 的AB 段,设其坐标为(a ,﹣a 2+4a ),其中1<a <4,则点E 的坐标为(a ,﹣a +4),PE =(﹣a 2+4a )﹣(﹣a +4)=﹣a 2+5a ﹣4, S △ABP =S △PEB +S △PEA =×PE ×3=(﹣a 2+5a ﹣4)=,解得,a 1=2,a 2=3,∴点P 的坐标为(2,4)或(3,3),综上所述,当△ABP 的面积为3时,点P 的坐标为(2,4)或(3,3).。

中考数学专项练习二次函数的性质(含解析)

中考数学专项练习二次函数的性质(含解析)

中考数学专项练习二次函数的性质(含解析)【一】单项选择题1.对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A.开口向下B.对称轴是x=﹣1 C.顶点坐标是〔1,2〕 D.与x轴有两个交点2.抛物线上部分点坐标如表所示,以下说法错误的选项是〔〕A.抛物线与y轴的交点为(0,6)B.抛物线的对称轴是在y轴的右侧;C.抛物线一定经过点(3 ,0)D.在对称轴左侧,y随x增大而减小.3.二次函数y=3x2+1和y=3〔x﹣1〕2 ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点〔0,0〕;③当x>0时,它们的函数值y都是随着x的增大而增大;④它们的开口的大小是一样的.其中正确的说法有〔〕A.1个B.2个C.3个D.4个4.二次函数y=〔x﹣1〕2﹣2的顶点坐标是〔〕A.〔﹣1,﹣2〕B.〔﹣1,2〕C.〔1,﹣2〕D.〔1,2〕5.如图,从1×2的矩形ABCD的较短边AD上找一点E,过这点剪下两个正方形,它们的边长分别是AE、DE,当剪下的两个正方形的面积之和最小时,点E应选在〔〕A.AD的中点B.AE:ED=〔﹣1〕:2 C.AE:ED=:1 D.AE:ED=〔﹣1〕:26.二次函数y=3x2-6x+5的图象的顶点坐标是〔〕A.〔1,2〕 B.〔1, 8〕 C.〔﹣1,2〕 D.〔1,﹣4〕7.对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A.开口向下B.对称轴是x=﹣1 C.顶点坐标是〔1,2〕 D.与x轴有两个交点8.二次函数y=x2﹣2的图象的顶点是〔〕A.〔2,﹣2〕B.〔﹣1,0〕C.〔1,9〕D.〔0,﹣2〕9.抛物线y=2x2+1的顶点坐标是〔〕A.〔2,1〕 B.〔0,1〕 C.〔1,0〕 D.〔1,2〕10.二次函数y=ax2+bx+c〔a≠0〕的图象如下图,给出以下结论:①a >0;②该函数的图象关于直线x=1对称;③当x=-1或x=3时,函数y的值都等于0.其中正确结论的个数是〔〕A.3B.2C.1D.011.对于二次函数y=2〔x+1〕〔x﹣3〕,以下说法正确的选项是〔〕A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=﹣112.如图,抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为〔0,3〕,那么点B的坐标为〔)A.〔2,3〕 B.〔3,2〕 C.〔3,3〕 D.〔4,3〕13.在二次函数y=﹣x2+2x+1的图象中,假设y随x的增大而增大,那么x的取值范围是〔〕A.x>1B.x<1C.x>﹣1D.x<﹣114.抛物线y=〔x+1〕2的顶点坐标是〔〕A.〔﹣1,0〕B.〔﹣1,1〕C.〔0,﹣1〕D.〔1,0〕【二】填空题15.点A(x1 ,y1)、B(x2 ,y2)在二次函数y=(x-1)2+1的图像上,假设x1>x2>1,那么y1________y2 .(填〝>〞〝=〞或〝<〞)16.M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为〔a,b〕,那么y=﹣abx2+〔a+b〕x的顶点坐标为________17.二次函数y=x2+〔m﹣1〕x+1,当x>1时,y随x的增大而增大,那么m的取值范围是________.18.写出一个二次函数解析式,使它的图象的顶点在y轴上:________.19.抛物线〔<0〕过A〔,0〕、O〔0,0〕、B〔,〕、C〔3,〕四点.那么________ 〔用〝<〞,〝>〞或〝=〞填空〕.20.二次函数y=﹣3x2﹣6x+5的图像的顶点坐标是________.21.二次函数y=ax2+bx+c〔a≠0〕的图象如下图,有以下5个结论:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④a m +bm+a>0〔m≠﹣1〕;⑤设A〔100,y〕,B〔﹣100,y 〕在该抛物线上,那么y>y .其中正确的结论有________ .〔写出所有正确结论的序号〕【三】解答题22.点A〔﹣2,n〕在抛物线y=x2+bx+c上.〔1〕假设b=1,c=3,求n的值;〔2〕假设此抛物线经过点B〔4,n〕,且二次函数y=x2+bx+c的最小值是﹣4,请画出点P〔x﹣1,x2+bx+c〕的纵坐标随横坐标变化的图象,并说明理由.23.二次函数y=ax2+bx+c〔a≠0〕的图象上部分点的横坐标x与纵坐标求:〔1〕这个二次函数的解析式;〔2〕这个二次函数图象的顶点坐标及上表中m的值.【四】综合题24.如图,抛物线l1经过原点与A点,其顶点是P〔﹣2,3〕,平行于y 轴的直线m与x轴交于点B〔b,0〕,与抛物线l1交于点M.〔1〕点A的坐标是________;抛物线l1的解析式是________;〔2〕当BM=3时,求b的值;〔3〕把抛物线l1绕点〔0,1〕旋转180°,得到抛物线l2 .①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围________;〔4〕②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b 的关系式,并求出线段MN的最小值与此时b的值.25.二次函数y=mx2﹣5mx+1〔m为常数,m>0〕,设该函数的图象与y 轴交于点A,该图象上的一点B与点A关于该函数图象的对称轴对称.〔1〕求点A,B的坐标;〔2〕点O为坐标原点,点M为该函数图象的对称轴上一动点,求当M运动到何处时,△MAO的周长最小.【一】单项选择题1.对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A.开口向下B.对称轴是x=﹣1 C.顶点坐标是〔1,2〕 D.与x轴有两个交点【考点】二次函数的性质【解析】【解答】解:二次函数y=〔x﹣1〕2+2的图象开口向上,顶点坐标为〔1,2〕,对称轴为直线x=1,抛物线与x轴没有公共点.应选:C、【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为〔1,2〕,对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.2.抛物线上部分点坐标如表所示,以下说法错误的选项是〔〕A.抛物线与y轴的交点为(0,6)B.抛物线的对称轴是在y轴的右侧;C.抛物线一定经过点(3 ,0)D.在对称轴左侧,y随x增大而减小.【考点】二次函数的性质3.二次函数y=3x2+1和y=3〔x﹣1〕2 ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点〔0,0〕;③当x>0时,它们的函数值y都是随着x的增大而增大;④它们的开口的大小是一样的.其中正确的说法有〔〕A.1个B.2个C.3个D.4个【考点】二次函数的性质【解析】【解答】解:①因为a=3>0,它们的图象都是开口向上,此选项正确;②y=3x2+1对称轴是y轴,顶点坐标是〔0,1〕,y=3〔x﹣1〕2的对称轴是x=1,顶点坐标是〔1,0〕,此选项错误;③二次函数y=3x2+1当x>0时,y随着x的增大而增大;y=3〔x﹣1〕2当x10时,y随着x的增大而增大;④因为a=3,所以它们的开口的大小是一样的,此选项正确.综上所知,正确的有①④两个.应选:B、【分析】根据a的值可以判定开口方向和开口大小,利用顶点式直接找出对称轴和顶点坐标,利用对称轴和开口方向确定y随着x的增大而增大对应x的取值范围.4.二次函数y=〔x﹣1〕2﹣2的顶点坐标是〔〕A.〔﹣1,﹣2〕B.〔﹣1,2〕C.〔1,﹣2〕D.〔1,2〕【考点】二次函数的性质【解析】【解答】解:因为y=〔x﹣1〕2﹣2是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为〔1,﹣2〕.应选C、【分析】解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.5.如图,从1×2的矩形ABCD的较短边AD上找一点E,过这点剪下两个正方形,它们的边长分别是AE、DE,当剪下的两个正方形的面积之和最小时,点E应选在〔〕A.AD的中点B.AE:ED=〔﹣1〕:2 C.AE:ED=:1 D.AE:ED=〔﹣1〕:2【考点】二次函数的性质【解析】【解答】解:设AE=x.那么DE=1﹣x.剪下的两个正方形的面积之和为y,那么y=AE2+DE2=x2+〔1﹣x〕2=2〔x﹣〕2+.当x=时,y取最小值.即点E是AD的中点.应选A、【分析】设AE=x.那么DE=1﹣x.剪下的两个正方形的面积之和为y,所以由正方形的面积公式得到y=AE2+DE2=2〔x﹣〕2+.当x=时,y取最小值.即点E是AD的中点.、6.二次函数y=3x2-6x+5的图象的顶点坐标是〔〕A.〔1,2〕 B.〔1, 8〕 C.〔﹣1,2〕 D.〔1,﹣4〕【考点】二次函数的性质【解析】【解答】∵a=3,b=-6,c=5,∴x=-=1,y==2,即顶点坐标是〔1,2〕.应选A.【点评】此题考查用公式法求二次函数的顶点坐标.做对此题的关键是记熟公式7.对于二次函数y=〔x﹣1〕2+2的图象,以下说法正确的选项是〔〕A.开口向下B.对称轴是x=﹣1 C.顶点坐标是〔1,2〕 D.与x轴有两个交点【考点】二次函数的性质【解析】【解答】解:二次函数y=〔x﹣1〕2+2的图象开口向上,顶点坐标为〔1,2〕,对称轴为直线x=1,抛物线与x轴没有公共点.应选:C、【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为〔1,2〕,对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.8.二次函数y=x2﹣2的图象的顶点是〔〕A.〔2,﹣2〕B.〔﹣1,0〕C.〔1,9〕D.〔0,﹣2〕【考点】二次函数的性质【解析】【解答】解:二次函数y=x2﹣2的图象的顶点坐标是〔0,﹣2〕.应选D、【分析】根据顶点式解析式写出顶点坐标即可.9.抛物线y=2x2+1的顶点坐标是〔〕A.〔2,1〕 B.〔0,1〕 C.〔1,0〕 D.〔1,2〕【考点】二次函数的性质【解析】【解答】∵y=2x2+1=2〔x﹣0〕2+1,∴抛物线的顶点坐标为〔0,1〕,应选B、【分析】此题主要考查抛物线的顶点坐标,掌握顶点式方程y=a〔x﹣h〕2 +k的顶点坐标为〔h ,k〕是解题的关键.10.二次函数y=ax2+bx+c〔a≠0〕的图象如下图,给出以下结论:①a >0;②该函数的图象关于直线x=1对称;③当x=-1或x=3时,函数y的值都等于0.其中正确结论的个数是〔〕A.3B.2C.1D.0【考点】二次函数的性质【解析】【分析】根据抛物线的性质解题.【解答】①抛物线开口向下,a<0,所以①错误;②抛物线是关于对称轴对称的轴对称图形,所以②该函数的图象关于直线x =1对称,正确;③当x=-1或x=3时,函数y的值都等于0,也正确.应选B、【点评】此题考查了抛物线的开口方向,轴对称性和与x轴的交点等知识.11.对于二次函数y=2〔x+1〕〔x﹣3〕,以下说法正确的选项是〔〕A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=﹣1【考点】二次函数的性质【解析】【解答】解:二次函数y=2〔x+1〕〔x﹣3〕可化为y=2〔x﹣1〕2﹣8的形式,A、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,故本选项错误;C、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x<1时,y随x的增大而减小,故本选项正确;D、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.应选C、【分析】先把二次函数化为顶点式的形式,再根据二次函数的性质进行解答.12.如图,抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为〔0,3〕,那么点B的坐标为〔)A.〔2,3〕 B.〔3,2〕 C.〔3,3〕 D.〔4,3〕【考点】二次函数的性质【解析】【分析】抛物线的对称轴为x=2,知道A的坐标为〔0,3),由函数的对称性知B点坐标.【解答】由题意可知抛物线的y=x2+bx+c的对称轴为x=2,∵点A的坐标为〔0,3),且AB与x轴平行,可知A、B两点为对称点,∴B点坐标为〔4,3)应选D、【点评】此题主要考查二次函数的对称性13.在二次函数y=﹣x2+2x+1的图象中,假设y随x的增大而增大,那么x的取值范围是〔〕A.x>1B.x<1C.x>﹣1D.x<﹣1【考点】二次函数的性质【解析】【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.应选B、【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.14.抛物线y=〔x+1〕2的顶点坐标是〔〕A.〔﹣1,0〕B.〔﹣1,1〕C.〔0,﹣1〕D.〔1,0〕【考点】二次函数的性质【解析】【解答】解:∵二次函数的解析式为y=〔x+1〕2 ,∴其顶点坐标为:〔﹣1,0〕.应选A、【分析】直接根据二次函数的顶点坐标式进行解答即可.【二】填空题15.点A(x1 ,y1)、B(x2 ,y2)在二次函数y=(x-1)2+1的图像上,假设x1>x2>1,那么y1________y2 .(填〝>〞〝=〞或〝<〞) 【考点】二次函数的性质16.M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为〔a,b〕,那么y=﹣abx2+〔a+b〕x的顶点坐标为________【考点】二次函数的性质17.二次函数y=x2+〔m﹣1〕x+1,当x>1时,y随x的增大而增大,那么m的取值范围是________.【考点】二次函数的性质18.写出一个二次函数解析式,使它的图象的顶点在y轴上:________.【考点】二次函数的性质19.抛物线〔<0〕过A〔,0〕、O〔0,0〕、B〔,〕、C〔3,〕四点.那么________ 〔用〝<〞,〝>〞或〝=〞填空〕.【考点】二次函数的性质【解析】【解答】∵抛物线与x轴交于A〔-2,0〕、O〔0,0〕两点,∴抛物线对称轴为x= =-1,∵B〔-3,y1〕、C〔3,y2〕,点B离对称轴较近,且抛物线开口向下,∴y1>y2 .【分析】根据可知点A、O关于抛物线的对称轴对称,因此可求出抛物线的对称轴为直线x=-1,再根据二次函数的性质即可求得结论。

中考数学《二次函数》专项练习题及答案

中考数学《二次函数》专项练习题及答案

中考数学《二次函数》专项练习题及答案一、单选题1.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个2.对于抛物线y=−13(x−5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3)3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?()A.第8秒B.第10秒C.第12秒D.第15秒4.已知二次函数y=x2−4x+2,当自变量x取值在−2≤x≤5范围内时,下列说法正确的是()A.有最大值14,最小值-2B.有最大值14,最小值7C.有最大值7,最小值-2D.有最大值14,最小值25.如图,二次函数y=ax2+bx+c图象的对称轴为x=1,则下列说法正确的有()①abc<0,②2a+b=0,③a−b+c>0,④若4a+2b+c>0.A.①②③B.②③④C.①②④D.①②③④6.在平面直角坐标系中,对于点 P(x ,y) 和 Q(x ,y′) ,给出如下定义:若 y′={y +1 (x ≥0)−y (x <0),则称点 Q 为点 P 的“亲密点”.例如:点 (1,2) 的“亲密点”为点 (1,3) ,点 (−1,3) 的“亲密点”为点 (−1,−3) .若点 P 在函数 y =x 2−2x −3 的图象上.则其“亲密点” Q 的纵坐标 y′ 关于 x 的函数图象大致正确的是( )A .B .C .D .7.对于二次函数 y =2(x −1)2−3 ,下列说法正确的是( )A .图象开口向下B .图象和y 轴交点的纵坐标为-3C .x <1 时,y 随x 的增大而减小D .图象的对称轴是直线 x =−18.抛物线 y =−3x 2+12x −3 的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)9.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )A .a <0B .a ﹣b+c <0C .−b 2a>1D .4ac ﹣b 2<﹣8a10.已知抛物线y =ax 2+bx +c(a ≠0)交x 轴于点A(1,0),B(3,0).P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上两个点.若|x 1−2|>|x 2−2|>1,则下列结论一定正确的是( ) A .y 1<y 2B .y 1>y 2C .|y 1|<|y 2|D .|y 1|>|y 2|11.二次函数y=x2-1的图象可由下列哪个函数图象向右平移2个单位,向下平移2个单位得到()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2+312.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF△BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.二、填空题13.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2 √3个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴左侧的图象上,则点C的坐标为.14.将y=x2的向右平移3个单位,再向上平移5个单位后,所得的解析式是.15.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为81元,则平均每次降价的百分率是.16.如果抛物线y=x2﹣6x+c的顶点到x轴的距离是3,那么c的值等于.17.不等式x2+ax+b≥0(a≠0)的解集为全体实数,假设f(x)=x2+ax+b,若关于x的不等式f(x)<c的解集为m<x<m+6,则实数c的值为.18.用16m长的篱笆围成长方形的生物园饲养小兔,设围成长方形的生物园的长为x m,则围成长方形的生物的面积S(单位:m2)与x的函数表达式是.(不要求写自变量x的取值范围)三、综合题19.鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?20.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.21.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=−12x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.22.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1与x轴交于点A,B.(点A在点B的左侧)(1)求m的取值范围;(2)当m取最大整数时,求点A、点B的坐标.23.我市某电器商场代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现,在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y(台)与售价x(元/台)之间的函数关系式,并求出售价x的范围.(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获的利润w(元)最大,最大利润是多少?24.一家超市,经销一种地方特色产品,每千克成本为50元.这种产品在不同季节销量与单价满足一次函数变化关系.下表是其中不同4个月内一天的销量y(kg)与单价x(元/kg)的对应值.单价x(元/kg)55606570销量y(kg)70605040(2)平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是多少?(3)当销售单价为多少时,一天的销售利润最大?最大利润是多少?参考答案1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】A 5.【答案】D 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】D 10.【答案】D 11.【答案】B 12.【答案】D13.【答案】(1﹣ √7 ,﹣3) 14.【答案】y=(x ﹣3)2+5 15.【答案】10% 16.【答案】c=6或12 17.【答案】918.【答案】S =−x 2+8x19.【答案】(1)解:依题意有:y=10x+160;(2)解:依题意有:W=(80﹣50﹣x )(10x+160)=﹣10(x ﹣7)2+5290,∵-10<0且x 为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元; (3)解:依题意有:﹣10(x ﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.20.【答案】(1)解:当1≤x <50时,y=(200-2x )(x+40-30)=-2x 2+180x+2000当50≤x≤90时y=(200-2x )(90-30)=-120x+12000综上所述:y= {−2x 2+180x +2000(1≤x <50)−120x +12000(50≤x ≤90)(2)解:当1≤x <50时,二次函数开口向下,二次函数对称轴为x=45 当x=45时,y 最大=-2×452+180×45+2000=6050 当50≤x≤90时,y 随x 的增大而减小当x=50时,y最大=6000综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元(3)解:当1≤x<50时,y=-2x2+180x+2000≥4800,解得20≤x≤50,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=-120x+12000≥4800,解得x≤60因此利润不低于4800元的天数是50≤x≤60,共11天所以该商品在销售过程中,共41天每天销售利润不低于4800元;21.【答案】(1)解:由已知得:C(0, 4),B(4, 4)把B与C坐标代入y=−12x2+bx+c得:{4b+c=12c=4解得:b=2则解析式为y=−12x2+2x+4;(2)解:∵y=−12x2+2x+4=−12(x−2)2+6∴抛物线顶点坐标为(2, 6)则S四边形ABDC=S△ABC+S△BCD=12×4×4+12×4×2=8+4=12. 22.【答案】(1)解:根据题意得△=(-4)2-4(2m-1)>0解得m<5 2;(2)解:m的最大整数为2抛物线解析式为y=x2-4x+3当y=0时,x2-4x+3=0,解得x1=1,x2=3所以A(1,0),B(3,0).23.【答案】(1)解:由题意得:200+30×5=350(台)答:该月可售出350台(2)解:由题意得:y=200+5(400−x)=−5x+2200由供货商对售价和销售量的规定得:{x≥330y≥450,即{x≥330−5x+2200≥450解得:330≤x≤350答:所求的函数关系式为y=−5x+2200,售价x的范围为330≤x≤350(3)解:由题意和(2)可得:w=(x−200)(−5x+2200)整理得:w=−5(x−320)2+72000由二次函数的性质可知:当330≤x≤350时,w随x的增大而减小则当x=330时,w取得最大值,最大值为w=−5×(330−320)2+72000=71500(元)答:当售价定为330元/台时,商场每月销售这种空气净化器所获的利润最大,最大利润是71500元24.【答案】(1)解:设y=kx+b,由题意得:{55k+b=70 60k+b=60解得{k=−2 b=180∴y(kg)与x(元/kg)之间的函数关系式为y=﹣2x+180.(2)解:由题意得:(x﹣50)(﹣2x+180)=600整理,得x2﹣140x+4800=0解得x1=60,x2=80∵顾客利益也较大∴x=60∴平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是60元/千克.(3)解:一天的销售利润为:w=(x﹣50)(﹣2x+180)=﹣2x2+280x﹣9000=﹣2(x﹣70)2+800∴当x=70时,w最大=800.∴当销售单价为70元/kg时,一天的销售利润最大,最大利润是800元。

2023年九年级人教版数学中考复习重难点专练 二次函数的最值(含答案)

2023年九年级人教版数学中考复习重难点专练 二次函数的最值(含答案)

2023年人教版数学中考复习重难点专练——二次函数的最值一、单选题1.二次函数的最小值是A .1-B .1C .2-D .2 2.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .有最小值0,有最大值3B .有最小值﹣1,有最大值0C .有最小值﹣1,有最大值3D .有最小值﹣1,无最大值 3.二次函数()215y x =--+,当m x n ≤≤且0mn <时,y 的最小值为2m ,最大值为2n ,则m n +的值为( )A .52B .2C .12D .32 4.二次函数y=(x-1)2+2的最小值是( )A .-2B .2C .-1D .1 5.二次函数 22y x x c =--+ 在 32x -≤≤ 的范围内有最小值 5- ,则 c 的值是( )A .6-B .2C .2-D .3 6.二次函数y=x 2﹣8x+1的最小值是( )A .4B .﹣15C .﹣4D .15 7.二次函数y=3(x ﹣1)2+2的最小值是( )A .2B .1C .﹣1D .﹣2 8.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( )A .﹣1或1B .1或﹣3C .﹣1或3D .3或﹣39.二次函数223y x mx =+-,当01x ≤≤时,若图象上的点到x 轴距离的最大值为4,则m 的值为( )A .-1或1B .-1或1或3C .1或3D .-1或3 10.已知二次函数y=(x-m+2)(x+m-4)+n ,其中m ,n 为常数,则( )A .m>1,n<0时,二次函数的最小值大于0B .m=1,n>0时,二次函数的最小值大于0C .m<1,n>0时,二次函数的最小值小于0D .m=1,n<0时,二次函数的最小值小于0二、填空题11.二次函数 22y x =-+ 的最大值为 .12.二次函数y=x 2+(2m+1)x+(m 2﹣1)有最小值﹣2,则m= . 13.二次函数y=2x 2﹣2x+6的最小值是 .14.如图,在平面直角坐标系中,点A 、B 的坐标分别为 ()11--, 、 ()21-, ,抛物线 ()20y ax bx c a =++≠ 的顶点P 在线段 AB 上,与x 轴相交于C 、D 两点,设点C 、D 的横坐标分别为 1x 、 2x ,且 12x x < .若 1x 的最小值是 2- ,则 2x 的最大值是 .15.已知二次函数y=x 2﹣2mx (m 为常数),当﹣2≤x≤1时,函数值y 的最小值为﹣2,则m 的值为 .三、解答题16.用总长为60的篱笆围成的矩形场地,矩形面积S 随矩形一边长L 的变化而变化,L 是多少时,场地的面积S 最大?17.已知抛物线l 1的最高点为P (3,4),且经过点A (0,1),求l 1的解析式. 18.如图,二次函数的图象与x 轴交于点A (-3,0)和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y轴交于点E.(1)请直接写出点D的坐标:(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.19.四边形ABCD的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形的面积最大?20.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】B5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】212.【答案】34 13.【答案】9214.【答案】315.【答案】32 或-16.【答案】解:由题意S=,当 时,S 有最大值.17.【答案】解:∵抛物线l 1的最高点为P (3,4),∴设抛物线的解析式为y=a (x ﹣3)2+4,把点(0,1)代入得,1=a (0﹣3)2+4,解得,a=﹣ 13, ∴抛物线的解析式为y=﹣13 (x ﹣3)2+4 18.【答案】(1)(﹣3,4);(2)设PA=t ,OE=l由△DAP=△POE=△DPE=90°得△DAP△△POE∴∴l=﹣∴当t=时,l有最大值即P为AO中点时,OE的最大值为;(3)存在.①点P点在y轴左侧时,P点的坐标为(﹣4,0)由△PAD△△OEG得OE=PA=1∴OP=OA+PA=4∵△ADG△△OEG∴AG:GO=AD:OE=4:1∴AG=,∴重叠部分的面积=;②当P点在y轴右侧时,P点的坐标为(4,0),此时重叠部分的面积为.19.【答案】解:设四边形ABCD的面积为y,AC的长为x,BD的长为(10-x)∴根据题意可得,y=102x x-()=-12x2+5x=-12(x-5)2+12.5根据题意可得,当x=5时,四边形的面积最大此时AC=BD=520.【答案】解:由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为53米。

中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。

中考数学《二次函数的三种形式》专项练习题及答案

中考数学《二次函数的三种形式》专项练习题及答案

中考数学《二次函数的三种形式》专项练习题及答案一、单选题1.二次函数y=-2(x-1)2+3的图象的顶点坐标是()A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)2.二次函数y=(x+1)2-1图象的顶点坐标是( )A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)3.抛物线y=(x+1)2+2的对称轴为()A.直线x=1B.直线x=-1C.直线x=2D.直线x=-24.二次函数y=3(x-2)2-1的图象的顶点坐标是()A.(2,-1)B.(-2,-1)C.(2,1)D.(-2,1)5.若b>0,则二次函数y=x2+2bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限6.将抛物线y=2x2向右平移2个单位,再向上平移3个单位,所得抛物线的表达式为()A.y=2(x+2)2+3B.y=(2x﹣2)2+3C.y=(2x+2)2﹣3D.y=2(x﹣2)2+37.对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是() A.y =-2x2 + 8x +3B.y =-2x2 –8x +3C.y = -2x2 + 8x –5D.y =-2x2 –8x +28.二次函数y=x2-6x+5的图像的顶点坐标是()A.(-3,4)B.(3,-4)C.(-1,2)D.(1,-4)9.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+710.抛物线y=(x−2)2+1的顶点坐标是()A.(−2, −1)B.(−2, 1)C.(2, −1)D.(2, 1)11.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是A.1米B.5米C.6米D.7米12.已知二次函数的解析式为:y=-3(x+5)2﹣7,那么下列说法正确的是()A.顶点的坐标是(5,-7)B.顶点的坐标是(-7,-5)C.当x=-5时,函数有最大值y=-7D.当x=-5时,函数有最小值y=-7二、填空题13.将抛物线y=﹣﹣12x2﹣3x+1写成y=a(x+h)2+k的形式应为.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为15.将二次函数y=x2+4x﹣2配方成y=(x﹣h)2+k的形式,则y=.16.若y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式(其中m,k为常数),则m+k=;当x=时,二次函数y=x2+2x﹣2有最小值.17.把二次函数y=(x﹣2)2+1化为y=x2+bx+c的形式,其中b、c为常数,则b+c=.18.将二次函数y=x2−4x+5化成y=a(x−ℎ)2+k的形式为.三、综合题19.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.20.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使∥PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.21.如图,已知二次函数y=ax2+bx+c的图象过点A(﹣1,0)和点C(0,3),对称轴为直线x=1.(1)求该二次函数的关系式和顶点坐标;(2)结合图象,解答下列问题:①当﹣1<x<2时,求函数y的取值范围.②当y<3时,求x的取值范围.22.已知二次函数y=x2−2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.把下列函数化为y=a(x+m)2+k形式,并求出各函数图象的顶点坐标、对称轴、最大值或最小值:(1)y=x2﹣2x+4;(2)y=100﹣5x2.24.如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)连接BC,点P为抛物线上第一象限内一动点,当∥BCP面积最大时,求点P的坐标;(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】D7.【答案】C8.【答案】B9.【答案】A10.【答案】D11.【答案】C12.【答案】C13.【答案】y=﹣12(x+3)2+11214.【答案】515.【答案】(x+2)2﹣616.【答案】-4;-117.【答案】118.【答案】y=(x−2)2+119.【答案】(1)解:∵OM=ON=4∴M点坐标为(4,0),N点坐标为(0,4)设抛物线解析式为y=a(x﹣4)2把N(0,4)代入得16a=4,解得a= 1 4所以抛物线的解析式为y= 14(x﹣4)2= 14x2﹣2x+4(2)解:∵点A的横坐标为t ∴DM=t﹣4∴CD=2DM=2(t﹣4)=2t﹣8把x=t代入y= 14x2﹣2x+4得y= 14t2﹣2t+4∴AD= 14t2﹣2t+4∴l=2(AD+CD)=2(14t2﹣2t+4+2t﹣8)= 12t 2﹣8(t >4) 20.【答案】(1)解:将点B (3,0)、C (0,3)代入抛物线y=x 2+bx+c 中得: {0=9+3b +c 3=c ,解得: {b =−4c =3 ∴抛物线的解析式为y=x 2﹣4x+3.(2)解:设点M 的坐标为(m ,m 2﹣4m+3),设直线BC 的解析式为y=kx+3 把点点B (3,0)代入y=kx+3中 得:0=3k+3,解得:k=﹣1 ∴直线BC 的解析式为y=﹣x+3. ∵MN∥y 轴∴点N 的坐标为(m ,﹣m+3).∵抛物线的解析式为y=x 2﹣4x+3=(x ﹣2)2﹣1 ∴抛物线的对称轴为x=2 ∴点(1,0)在抛物线的图象上 ∴1<m <3.∵线段MN=﹣m+3﹣(m 2﹣4m+3)=﹣m 2+3m=﹣ 12 + 94∴当m= 32 时,线段MN 取最大值,最大值为 94 .(3)解:假设存在.设点P 的坐标为(2,n ). 当m= 32 时,点N 的坐标为( 32 , 32) ∴PB= √(2−3)2+(n −0)2 = √1+n 2 ,PN= √(2−32)2+(n −32)2 ,BN= √(3−32)2+(0−32)2=3√22.∥PBN 为等腰三角形分三种情况:①当PB=PN 时,即 √1+n 2 = √(2−32)2+(n −32)2解得:n= 12此时点P 的坐标为(2, 12);②当PB=BN 时,即 √1+n 2 = 3√22解得:n=± √142此时点P 的坐标为(2,﹣ √142 )或(2, √142);③当PN=BN 时,即 √(2−32)2+(n −32)2 = 3√22解得:n= 3±√172此时点P 的坐标为(2, 3−√172 )或(2, 3+√172).综上可知:在抛物线的对称轴l 上存在点P ,使∥PBN 是等腰三角形,点的坐标为(2, 12)、(2,﹣√142 )、(2, √142 )、(2, 3−√172 )或(2, 3+√172). 21.【答案】(1)解:根据题意得 {a −b +c =0c =3−b2a =1 ,解得 {a =−1b =2c =3,所以二次函数关系式为y=﹣x 2+2x+3,因为y=﹣(x ﹣1)2+4 所以抛物线的顶点坐标为(1,4);(2)解:①当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下 所以当﹣1<x <2时,0<y≤4;②当y=3时,﹣x 2+2x+3=3,解得x=0或2 所以当y <3时,x <0或x >2.22.【答案】(1)解:∵∥=(﹣2m )2﹣4×1×(m 2+3)=4m 2﹣4m 2﹣12=﹣12<0∴方程x 2﹣2mx+m 2+3=0没有实数解, 即不论m 为何值,该函数的图象与x 轴没有公共点; (2)解:y=x 2﹣2mx+m 2+3=(x ﹣m )2+3∴把函数y=x 2﹣2mx+m 2+3的图象沿y 轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点.23.【答案】(1)解:y=x 2﹣2x+4=x 2﹣2x+1+3=(x ﹣1)2+3.顶点坐标是(1,﹣1),对称轴为x=1,最小值为﹣1 (2)解:y=100﹣5x 2.顶点坐标是(0,100),对称轴为x=0,最大值为10024.【答案】(1)解:设抛物线解析式为y=a (x+1)(x ﹣3)把C (0,3)代入得a•1•(﹣3)=3,解得a=﹣1所以抛物线解析式为y=﹣(x+1)(x ﹣3),即y=﹣x 2+2x+3 (2)解:设直线BC 的解析式为y=kx+m把B (3,0),C (0,3)代入得 {3k +m =0m =3 ,解得 {k =−1m =3所以直线BC 的解析式为y=﹣x+3 作PM∥y 轴交BC 于M ,如图1设P(x,﹣x2+2x+3),(0<x<3),则M(x,﹣x+3)∴PM=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x∴S∥PCB= 12•3•PM=﹣32x2+ 92=﹣32(x﹣32)2+ 278当x= 32时,∥BCP的面积最大,此时P点坐标为(32,154)(3)解:如图2抛物线的对称轴为直线x=1当四边形BCDQ为平行四边形,设D(1,a),则Q(4,a﹣3)把Q(4,a﹣3)代入y=﹣x2+2x+3得a﹣3=﹣16+8+3,解得a=﹣2∴Q(4,﹣5);当四边形BCQD为平行四边形时,设D(1,a),则Q(﹣2,3+a)把Q(﹣2,3+a)代入y=﹣x2+2x+3得3+a=﹣4﹣4+3,解得a=﹣8∴Q(﹣2,﹣5);当四边形BQCD为平行四边形时,设D(1,a),则Q(2,3﹣a)把Q(2,3﹣a)代入y=﹣x2+2x+3得3﹣a=﹣4+4+3,解得a=0∴Q(2,3)综上所述,满足条件的Q点坐标为(4,﹣5)或(﹣2,﹣5)或(2,3).。

2022年中考数学试题汇编:二次函数(填空题)(含解析)

2022年中考数学试题汇编:二次函数(填空题)(含解析)

2022年中考数学试题汇编:二次函数(填空题)1.(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).2.(2022•呼和浩特)在平面直角坐标系中,点C和点D的坐标分别为(﹣1,﹣1)和(4,﹣1),抛物线y=mx2﹣2mx+2(m≠0)与线段CD只有一个公共点,则m的取值范围是.3.(2022•广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降米,水面宽8米.4.(2022•大庆)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m 的值为.5.(2022•赤峰)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D (m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为.6.(2022•黔东南州)在平面直角坐标系中,将抛物线y=x2+2x﹣1先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是.7.(2022•福建)已知抛物线y=x2+2x﹣n与x轴交于A,B两点,抛物线y=x2﹣2x﹣n与x 轴交于C,D两点,其中n>0.若AD=2BC,则n的值为.8.(2022•无锡)把二次函数y=x2+4x+m的图象向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:.9.(2022•荆州)规定;两个函数y1,y2的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数y1=2x+2与y2=﹣2x+2的图象关于y轴对称,则这两个函数互为“Y 函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为.10.(2022•武汉)已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:①b>0;②若m=,则3a+2c<0;③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.其中正确的是(填写序号).11.(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为m2.12.(2022•甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t (单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=s.13.(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是m.14.(2022•凉山州)已知实数a、b满足a﹣b2=4,则代数式a2﹣3b2+a﹣14的最小值是.15.(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O 点3m.那么喷头高m时,水柱落点距O点4m.16.(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是;当2≤t≤3时,w的取值范围是.17.(2022•遂宁)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是.18.(2022•黑龙江)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.参考答案与试题解析1.(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为121元(利润=总销售额﹣总成本).【分析】利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.【解答】解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.【点评】本题考查二次函数的应用,理解题意,掌握“利润=单价商品利润×销售量”的等量关系及二次函数的性质是解题关键.2.(2022•呼和浩特)在平面直角坐标系中,点C和点D的坐标分别为(﹣1,﹣1)和(4,﹣1),抛物线y=mx2﹣2mx+2(m≠0)与线段CD只有一个公共点,则m的取值范围是m=3或﹣1<m≤﹣.【分析】根据抛物线求出对称轴x=1,y轴的交点坐标为(0,2),顶点坐标为(1,2﹣m),直线CD的表达式y=﹣1,分两种情况讨论:m>0时或m<0时,利用抛物线的性质分析求解.【解答】解:抛物线的对称轴为:x=﹣=1,当x=0时,y=2,∴抛物线与y轴的交点坐标为(0,2),顶点坐标为(1,2﹣m),直线CD的表达式y=﹣1,当m>0时,且抛物线过点D(4,﹣1)时,16m﹣8m+2=﹣1,解得:m=﹣(不符合题意,舍去),当抛物线经过点(﹣1,﹣1)时,m+2m+2=﹣1,解得:m=﹣1(不符合题意,舍去),当m>0且抛物线的顶点在线段CD上时,2﹣m=﹣1,解得:m=3,当m<0时,且抛物线过点D(4,﹣1)时,16m﹣8m+2=﹣1,解得:m=﹣,当抛物线经过点(﹣1,﹣1)时,m+2m+2=﹣1,解得:m=﹣1,综上,m的取值范围为m=3或﹣1<m≤﹣,故答案为:m=3或﹣1<m≤﹣.【点评】本题考查了二次函数的性质,理解对称轴的含义,熟练掌握二次函数的性质,巧妙运用分类讨论思想解决问题是解题的关键.3.(2022•广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降米,水面宽8米.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把x=4代入抛物线解析式得出y,即可得出答案.【解答】解:以水平面所在的直线AB为x轴,以过拱顶C且垂直于AB的直线为y轴建立平面直角坐标系,O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,把A点坐标(﹣3,0)代入抛物线解析式得,9a+2=0,解得:a=﹣,所以抛物线解析式为y=﹣x2+2,当x=4时,y=﹣×16+2=﹣,∴水面下降米,故答案为:.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.4.(2022•大庆)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m 的值为1或﹣.【分析】函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,分情况讨论,①过坐标原点,m﹣1=0,m=1,②与x、y轴各一个交点,得出Δ=0,m≠0.【解答】解:∵函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,①过坐标原点,m﹣1=0,m=1,②与x、y轴各一个交点,∴Δ=0,m≠0,(3m)2﹣4m(m﹣1)=0,解得m=0或m=﹣,综上所述:m的值为1或﹣.【点评】本题考查抛物线与x轴的交点、二次函数的性质,掌握函数的图象与坐标轴恰有两个公共点的情况,看清题意,分情况讨论是解题关键.5.(2022•赤峰)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D (m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为(﹣5,﹣4)或(0,1).【分析】由抛物线解析式可得A,B,C三点的坐标,则AB=4,将点D的坐标代入抛物线的解析式可得m的值,确定D的坐标,根据计算的D的坐标分情况画图可得结论.【解答】解:把点D(m,m+1)代入抛物线y=﹣x2﹣6x﹣5中得:m+1=﹣m2﹣6m﹣5,解得:m1=﹣1,m2=﹣6,∴D(﹣1,0)或(﹣6,﹣5),当y=0时,﹣x2﹣6x﹣5=0,∴x=﹣1或﹣5,∴A(﹣5,0),B(﹣1,0),当x=0时,y=﹣5,∴OC=OA=5,∴△AOC是等腰直角三角形,∴∠OAC=45°,①如图1,D(﹣1,0),此时点D与B重合,连接AD',∵点D与D'关于直线AC对称,∴AC是BD的垂直平分线,∴AB=AD'=﹣1﹣(﹣5)=4,且∠OAC=∠CAD'=45°,∴∠OAD'=90°,∴D'(﹣5,﹣4);②如图2,D(﹣6,﹣5),∵点D(m,m+1),∴点D在直线y=x+1上,此时直线y=x+1过点B,∴BD⊥AC,即D'在直线y=x+1上,∵A(﹣5,0),C(0,﹣5),则直线AC的解析式为:y=﹣x﹣5,∵﹣x﹣5=x+1,∴x=﹣3,∴E(﹣3,﹣2),∵点D与D'关于直线AC对称,∴E是DD'的中点,∴D'(0,1),综上,点D关于直线AC的对称点的坐标为(﹣5,﹣4)或(0,1).故答案为:(﹣5,﹣4)或(0,1).【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、等腰直角三角形的判定与性质、轴对称的性质;熟练掌握二次函数图象上点的坐标特征和轴对称的性质是解决问题的关键.6.(2022•黔东南州)在平面直角坐标系中,将抛物线y=x2+2x﹣1先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是(1,﹣3).【分析】先求出绕原点旋转180°的抛物线解析式,再求出向下平移5个单位长度的解析式,配成顶点式即可得答案.【解答】解:将抛物线y=x2+2x﹣1绕原点旋转180°后所得抛物线为:﹣y=(﹣x)2+2(﹣x)﹣1,即y=﹣x2+2x+1,再将抛物线y=﹣x2+2x+1向下平移5个单位得y=﹣x2+2x+1﹣5=﹣x2+2x﹣4=﹣(x﹣1)2﹣3,∴所得到的抛物线的顶点坐标是(1,﹣3),故答案为:(1,﹣3).【点评】本题考查二次函数图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.7.(2022•福建)已知抛物线y=x2+2x﹣n与x轴交于A,B两点,抛物线y=x2﹣2x﹣n与x 轴交于C,D两点,其中n>0.若AD=2BC,则n的值为8.【分析】先判断出了抛物线与x轴的两交点坐标,进而求出AD,BC,进而建立方程,求解即可求出答案.【解答】解:针对于抛物线y=x2+2x﹣n,令y=0,则x2+2x﹣n=0,∴x=﹣1±,针对于抛物线y=x2﹣2x﹣n,令y=0,则x2﹣2x﹣n=0,∴x=1±,∵抛物线y=x2+2x﹣n=(x+1)2﹣n﹣1,∴抛物线y=x2+2x﹣n的顶点坐标为(﹣1,﹣n﹣1),∵抛物线y=x2﹣2x﹣n=(x﹣1)2﹣n﹣1,∴抛物线y=x2﹣2x﹣n的顶点坐标为(1,﹣n﹣1),∴抛物线y=x2+2x﹣n与抛物线y=x2﹣2x﹣n的开口大小一样,与y轴相交于同一点,顶点到x轴的距离相等,∴AB=CD,∵AD=2BC,∴抛物线y=x2+2x﹣n与x轴的交点A在左侧,B在右侧,抛物线y=x2﹣2x﹣n与x轴的交点C在左侧,D在右侧,∴A(﹣1﹣,0),B(﹣1+,0),C(1﹣,0),D(1+,0),∴AD=1+﹣(﹣1﹣)=2+2,BC=﹣1+﹣(1﹣)=﹣2+2,∴2+2=2(﹣2+2),∴n=8,故答案为:8.【点评】此题主要考查了抛物线的性质,抛物线与x轴交点的求法,表示出点A,B,C,D的坐标是解本题的关键.8.(2022•无锡)把二次函数y=x2+4x+m的图象向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:m>3.【分析】先求出平移后的抛物线的解析式,由平移后所得抛物线与坐标轴有且只有一个公共点,可得Δ<0,即可求解.【解答】解:∵把二次函数y=x2+4x+m=(x+2)2+m﹣4的图象向上平移1个单位长度,再向右平移3个单位长度,∴平移后的解析式为:y=(x+2﹣3)2+m﹣4+1,∴平移后的解析式为:y=x2﹣2x+m﹣2,∴对称轴为直线x=1,∵平移后所得抛物线与坐标轴有且只有一个公共点,∴Δ=4﹣4(m﹣2)<0,∴m>3,故答案为:m>3.【点评】本题考查二次函数图象与几何变换以及二次函数的性质,关键是掌握二次函数的几何变换.9.(2022•荆州)规定;两个函数y1,y2的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数y1=2x+2与y2=﹣2x+2的图象关于y轴对称,则这两个函数互为“Y 函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为y=2x﹣3或y=﹣x2+4x﹣4.【分析】根据关于y轴对称的图形的对称点的坐标特点,分情况讨论求解.【解答】解:∵函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,∴函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的图象与x轴也只有一个交点,当k=0时,函数解析为y=﹣2x﹣3,它的“Y函数”解析式为y=2x﹣3,它们的图象与x轴只有一个交点,当k≠0时,此函数是二次函数,∵它们的图象与x轴都只有一个交点,∴它们的顶点分别在x轴上,∴=0,解得:k=﹣1,∴原函数的解析式为y=﹣x2﹣4x﹣4=﹣(x+2)2,∴它的“Y函数”解析式为y=﹣(x﹣2)2=﹣x2+4x﹣4,综上,“Y函数”的解析式为y=2x﹣3或y=﹣x2+4x﹣4,故答案为:y=2x﹣3或y=﹣x2+4x﹣4.【点评】本题考查了新定义,利用待定系数法求一次函数及二次函数的解析式,理解题意,利用分类讨论的思想是解题是关键.10.(2022•武汉)已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:①b>0;②若m=,则3a+2c<0;③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.其中正确的是①③④(填写序号).【分析】①正确.根据对称轴在y轴的右侧,可得结论;②错误.3a+2c=0;③正确.由题意,抛物线的对称轴直线x=h,0<h<0.5,由点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,推出点M到对称轴的距离<点N到对称轴的距离,推出y1>y2;④正确,证明判别式>0即可.【解答】解:∵对称轴x=>0,∴对称轴在y轴右侧,∴﹣>0,∵a<0,∴b>0,故①正确;当m=时,对称轴x=﹣=,∴b=﹣,当x=﹣1时,a﹣b+c=0,∴c=0,∴3a+2c=0,故②错误;由题意,抛物线的对称轴直线x=h,0<h<0.5,∵点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,∴点M到对称轴的距离<点N到对称轴的距离,∴y1>y2,故③正确;设抛物线的解析式为y=a(x+1)(x﹣m),方程a(x+1)(x﹣m)=1,整理得,ax2+a(1﹣m)x﹣am﹣1=0,Δ=[a(1﹣m)]2﹣4a(﹣am﹣1)=a2(m+1)2+4a,∵1<m<2,a≤﹣1,∴Δ>0,∴关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.故④正确,故答案为:①③④.【点评】本题考查二次函数的性质,一元二次方程的根的判别式等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.11.(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为32m2.【分析】设与墙垂直的一边长为xm,然后根据矩形面积列出函数关系式,从而利用二次函数的性质分析其最值.【解答】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(16﹣2x)m,∴矩形围栏的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x﹣4)2+32,∵﹣2<0,∴当x=4时,矩形有最大面积为32m2,故答案为:32.【点评】本题考查二次函数的应用,准确识图,理解二次函数的性质是解题关键.12.(2022•甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t (单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=2s.【分析】把一般式化为顶点式,即可得到答案.【解答】解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,故答案为:2.【点评】本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.13.(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是4m.【分析】根据所建坐标系,水平距离OH就是y=3.05时离他最远的距离.【解答】解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.【点评】此题考查二次函数的运用,根据所建坐标系确定水平距离的求法是此题关键.14.(2022•凉山州)已知实数a、b满足a﹣b2=4,则代数式a2﹣3b2+a﹣14的最小值是6.【分析】根据a﹣b2=4得出b2=a﹣4,代入代数式a2﹣3b2+a﹣14中,然后结合二次函数的性质即可得到答案.【解答】解:∵a﹣b2=4,∴b2=a﹣4,∴原式=a2﹣3(a﹣4)+a﹣14=a2﹣3a+12+a﹣14=a2﹣2a﹣2=a2﹣2a+1﹣1﹣2=(a﹣1)2﹣3,∵1>0,又∵b2=a﹣4≥0,∴a≥4,∵1>0,∴当a≥4时,原式的值随着a的增大而增大,∴当a=4时,原式取最小值为6,故答案为:6.【点评】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,灵活应用配方法,从而完成求解.15.(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O 点3m.那么喷头高8m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.16.(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是0≤w≤5;当2≤t≤3时,w的取值范围是5≤w≤20.【分析】利用待定系数法求得抛物线的解析式,再利用配方法求得抛物线的顶点坐标,结合函数图象即可求解.【解答】解:∵物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒,∴抛物线h=﹣5t2+mt+n的顶点的纵坐标为20,且经过(3,0)点,∴,解得:,(不合题意,舍去),∴抛物线的解析式为h=﹣5t2+10t+15,∵h=﹣5t2+10t+15=﹣5(t﹣1)2+20,∴抛物线的最高点的坐标为(1,20).∵20﹣15=5,∴当0≤t≤1时,w的取值范围是:0≤w≤5;当t=2时,h=15,当t=3时,h=0,∵20﹣15=5,20﹣0=20,∴当2≤t≤3时,w的取值范围是:5≤w≤20.故答案为:0≤w≤5;5≤w≤20.【点评】本题主要考查了二次函数的应用,待定系数法确定函数的解析式,二次函数的性质,理解“极差”的意义是解题的关键.17.(2022•遂宁)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是﹣4<m<0.【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=﹣1代入解析式求解.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴﹣<0,∴b>0,∵抛物线经过(0,﹣2),∴c=﹣2,∵抛物线经过(1,0),∴a+b+c=0,∴a+b=2,b=2﹣a,∴y=ax2+(2﹣a)x﹣2,当x=﹣1时,y=a+a﹣2﹣2=2a﹣4,∵b=2﹣a>0,∴0<a<2,∴﹣4<2a﹣4<0,故答案为:﹣4<m<0.【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.18.(2022•黑龙江)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为y=2(x+1)2﹣2.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,故答案为:y=2(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.。

中考数学专项复习《二次函数》练习题(附答案)

中考数学专项复习《二次函数》练习题(附答案)

中考数学专项复习《二次函数》练习题(附答案)一、单选题1.周长是4m的矩形,它的面积S(m2)与一边长x(m)的函数图象大致是() A.B.C.D.2.边长为1的正方形OABC的顶点A在x轴正半轴上,点C在y轴正半轴上,将正方形OABC绕顶点O顺时针旋转75°,如图所示,点B恰好落在函数y=ax2(a< 0)的图象上,则a的值为()A.−√2B.-1C.−3√24D.−√233.图中是有相同最小值的两条抛物线,则下列关系中正确的是()A.k<n B.h=m C.k+n=0D.h<0,m>04.在平面直角坐标系中二次函数y1=﹣x2+4x 和一次函数y2=2x 的图象如图所示,那么不等式﹣x2+4x>2x 的解集是()A.x<0B.0<x<4C.0<x<2D.2<x<45.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1D.有最大值是26.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2A.16B.15C.14D.13 8.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.9.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>0;④4a﹣2b+c>0.其中正确结论的个数是()A.1B.2C.3D.4 10.将抛物线y=x2向右平移1个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=(x+1)2+3B.y=(x+1)2−3C.y=(x−1)2+3D.y=(x−1)2−311.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2;⑤2a﹣b<c.其中正确的结论有()A.1个B.2个C.3个D.4个12.已知抛物线y=x2﹣2bx+4的顶点在x轴上,则b的值一定是()A.1B.2C.﹣2D.2或﹣2二、填空题13.如图,甲,乙两个转盘分别被三等分、四等分,各转动一次,停止转动后,将指针指向的数字分别记为a,b,使抛物线y=ax2−2x+b与x轴有公共点的概率为.14.将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为.15.若抛物线y=2(x−3)2−8与x轴的两个交点分别为点A和点B,则线段AB的长为.16.已知抛物线y=x2﹣x﹣1与x轴的一个交点的横坐标为m,则代数式m2﹣m+2016的值为.17.将抛物线y=x2向右平移2个单位,再向上平移3个单位,所得抛物线的表达式为.18.一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=﹣2x2相同,试写出这个函数解析式三、综合题19.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y 与x之间的函数关系式,并写出自变量x的取值范围.20.已知二次函数的图象以A(−1,4)为顶点,且过点B(2,−5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;21.已知拋物线y=x2+bx+c经过点(−1,8)和(2,−7).(1)试确定b,c的值.(2)直接写出x满足什么条件时y随x的增大而减小.22.已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.(1)求点C的坐标和抛物线的解析式;(2)若点P是抛物线上一点,且PB=PC,求点P的坐标;(3)点Q是抛物线的对称轴l上一点,当QA+QC最小时求点Q的坐标.23.在平面直角坐标系xOy中抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D,若m>0,CD=8,求m的值.(3)已知A(﹣k+4,1),B(1,k﹣2),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时请求出k的取值范围.24.如图,平面直角坐标系中以点C(2,√3)为圆心,以2为半径的圆与x轴交于A,B两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.参考答案1.【答案】D2.【答案】D3.【答案】D4.【答案】C5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】B10.【答案】D11.【答案】C12.【答案】D13.【答案】11214.【答案】y=﹣(x﹣2)2+415.【答案】416.【答案】201717.【答案】y=(x−2)2+318.【答案】y=﹣2(x﹣2)2+1或y=2(x﹣2)2+119.【答案】(1)证明:∵矩形MEFN与矩形EBCF面积相等∴ME=BE,MG=GN.∵四块矩形花圃的面积相等,即S矩形AMND=2S矩形MEFN∴AM=2ME∴AE=3BE;(2)解:∵篱笆总长为100m∴2AB+GH+3BC=100即2AB+12AB+3BC=100∴AB=40−65BC.设BC的长度为xm,矩形区域ABCD的面积为ym2则y=BC⋅AB=x(40−65x)=−65x2+40x∵AB =40−65BC∴B E =10﹣ 310x >0解得x < 1003∴y =65x 2+40x (0<x < 1003 ). 20.【答案】(1)解:由顶点A (−1,4),可设二次函数关系式为y =a (x +1)2+4(a≠0).∵二次函数的图象过点B (2,−5) ∴点B (2,−5)满足二次函数关系式 ∴−5=a (2+1)2+4 解得a =−1.∴二次函数的关系式是y =−(x +1)2+4; (2)解:令x =0,则y =−(0+1)2+4=3 ∴图象与y 轴的交点坐标为(0,3); 令y =0,则0=−(x +1)2+4 解得x 1=−3,x 2=1故图象与x 轴的交点坐标是(−3,0)、(1,0).答:图象与y 轴的交点坐标为(0,3),与x 轴的交点坐标是(−3,0)、(1,0).21.【答案】(1)解:∵抛物线y =x 2+bx +c 经过点(−1,8)和(2,−7)∴{1−b +c =84+2b +c =−7解得{b =−6c =1;(2)解:由(1)可知,抛物线y =x 2−6x −1开口向上,对称轴为直线x =−−62×1=3 故在对称轴左侧,即当x <3时y 随x 的增大而减小.22.【答案】(1)解:对于y =ax 2+bx +5,当x =0时y =5∴C(0,5)∵抛物线y =ax 2+bx +5(a 为常数,a ≠0)交x 轴于点A(−1,0)和点B(5,0)∴{a −b +5=025a +5b +5=0解得{a =−1b =4∴抛物线的解析式为y =−x 2+4x +5;(2)解:∵B(5,0) C(0,5)∴OB =OC连接BC ,设BC 的中点为D∴D(52,52)∴直线OD 的解析式为y =x∵PB =PC∴点P 在直线OD 上 设P(m ,m)∵点P 是抛物线上一点∴m =−m 2+4m +5解得m =3±√292∴点P 的坐标为(3+√292,3+√292)或(3−√292,3−√292);(3)解:由(1)知,抛物线的对称轴为直线x =2 ∵点A 与点B 关于l 对称,点Q 在直线l 上 ∴QA =QB QA +QC =QB +QC∴当B ,C ,Q 三点共线时QB +QC 最小,即QA +QC 最小 设直线BC 的解析式为y =kx +b∴{b =55k +b =5解得{k =−1b =5∴直线BC 的解析式为y =−x +5 把x =2代入y =−x +5得,y =3∴Q(2,3)∴当QA +QC 最小时求点Q 的坐标(2,3).23.【答案】(1)解:∵y =x 2﹣2mx+m 2﹣1=(x ﹣m )2﹣1∴抛物线的顶点坐标为(m ,﹣1)(2)解:由对称性可知,点C 到直线y =﹣1的距离为4 ∴OC =3 ∴m 2﹣1=3 ∵m >0 ∴m =2(3)解:∵m =2,∴抛物线为y =x 2﹣4x+3,当抛物线经过点A (﹣k+4,1)时k =2+ √2 或k =2﹣ √2 ;当抛物线经过点B (1,k ﹣2)时k =2;∵线段AB 与抛物线y =x 2﹣2mx+m 2﹣1只有一个公共点,则x 2-4x+3=x+k-3∴即x 2-5x+6-k=0的△=0∴25-4(6-k )=0k=-0.25∵线段AB 与抛物线y =x 2﹣2mx+m 2﹣1只有一个公共点∴2﹣ √2 <k <2或k≥2+ √2 或k=-0.25.24.【答案】(1)解:过点C 作CM△x 轴于点M ,则MA=MB ,连结AC ,如图∵点C 的坐标为(2, √3 ) ∴OM=2 CM= √3 在Rt△ACM 中CA=2 ∴AM= √AC 2−CM 2 =1∴OA=OM ﹣AM=1 OB=OM+BM=3 ∴A 点坐标为(1,0),B 点坐标为(3,0);(2)解:将A (1,0),B (3,0)代入y=x 2+bx+c 得 {1+b +c =09+3b +c =0解得 {b =−4c =3.所以二次函数的解析式为y=x 2﹣4x+3.。

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题含答案一、单选题1.二次函数y =﹣2x 2﹣1图象的顶点坐标为( ) A .(0,0)B .(0,﹣1)C .(﹣2,﹣1)D .(﹣2,1)2.下列函数图象不属于中心对称图形的是( ) A .20222023yxB .220222023yx x C .2023y =- D .2022xy =-3.下列关系式中,属于二次函数的是( )A .22y x =-B .y =C .31y x =-D .1y x=4.若抛物线2(2)(2)=-≠y a x a 开口向上,则a 的取值范围是( ) A .2a <B .2a >C .a<0D .0a >5.已知点1(4)y -,、2(1)y -,、353y ⎛⎫⎪⎝⎭,都在函数245y x x =--+的图象上,则123y y y 、、的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .312y y y >> 6.在平面直角坐标系中,将抛物线221y x x =+-,绕原点旋转180°,所得到的抛物线的函数关系式是( ) A .221y x x =-+ B .221y x x =--- C .221y x x =-+-D .221y x x =-++7.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( ) A .0,0,0a b c >>> B .0,0,0a b c <<= C .0,0,0a b c <D .0,0,0a b c >>=8.二次函数241y mx x =-+有最小值3-,则m 等于( ) A .1B .1-C .1±D .12±9.已知点 A (−1,a ),B (1,b ),C (2,c )是抛物线 y = -2x + 2x 上的三点,则 a ,b ,c 的大小关系为( ) A .a>c>bB .b>a>cC .b>c>aD .c>a>b10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.25411.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、①a﹣b+c、①a+b+c、①2a﹣b、①3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个12.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣2513.若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2B.k>2C.k≥2D.k≤214.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根15.二次函数图像如图所示,下列结论:①0abc >,①20a b +=,①,①方程20ax bx c ++=的解是-2和4,①不等式20ax bx c ++>的解集是24-<<x ,其中正确的结论有( )A .2个B .3个C .4个D .5个16.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,有下列5个结论:①abc <0,①3a ﹣b =0,①a +b +c =0,①9a ﹣3b +c <0,①b 2﹣4ac >0.其中正确的有( )A .①①①B .①①①C .①①①D .①①17.将抛物线y=2x2向右平移1个单位后,得到的抛物线的表达式是( ) A .y=2(x+1)2B .y=2(x ﹣1)2C .y=2x2﹣1D .y=2x2+118.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac <0;①2a ﹣b=0;①当x >1时,y 随x 的增大而增大;①方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;①30a c +=;①对于任意实数m ,2am bm a b +≥+总是成立的.正确的说法有( )A .2B .3C .4D .519.如图是二次函数21y ax bx c =++,反比例函数2my x=在同一直角坐标系的图象,若y 1与y 2交于点A (4,yA ),则下列命题中,假命题是( )A .当x >4时,12y y >B .当1x <-时,12y y >C .当12y y <时,0<x <4D .当12y y >时,x <020.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12, 且经过点(2,0),下列结论正确的是( )A .abc >0B .2-4ac<0bC .a+b=1D .当x >2或x <-1时,y <0二、填空题21.写出一个函数的表达式,使它满足:①图象经过点(1,1);①在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 22.抛物线()269y x =-++的顶点坐标是______. 23.抛物线244y x x =+-的对称轴是直线______. 24.抛物线y =-(x -1)2-2的顶点坐标是________.25.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______. 26.将抛物线2yx 向左平移2个单位后,得到的抛物线的解析式是______;27.若抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.28.抛物线 245y x x =-+,当34x -≤≤时,y 的取值范围是___________ 29.已知二次函数21y mx x =+-的图象与x 轴有两个交点,则m 的取值范围是______.30.如图,抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B ,C 作一条直线l . (1)ABC ∠的度数是______;(2)点P 在线段OB 上,且点P 的坐标为()2,0,过点P 作PM x ⊥轴,交直线l 于点N ,交抛物线于点M ,则线段MN 的长为______.31.如图,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_____.32.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.33.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ①BC ,D 是BC 上一点,BD =14OA AB =3,①OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持①DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.34.已知某抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是_____.35.已知点A(-3,m)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.36.若二次函数()22212y x m x m m =-+-+-的图象关于y 轴对称,则m 的值为:________.此函数图象的顶点和它与x 轴的两个交点所确定的三角形的面积为:________.37.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如表下列结论:①ac <0; ①当x >1时,y 的值随x 值的增大而减小; ①当2x =时,5y =; ①3是方程ax 2+(b ﹣1)x+c=0的一个根. 其中正确的结论是_________(填正确结论的序号).38.如图所示,已知二次函数()20y ax bx c a =++≠的部分图象,下列结论中:0abc >①; 40a c +>②;③若t 为任意实数,则有2a bt at b -≥+; ④若函数图象经过点()2,1,则311222a b c ++=;⑤当函数图象经过()2,1时,方程210ax bx c ++-=的两根为1x ,212()x x x <,则1228x x -=-.其中正确的结论有______.39.如图,正方形ABCD 的边长为4,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值为___.40.如图,已知二次函数2y x 2x 3=-++的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB AP ⊥交x 轴于点B ,过A 作AC MN ⊥于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使QAC PBA ∠∠=,则点Q 的横坐标为______.三、解答题41.已知抛物线y =x 2+(b -2)x +c 经过点M (-1,-2b ). (1)求b +c 的值.(2)若b =4,求这条抛物线的顶点坐标.42.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x ≤14)之间的函数关系式,并求出第几天时销售利润最大?43.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“D 函数”,其图象上关于原点对称的两点叫做一对“D 点”根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“D 函数”的,请在相应题目后面的括号中打“√”,不是“D 函数”的打“×”,my x=(0m ≠)(_______);31y x =-(_______);2y x =(_______).(2)若点A (1,m )与点B (n ,4-)是关于x 的“D 函数”2y ax bx c =++(0a ≠)的一对“D 点”,且该函数的对称轴始终位于直线1x =的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“D 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=;①()()2230c b a c b a +-++<;求该“D 函数”截x 轴得到的线段长度的取值范围.44.(1)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度;(2)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =50m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,求居民楼AB 的高度.(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(3)已知飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣32t2,求在飞机着陆滑行中最后4s滑行的距离.45.已知二次函数222y x x k=-+++与x轴的公共点有两个.求:()1求k的取值范围;()2当1k=时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;()3观察图象,当x取何值时0y>?46.如图,抛物线245y x x=-++与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线245y x x=-++图像x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图像,得到的新图像记作M,图像M与直线y t=恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图像N.①在图像M上找一点P,使得PAB的面积为3,求出点P的坐标;①当图像N与x轴相离时,直接写出t的取值范围.47.如图,在△ABC 中,AB=4,D 是AB 上的一点(不与点A、B 重合),DE①BC,交AC 于点E.设△ABC 的面积为S,△DEC 的面积为S'.(1)当D是AB中点时,求SS'的值;(2)设AD=x,SS'=y,求y与x的函数表达式,并写出自变量x的取值范围;(3)根据y的范围,求S-4S′的最小值.48.如图1,在平面直角坐标系中,抛物线y=﹣38x2+34x+3与x轴交于点A和点B,A在B的左侧,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过P作PM①x轴,交BC于M,当PM﹣CM的值最大时,求P的坐标和PM﹣CM的最大值;(3)如图2,将该抛物线向右平移1个单位,得到新的抛物线y1,过点P作直线BC 的垂线,垂足为E,作y1对称轴的垂线,垂足为F,连接EF,请直接写出当PEF是以PF为腰的等腰三角形时,点P的横坐标.49.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A 、B 的坐标;(2)抛物线的函数表达式;(3)若点M 是该抛物线对称轴上的一点,求AM+BM 的最小值及点M 的坐标; (4)在抛物线对称轴上是否存在点P ,使得以A 、B 、P 为顶点的三角形为等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.50.如图所示,抛物线2y ax bx c =++的图象过(03)A ,,()10B -,,0(3)C ,三点,顶点为P .(1)求抛物线的解析式;(2)设点G 在y 轴上,且OGB OAB ACB ∠+∠=∠,求AG 的长;(3)若//AD x 轴且D 在抛物线上,过D 作DE BC ⊥于E ,M 在直线DE 上运动,点N 在x 轴上运动,是否存在这样的点M 、N 使以A 、M 、N 为顶点的三角形与APD △相似若存在,请求出点M 、N 的坐标.参考答案:1.B【分析】根据二次函数的解析式特点可知其图象关于y 轴对称,可得出其顶点坐标.【详解】解:①221y x =-- ,①其图象关于y 轴对称,①其顶点在y 轴上,当0x =时,1y =-,所以顶点坐标为(0,﹣1),故选择:B.【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数y=ax 2+c 的图象关于y 轴对称是解题的关键.2.B【分析】分别根据一次函数图象,二次函数图象,常数函数的图象的对称性分析判断即可得解.【详解】解:A .直线20222023y x 是轴对称图形,也是中心对称图形,故本选项不符合题意;B .抛物线220222023y x x 是轴对称图形,不是中心对称图形,故本选项符合题意;C .直线2023y =-是轴对称图形,也是中心对称图形,故本选项不符合题意;D .直线2022x y =-是轴对称图形,也是中心对称图形,故本选项不符合题意. 故选:B .【点睛】本题考查了二次函数图象,一次函数图象,常数函数的图象,熟记各图形以及其对称性是解题的关键.3.A【分析】根据二次函数的定义进行解答即可.【详解】22y x =-符合二次函数的定义,故A 符合题意;y B 不符合题意; 31y x =-是一次函数,故C 不符合题意;1y x=中含自变量的代数式不是整式,不符合二次函数的定义,故D 不符合题意;故选A【点睛】本题考查了二次函数的定义,掌握二次函数的一般形式()20y ax bx c a =++≠是解题的关键.4.B【分析】根据抛物线的开口向上,可得20a ->,进而即可求得a 的取值范围.【详解】解:①抛物线2(2)(2)=-≠y a x a 开口向上,①20a ->即2a >故选B【点睛】本题考查了二次函数2y ax =图象的性质,掌握0a >时,抛物线的开口向上是解题的关键.5.C【分析】根据函数解析式求出对称轴,在根据函数的性质求解即可;【详解】解:①245y x x =--+,①函数图像的对称轴是直线422x -=-=--,图象的开口向下, ①当<2x -时,y 随x 的增大而增大, 点353y ⎛⎫ ⎪⎝⎭,关于对称轴的对称点是⎛⎫- ⎪⎝⎭317,3y , ①17413-<-<-, ①213y y y >>;故选:C .【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象的性质是解题的关键.6.D【分析】先求出抛物线的顶点坐标,再根据旋转求出旋转后的抛物线顶点坐标,然后根据顶点式写出抛物线的解析式即可.【详解】解:①()222112y x x x =+-=+-,①抛物线的顶点坐标为()1,2--,①将抛物线221y x x =+-,绕原点旋转180︒后顶点坐标变为()1,2,1a =-,①旋转后的函数关系式为()221221y x x x =--+=-++.故选:D .【点睛】本题主要考查了求抛物线的解析式,关于原点对称的两个点的坐标特点,解题的关键是求出旋转后抛物线的顶点坐标和a 的值.7.D【详解】试题分析:由题意得,二次函数经过原点可知,,又只经过第一,二,三象限,画图可知抛物线开口向上,对称轴在轴的负半轴,综合可知,故选D.考点:二次函数的对称轴及开口方向综合问题.8.A【分析】根据二次函数的最值公式列式计算即可得解.【详解】①二次函数241y mx x =-+有最小值3-, ①41634m m-=-, 解得1m =.故选A .9.C【分析】根据二次函数的性质得到抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:①抛物线y =-x 2+2x =-(x -1)2+1,①抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,而A (-1,a )离直线x =1的距离最远,B (1,b )在直线x =1上,①b >c >a ,故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB=,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.B【分析】根据抛物线的开口方向,对称轴,与y 轴的交点判定系数符号,及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a <0,根据抛物线的对称轴在y 轴左边可得:a ,b 同号,所以b <0,根据抛物线与y轴的交点在正半轴可得:c > 0,直线x =-1是抛物线y = ax 2+bx +c (a ≠0)的对称轴,所以-b 2a=-1,可得b =2a ,由图知,当x =-3时y <0,即9a -3b +c < 0,所以9a -6a +c =3a +c <0,因此①abc >0;①a -b +c =a -2a +c =c -a > 0;①a +b +c = a +2a +c =3a +c < 0;①2a -b =2a - 2a = 0;①3a -b =3a - 2a = a <0所以①①小于0,故负数有2个,故答案选B.【点睛】本题主要考查了结合图形判断抛物线方程的系数,解本题的要点在于熟知抛物线的基本性质.12.C【分析】直接利用配方法进而将原式变形得出答案.【详解】y =x 2-8x -9=x 2-8x +16-25=(x -4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.13.C【详解】试题分析:根据二次函数的增减性可得:当x≤k 时,y 随x 的增大而减小,则k≥2.考点:二次函数的性质14.B【分析】将(0,2)(3,-1)(4,2)代入到二次函数y =ax 2+bx +c 中,分别求出a 、b 的值,即可求出方程的解.【详解】由题意得:29311642c a b c a b c =⎧⎪++=-⎨⎪++=⎩解得:142a b c =⎧⎪=-⎨⎪=⎩①方程230ax bx ++=为2430x x -+=(1)(3)0x x --=解得:121,3x x ==故选B【点睛】本题考查二次函数抛物线与坐标轴的交点以及待定系数法函数解析式和一元二次方程求解,熟练掌握相关知识点是解题关键.15.C【详解】试题分析: ①抛物线开口向上,①0a >,①抛物线对称轴为直线2b x a =-=1,①0b <,①抛物线与y 轴交点在x 轴下方,①0c <,①0abc >,所以①正确; ①2b x a=-=1,即2b a =-,①20a b +=,所以①正确; ①抛物线与x 轴的一个交点为(﹣2,0),而抛物线对称轴为直线x=1,①抛物线与x 轴的另一个交点为(4,0),①当3x =时,0y <,①,所以①错误. ①抛物线与x 轴的两个交点为(﹣2,0),(4,0),①方程20ax bx c ++=的解是-2和4,①①正确;由图像可知:不等式20ax bx c ++>的解集是24-<<x ,①①正确.①正确的答案为:①①①①.故选C .考点:二次函数图象与系数的关系.16.B【分析】根据二次函数的图像和性质逐一进行判断即可【详解】解:①抛物线开口朝下,①a <0,①对称轴x =3-22b a=- ①b =3a <0,①3a ﹣b =0,故①正确;①抛物线与y 轴的交点在x 轴的上方,①c >0,①abc >0,故①错误;①抛物线的对称轴x =3-2,与x 轴的一个交点为(-4,0), ①抛物线与x 轴的一个交点为(1,0),①a +b +c =0,故①正确;根据图象知道当x =-3时,y =9a -3b +c >0,故①错误;根据图象知道抛物线与x 轴有两个交点,①b 2-4ac >0,故①正确.①正确答案为:①①①.故选:B【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.B【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=2x 2的图象向右平移1个单位,得:y=2(x-1)2,故选B .【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18.D【分析】根据二次函数系数与图像性质,二次函数与方程,二次函数与不等式之间的关系判断每一个结论,从而得出答案.【详解】①由图像可知,抛物线的开口向上,①a >0,①抛物线与y 轴的交点为在y 轴的负半轴上,①c <0,①ac <0,故此选项正确;①由图像可知,对称轴为x=1, ①12b x a=-=, ①-b=2a ,①2a+b=0,故此选项错误;①当x >1时,y 随x 的增大而增大,故此选项正确;①由图像可知,方程ax 2+bx+c=0的根是x 1=﹣1,且对称轴为x=1, ①1212x x +=, ①2122(1)3x x =-=--=,故此选项正确;①由①可知,12133c x x a==-⨯=-, 3c a ∴=-,30a c ∴+=,故此选项正确;①由图像可知,抛物线的顶点坐标为(1,)a b c ++,∴当x=1时,二次函数y=ax 2+bx+c 有最小值a+b+c ,∴2ax bx c a b c ++≥++,当x=m 时,则有2am bm c a b c ++≥++,∴2am bm a b +≥+,故此选项正确;①正确的说法有①①①①①共5个.故选:D .【点睛】本题考查了二次函数的图像与性质、方程、不等式之间的知识点,要掌握如何利用图像上的信息确定字母系数的范围,并记住特殊值的特殊用法,如x=1,x=-1时对应的y 值是解题的关键.19.D【分析】结合图形、利用数形结合思想解答.【详解】由函数图象可知,当x >4时,y 1>y 2,A 是真命题;当x <-1时,y 1>y 2,C 是真命题;当y 1<y 2时,0<x <4,C 是真命题;y 1>y 2时,x <0或x >4,D 是假命题;故选D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.D【分析】根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号;根据对称轴求出b=-a ;把x=2代入函数关系式,结合图象判断函数值与0的大小关. .【详解】:①二次函数的图象开口向下,①a<0,①二次函数的图象交y 轴的正半轴于一点,①c>0,①对称轴是直线x=12,①−2b a =12, ①b=−a>0,①abc<0.故A 错误;①抛物线与x 轴有两个交点,①b 2-4ac>0, 故B 错误①b=−a ,①a+b=0,故C 错误;故答案选D【点睛】本题考查的知识点是二次函数图像与系数的关系,解题的关键是熟练的掌握二次函数图像与系数的关系.21.1y x= 【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x =. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.22.()6,9-【分析】直接根据顶点式解析式写出顶点坐标即可.【详解】解:()269y x =-++的顶点为()6,9-, 故答案为:()6,9-.【点睛】本题考查了抛物线顶点式解析式的顶点坐标,解题关键是理解抛物线()()20y a x h k a =-+≠的顶点坐标为()h k ,. 23.2x =-【分析】将题目的解析式化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【详解】解:①抛物线2244(2)8y x x x =+-=+-,①该抛物线的对称轴是直线2x =-,故答案为:2x =-.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.24.(1,-2)【分析】对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,. 【详解】由y =-(x -1)2-2,根据顶点式的坐标特点可知,顶点坐标为()12-,故答案为:()12-,. 【点睛】本题考查了抛物线的顶点式及顶点坐标;对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,,掌握顶点式是解题的关键.25.-1【详解】①二次函数y=ax2+bx−1(a≠0)的图象经过点(1,1),①a+b−1=1,①a+b=2,①1−a−b=1−(a+b)=1−2=−1.故答案为-1.26.()22y x =+或244y x x =++【分析】根据函数的平移规律:左加右减;上加下减即可求解.【详解】解:①抛物线2y x 向左平移2个单位,①平移后抛物线的解析式为()22y x =+故答案为:()22y x =+【点睛】本题考查了抛物线的平移变换,熟练掌握抛物线的平移规律是解题的关键. 27.x =3【分析】因为点(1,4),(5,4)的纵坐标都为4,所以可判定是一对对称点,把两点的横坐标代入公式x =122x x +求解即可.【详解】解:抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4), ①两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x =1532+=,即x =3. 故答案为:3.【点睛】本题考查抛物线与x 轴的平行线交点问题.掌握抛物线的性质,会利用关于对称轴对称的两点坐标求对称轴是解题关键.28.126y ≤≤【分析】先化为顶点式,然后根据二次函数的性质求解即可.【详解】解:①2245(2)1y x x x =-+=-+,①抛物线开口向上,对称轴为直线=2x ,函数有最小值1,当3x =-时,26y =,当=4x 时, 5.y =,①当34x -≤≤时,y 的取值范围是126y ≤≤;故答案为:126y ≤≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.29.14m >-且0m ≠ 【分析】根据题意可得0m ≠,且判别式0∆>,求解不等式即可.【详解】解:①二次函数21y mx x =+-的图象与x 轴有两个交点①0m ≠,且判别式240b ac ∆=->①14(1)0m ∆=-⨯⨯->,0m ≠ 解得14m >-且0m ≠ 故答案为:14m >-且0m ≠ 【点睛】此题考查了二次函数的定义以及二次函数与x 轴交点问题,掌握二次函数的定义以及性质是解题的关键.30. 45°; 2【分析】(1)分别求出A,B,C 的坐标,得到OB OC =,故可求解;(2)先求出直线l 的解析式,再得到M,N 的坐标即可求解.【详解】(1)当0y =时,2230x x --=,解得11x =-,23x =,①点A 在点B 的左侧, ①点A 坐标为()1,0-,点B 坐标为()3,0.当0x =时,=3y -,①点C 坐标为()0,3-,①OB OC =,①=45ABC ∠︒.(2)设直线l 的函数表达式为y kx b =+,根据题意得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, ①直线l 的函数表达式为3y x =-;当2x =时,31=-=-y x ,①点N 的坐标为2,1;当2x =时,22232433=--=--=-y x x ,①点M 的坐标为()2,3-;①()132=---=MN .故答案为:45°;2.【点睛】此题主要考查二次函数与一次函数综合,解题的关键是求出各点坐标. 31.m=2【分析】根据图像的旋转变化规律及二次函数的平移规律得出平移后的解析式,进而即可求值.【详解】①一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),①点O (0,0),A 1(3,0)①将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.①C 13的解析式与x 轴的坐标为(36,0)、(39,0)①C 13的解析式为:y =﹣(x -36)(x -39)当x =37时,m=y =﹣1×(﹣2)=2故答案为:2【点睛】本题主要考查二次函数的平移规律,解题的关键是得出二次函数平移后的解析式.32.y =2(x+2)2﹣5【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y =2(x+2)2﹣5,即y =2(x+2)2﹣5.故答案为:y =2(x+2)2﹣5.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.33.213y x x =【分析】首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA Rt①ABM 中,已知①OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证①ODE ①①AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ①x 轴于M .在Rt①ABM 中,①AB =3,①BAM =45°,①AM =BM =2, ①BD =14OA ,OA ∴=,①BC =OA﹣AM =,CD =BC ﹣BD ,①D ,3OD ∴== . 连接OD ,则点D 在①COA 的平分线上,所以①DOE =①COD =45°.又①在梯形DOAB 中,①BAO =45°,①由三角形外角定理得:①ODE =①DEA ﹣45°,又①AEF =①DEA ﹣45°,①①ODE=①AEF ,①①ODE ①①AEF ,OE OD AF AE∴= 即x y =①y 与x 的解析式为:213y x =-.故答案为:213y x =-.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.34.(1,﹣4)【分析】根据二次函数的对称性求得对称轴,进而根据表格的数据即可得到抛物线的顶点坐标.【详解】①抛物线过点(0,﹣3)和(2,﹣3),①抛物线的对称轴方程为直线x=022+=1,①当x=1时,y=﹣4,①抛物线的顶点坐标为(1,﹣4);故答案为(1,﹣4).【点睛】本题考查了二次函数的性质,掌握二次函数的对称性是解题的关键.35.(-1,7)【详解】先根据抛物线上点的特点求出点A的坐标,再利用抛物线的对称性即可得出答案.解:把点A(-3,m)代y=x2+4x+10得,m=(-3)2+4×(-3)+10=7,①点A(-3,7),①对称轴42 22ba-=-=-,①点A(-3,7)关于对称轴x=2的对称点坐标为(-1,7).故答案为(-1,7).36.11【分析】由图象关于y轴对称可知对称轴为x=0,由此可求解m的值;代入m值后,分别求解抛物线与x 轴的两个交点以及与y 轴的交点,利用三角形面积公式计算三角形面积.【详解】①图象关于y 轴对称,①对称轴为x=0, ①()211022m b m a --=-=-=- 解得m=1,代入原方程得:21y x =-+当y=0时,210x -+=,x=±1,当x=0时,y=1,则S △=2112⨯=. 【点睛】本题考查了二次函数对称轴及其与x 、y 轴的交点.37.①①①.【详解】试题解析:①x =-1时y =-1,x =0时,y =3,x =1时,y =5,①1{35a b c c a b c -+-++===,解得1{33a b c -===,①y =-x 2+3x +3,①ac =-1×3=-3<0,故①正确;对称轴为直线x =-33212=⨯-(), 所以,当x >32时,y 的值随x 值的增大而减小,故①错误; 当x =2时,y =-4+4+3=3;故①正确.方程为-x 2+2x +3=0,整理得,x 2-2x -3=0,解得x 1=-1,x 2=3,所以,3是方程ax 2+(b -1)x +c =0的一个根,正确,故①正确.综上所述,结论正确的是①①①.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.38.①①①【分析】根据二次函数的开口方向、对称轴、顶点坐标以及二次函数与一元二次方程的关系综合进行判断即可.【详解】解:由抛物线开口向上,因此0a >, 对称轴是直线12b x a=-=-,因此a 、b 同号,所以0b >, 抛物线与y 轴的交点在负半轴,因此0c <. ,所以0abc <,故①不正确; 由对称轴12b x a=-=-可得2b a =, 由图象可知,当1x =时,0y a b c =++>,即20a a c ++>,30a c ∴+>,又0a >,40a c ∴+>,因此①正确;当=1x -时,y a b c =-+最小值,∴当()1x t t =≠-时,2a b c at bt c -+<++,即2a bt at b -<+,x t ∴=(t 为任意实数)时,有2a bt at b -≤+,因此①不正确;函数图象经过点()2,1,即421a b c ++=,而2b a =,231a b c ∴++=,311222a b c ∴++=, 因此①正确;当函数图象经过()2,1时,方程21ax bx c ++=的两根为1x ,212()x x x <,而对称轴为=1x -, 14x ∴=-,22x =,122448x x ∴-=--=-,因此①正确;综上所述,正确的结论有:①①①,故答案为:①①①.【点睛】本查二次函数的图象和性质,掌握二次函数图象的开口方向、对称轴、顶点坐标与系数a 、b 、c 的关系以及二次函数与一元二次方程的根的关系是正确判断的前提. 39.8【分析】由已知可证明①AHE ①①BEF ①①CFG ①①DGH (SAS ),再证明四边形EFGH 是正方形,设AE =x ,则AH =DG =BE =CF =4﹣x ,在Rt①EAH 中,由勾股定理得EH 2=x 2+(4﹣x )2,所以S 四边形EFGH =EH 2=2(x ﹣2)2+8,可知当x =2时,S 四边形EFGH 有最小值8,【详解】解:设AE =x ,则AE =BF =CG =DH =x ,①正方形ABCD ,边长为4,①AH =DG =BE =CF =4﹣x ,①A =①B =①C =①D =90°①①AHE ①①BEF ①①CFG ①①DGH (SAS ),①①AEH +①BEF =90°,①EFB +①GFC =90°,①FGC +①HGD =90°,①①HEF =①EFG =①FGH =90°,①EF =EH =HG =FG ,①四边形EFGH 是正方形,在Rt ①EAH 中,EH 2=AE 2+AH 2,即EH 2=x 2+(4﹣x )2,①S 四边形EFGH =EH 2=2x 2﹣8x +16=2(x ﹣2)2+8,当x =2时,S 四边形EFGH 有最小值8,故答案为:8.【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质和二次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.40.53【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明AOB 与ACP 相似,得到ABP AOC ∠∠=,再证QDA 与CAO 相似,设出点Q 的坐标,通过相似比即可求出点Q 坐标.【详解】如图,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,。

2020年九年级数学中考一轮复习《二次函数》难题训练(含答案)

2020年九年级数学中考一轮复习《二次函数》难题训练(含答案)

2020年九年级数学中考一轮复习《二次函数》难题训练(含答案)一、选择题1.若二次函数y=x2+bx的图象的对称轴是经过(1,0)且平行于y轴的直线,则关于x的方程x2−bx=3的解是()A. x1=−1,x2=−3B. x1=1,x2=−3C. x1=1,x2=3D. x1=−1,x2=32.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x+c的图像上,则y1,y2,y3的大小关系是A. y3>y2>y1B. y1>y2>y3C. y1=y2>y3D. y3>y1=y2,0),有3.如图,抛物线y=ax2+bx+c的对称轴是x=−1,且过点(12下列结论:①abc>0;②a−2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a−b≥m(am−b);其中所有错误的结论有()个.A. 1B. 2C. 3D. 44.如图,平面直角坐标系xOy中,点A,B,C,D都在边长为1的小正方形网格的格点上,过点M(1,−2)的抛物线y=mx2+2mx+n(m>0)可能还经过A. 点AB. 点BC. 点CD. 点D5.如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A. −1B. −3C. −5D. −76.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D.7.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为−3和1;④a−2b+c>0.⑤x=−5和x=7时函数值相等,其中正确的命题个数是()A. 1B. 2C. 3D. 4二、填空题8.已知函数y=ax2−2ax−1(a为非零常数),下列说法:①当a=1时,函数图象过点(−1,2);②当a=−2时,函数图象与x轴有两个交点;③若a>0,则当x≥1时,y随x的增大而减小;④若函数图象经过点(−4,3),则它也经过点(6,3).其中正确的是_________.(只填序号)9.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为m2.10.如图,以扇形顶点O为原点,半径OB所在直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),x2+ℎ与扇形OAB的边界总有两个公共点,则实数h的取值范围是______.若抛物线y=1211.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(−1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是______.12.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且−1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有正确的是__________.(填写番号)13.如图,在抛物线y=x2的内部依次画正方形,使对角线在y轴上,另两个顶点落在抛物线上.按此规律类推,第2020个正方形的边长是_____________.三、解答题14.某酒店客房实行淡季、旺季两种价格标准,旺季每间比淡季上涨1,表格是去年3该酒店客房某两天的相关记录:淡季旺季未人住房间数100日总收入(元)2400040000(1)该酒店客房有多少间?旺季每间价格为多少元?(2)今年旺季来临,客房的间数不变.经市场调查发现,如果客房仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将客房的价格上涨多少元时,客房的日总收入最高?最高日总收入是多少元?15.如图,已知抛物线y=ax2+bx+c与x轴相交于A,B两点,并与直线y=1x−2交于B,C两点,2x−2与y轴的交点,OA=1,连接AC.其中点C是直线y=12(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;16.如图所示,抛物线y=ax2+bx+c的顶点为M(−2,−4),与x轴交于A、B两点,且A(−6,0),与x轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.17.某公司2017年初刚成立时投资1000万元购买新生产线生产新产品,此外,生产每件该产品还需要成本40元。

中考数学总复习《二次函数》练习题及答案

中考数学总复习《二次函数》练习题及答案

中考数学总复习《二次函数》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.要得到二次函数y=−x2图象,可将y=−(x−1)2+2的图象如何移动()A.向左移动1单位,向上移动2个单位B.向右移动1单位,向上移动2个单位C.向左移动1单位,向下移动2个单位D.向右移动1单位,向下移动2个单位2.若二次函数y=a x2+bx+c(a≠0)的图象的顶点在第二象限,且过点(0,1)和(1,0),则m=a-b+c的值的变化范围是()A.0<m<1B.0<m<2C.1<m<2D.-1<m<13.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1−(x−a)(x−b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b4.对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②若当x≤1时y随x的增大而减小,则m=1;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=4时的函数值与x=2时的函数值相等,则当x=6时的函数值为﹣3.其中正确的说法是()A.①②③B.①④C.②④D.①②④5.已知二次函数y=x2+2mx+m的图象与x轴交于A(a,0),B(b,0)两点,且满足,4≤a+b≤6.当1≤x≤3时,该函数的最大值H与m满足的关系式是()A.H=3m+1B.H=5m+4C.H=7m+9D.H=−m2+m6.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣1),且顶点在第三象限,则a的取值范围是()A.a>0B.0<a<1C.1<a<2D.﹣1<a<17.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.8.正方形的边长为3,边长增加x,面积增加y,则y关于x的函数解析式为()A.y=(x+3)2B.y=x2+9C.y=x2+6x D.y=3x2+12x9.若将抛物线y=2x2+1先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.y=2(x−1)2−2B.y=2(x+1)2−2C.y=2(x−1)2+3D.y=2(x+1)2+310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a−b<0;②abc<0;③a+b+c<0;④a−b+c>0;⑤4a+2b+c>0.其中正确的个数有()A.1个B.2个C.3个D.4个11.如图,二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程ax2+bx+c=0的解为()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣312.已知某种礼炮的升空高度ℎ(m)与飞行时间t(s)的关系式是ℎ=−52t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3 s B.4 s C.5 s D.6 s二、填空题13.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,x2−2x+3)图象上的最低点是.14.有一个角是60°的直角三角形,它的面积S与斜边长x之间的函数关系式是.15.如图,点P是双曲线C:y=4x(x>0)上的一点,过点P作x轴的垂线交直线AB:y=12x−2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△ POQ面积的最大值是.16.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是(把所有正确结论的序号都填上)x﹣5﹣4﹣202y60﹣6﹣4617<3时,x的取值范围是.18.在平面直角坐标系中,抛物线y=-x2+2ax与直线y=x+2的图象在-1≤x≤1的范围有且只有一个公共点P,则a的取值范围是.三、综合题19.已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D(0,74)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤ 74时,直接写出x的取值范围是.20.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=−12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.21.如图,有一个长为24米的篱笆,一面有围墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1)求S与的函数关系式及x的取值范围.(2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?22.如图,二次函数y=−x2+2x+3的图象与x轴交于A、B两点,与y轴交于点C,顶点为D(1)求点A,B,C的坐标.(2)求△BCD的面积23.给出两种上宽带网的收费方式:收费方式月使用费/元包月上网时间/h超时费/(元/ min)A30250.05B50500.0512(1)直接写出y1,y2与x之间的函数关系式;(2)x为何值时,两种收费方式一样?(3)某用户选择B方式宽带网开网店.若该用户上网时间x小时,产生y=−x2+ax+1950(元)(a>103)的经济收益.若某月该用户上网获得的利润最大值为5650元,直接写出a的值.(上网利润=上网经济收益-月宽带费)24.已知抛物线y=ax2−2ax+c(a<0)的图象过点A(3,m).(1)当a=-1,m=0时,求抛物线的顶点坐标;(2)若P(t,n)为该抛物线上一点,且n<m,求t的取值围;(3)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD△x轴交直线l于点D,作QE△y轴于点E,连接DE.设△QED=b,当2≤x≤4时,b 恰好满足30°≤β≤60°,求a的值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】B13.【答案】(1,2)14.【答案】√38x 215.【答案】3 16.【答案】①③④ 17.【答案】-1<x <3 18.【答案】a≥0或a≤-119.【答案】(1)解:把A (﹣1,0),B (3,0)代入y =ax 2+bx+3解得:a =﹣1,b =2抛物线的解析式为y =﹣x 2+2x+3(2)解:把点D 的y 坐标y = 74,代入y =﹣x 2+2x+3解得:x = 12 或 32则EF 长 =32−(−12)=2 (3)x ≤12 或 x ≥32.20.【答案】解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32,解得:{b =−1c =32,则抛物线解析式为y =−12x 2−x +32(2)将抛物线y =−12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】解:抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2.(1)解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32解得:{b =−1c =32则抛物线解析式为y =−12x 2−x +32(2)解:抛物线解析式为y=−12x2−x+32=−12(x+1)2+2将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=−12x2.21.【答案】解:AB为xm,则BC就为(24-3x)m,S=(24-3x)x=24x-3x2,∵x>0,且10≥24-3x>0,∴143≤x<8. (2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?解:45=24x-3x2,解得x=5或x=3;故AB的长为5米.(1)解:AB为xm,则BC就为(24-3x)mS=(24-3x)x=24x-3x2∵x>0,且10≥24-3x>0∴143≤x<8.(2)解:45=24x-3x2解得x=5或x=3;故AB的长为5米.22.【答案】(1)解:令y=0,可得x=3或x=﹣1.令x=0,可得y=3.∴A(-1,0)B(3,0)C(0,3)(2)解:依题意,可得y=-x2+2x+3=-(x-1)2+4.∴顶点D(1,4).令y=0,可得x=3或x=-1.∴令x=0,可得y=3.∴C(0,3).∴OC=3,∴直线DC的解析式为y=x+3.设直线DE交x轴于E.∴BE=6.∴S△BCD=S△BED-S△BCE=3.∴△BCD的面积为3.23.【答案】(1)解:由题意可得:A、B两种收费超时收费都为0.05×60=3元/小时A种上网的月收费为y1=30+3(x−25)=3x−45;B种上网的月收费可分①当25≤x≤50时,y2=50,②当x>50时,y2=50+3(x−50)=3x−100综上所述:y2={50,25≤x≤503x−100,x>50.(2)解:由(1)可分:①当25≤x≤50时,两种收费一样,则有3x−45=50解得:x=953②当x>50时,两种收费一样,则有3x−45=3x−100,方程无解,故不成立∴综上所述:当上网时间为953小时,两种上网收费一样;答:当上网时间x为953小时,两种上网收费一样.(3)解:设上网利润为w元,则由题意得:①当上网时间25≤x≤50时,上网利润为w=−x2+ax+1950−50=−x2+ax+1900∵a>103∴x=a2>50∵该二次函数的图象开口向下,在25≤x≤50,y随x的增大而增大∴该用户上网获得的利润最大值为5650元,所以当x=50时,则有:−2500+50a+1900=5650,解得:a=125;②当x>50时,上网利润为w=−x2+ax+1950−3x+100=−x2+(a−3)x+2050∴该二次函数的图象向下,对称轴为直线x=a−3 2∵a>103∴x=a−32>50∴y随x的增大而减小∴当x=a−32时,y有最大值,即−(a−32)2+(a−3)(a−32)+2050=5650解得:a1=123,a2=−117(不符合题意,舍去)综上所述:当某月该用户上网获得的利润最大值为5650元,则a=125或123. 24.【答案】(1)解:当a=-1,m=0时,y=−x2+2x+c,A点的坐标为(3,0)∴-9+6+c=0.解得c=3∴抛物线的表达式为y=−x2+2x+3.即y=−(x−1)2+4.∴抛物线的顶点坐标为(1,4).(2)解:∵y=ax2−2ax+c的对称轴为直线x=−2a−2a=1∴点A关于对称轴的对称点为(-1,m).∵a<0∴当x<1,y随x的增大而增大;当x>1,y随x的增大而减小.又∵n <m∴当点P 在对称轴左边时,t <-1; 当点P 在对称轴右边时,t >3.综上所述:t 的取值范围为t <-1或t >3; (3)解:∵点Q (x ,y )在抛物线上 ∴y =ax 2−2ax +c .又∵QD△x 轴交直线 l :y =kx +c(k <0) 于点D ∴D 点的坐标为(x ,kx +c ).又∵点Q 是抛物线上点B ,C 之间的一个动点 ∴QD =ax 2−2ax +c −(kx +c)=ax 2−(2a +k)x . ∵QE =x∴在Rt△QED 中, tanβ=QD QE =ax 2−(2a+k)x x=ax −2a −k . ∴tanβ 是关于x 的一次函数 ∵a <0∴tanβ 随着x 的增大而减小.又∵当 2≤x ≤4 时, β 恰好满足 30°≤β≤60° ,且 tanβ 随着 β 的增大而增大 ∴当x =2时, β =60°;当x =4时, β =30°. ∴{2a −2a −k =√34a −2a −k =√33解得 {k =−√3a =−√33∴a =−√33.。

中考数学二次函数(大题培优 易错 难题)含答案

中考数学二次函数(大题培优 易错 难题)含答案

一、二次函数 真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线223432333y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3); (3)E (-1,43F (023)或E (-1,43),F (-4103)【解析】 【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可 【详解】 (1)∵23432333y x x =--+a=233-,则抛物线的“衍生直线”的解析式为2323y=x+33-; 联立两解析式求交点2234323332323y=x+33y x x ⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩,∴A (-2,23),B (1,0); (2)如图1,过A 作AD ⊥y 轴于点D , 在223432333y x x =--+中,令y=0可求得x= -3或x=1, ∴C (-3,0),且A (-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13, ∵△AMN 为该抛物线的“衍生三角形”, ∴N 在y 轴上,且AD=2, 在Rt △AND 中,由勾股定理可得 DN=22AN -AD =13-4=3, ∵OD=23,∴ON=23-3或ON=23+3,∴N 点的坐标为(0,23-3),(0,23+3);(3)①当AC 为平行四边形的边时,如图2 ,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC=EF , ∴∠ ACK=∠ EFH , 在△ ACK 和△ EFH 中ACK=EFHAKC=EHF AC=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK ≌△ EFH ,∴FH=CK=1,HE=AK=23,∵抛物线的对称轴为x=-1,∴ F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,233),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=23-233=433,即E的纵坐标为-433,∴ E(-1,-433);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-233×(-4)+233,解得t=43-3,∴E(-1,43-3),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-433)、(0,233)或E(-1,43 -3),F(-4,1033)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题2.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】 【分析】(1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【详解】(1)将C (0,﹣3)代入y =x +m ,可得: m =﹣3;(2)将y =0代入y =x ﹣3得: x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D , 则∠ODC =45°+15°=60°, ∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3=联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E , 则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3=联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2). 【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.3.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.4.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x)×10+100=3×100,解得:x=40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.5.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题6.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线y=x2+bx+c的表达式;(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)42【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD 为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣2t2+42t,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=2PH=2t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t2+32t+2t=﹣2t2+42t=﹣2(t﹣2)2+42,当t=2时,PE+EF的最大值为42.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.7.课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm,4807mm;(2)PN=60mm,40PQ mm.【解析】【分析】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm),根据平行得出△APN和△ABC 相似,根据线段的比值得出y的值,然后得出边长;(2)、根据第一题同样的方法得出y与x的函数关系式,然后求出S与x的函数关系式,根据二次函数的性质得出最大值.【详解】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm)∵PN∥BC,∴=,△APN∽△ABC∴=∴=∴=解得 y=∴2y=∴这个矩形零件的两条边长分别为mm,mm(2)、设PQ=x (mm ),PN=y (mm ),矩形面积为S ,则AE=80-x (mm ).. 由(1)知=∴=∴ y=则S=xy===∵∴ S 有最大值∴当x=40时,S 最大=2400(mm 2) 此时,y==60 .∴面积达到这个最大值时矩形零件的两边PQ 、PN 长分别是40 mm ,60 mm . 考点:三角形相似的应用8.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).9.如图1,已知一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,抛物线2y x bx c =-++过A 、B 两点,且与x 轴交于另一点C .(1)求b 、c 的值;(2)如图1,点D 为AC 的中点,点E 在线段BD 上,且BE=2ED ,连接CE 并延长交抛物线于点M ,求点M 的坐标;(3)将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,如图2,P 为△ACG 内以点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在他们的左侧作等边△APR ,等边△AGQ ,连接QR ①求证:PG=RQ ;②求PA+PC+PG 的最小值,并求出当PA+PC+PG 取得最小值时点P 的坐标.【答案】(1)b=﹣2,c=3;(2)M (125-,5125);(3)①证明见解析;②PA+PC+PG 的最小值为19P 的坐标(﹣919,12319). 【解析】试题分析:(1)把A (﹣3,0),B (0,3)代入抛物线2y x bx c =-++即可解决问题.(2)首先求出A 、C 、D 坐标,根据BE=2ED ,求出点E 坐标,求出直线CE ,利用方程组求交点坐标M .(3)①欲证明PG=QR ,只要证明△QAR ≌△GAP 即可.②当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K ,由sin ∠ACM=AM AC =NQQC求出AM ,CM ,利用等边三角形性质求出AP 、PM 、PC ,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,∴A (﹣3,0),B (0,3),∵抛物线2y x bx c =-++过A 、B 两点,∴3{930c b c =--+=,解得:2{3b c =-=,∴b=﹣2,c=3. (2),对于抛物线223y x x =--+,令y=0,则2230x x --+=,解得x=﹣3或1,∴点C 坐标(1,0),∵AD=DC=2,∴点D 坐标(﹣1,0),∵BE=2ED ,∴点E 坐标(23-,1),设直线CE 为y=kx+b ,把E 、C 代入得到:21{30k b k b -+=+=,解得:35{35k b =-=,∴直线CE 为3355y x =-+,由233{5523y x y x x =-+=--+,解得10x y =⎧⎨=⎩或125{5125x y =-=,∴点M 坐标(125-,5125). (3)①∵△AGQ ,△APR 是等边三角形,∴AP=AR ,AQ=AG ,∠QAC=∠RAP=60°,∴∠QAR=∠GAP ,在△QAR 和△GAP 中,∵AQ=AG ,∠QAR=∠GAP ,AR=AP ,∴△QAR ≌△GAP ,∴QR=PG .②如图3中,∵PA+PB+PC=QR+PR+PC=QC ,∴当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K .∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q 坐标(﹣6,33),在RT △QCN 中,QN=33,CN=7,∠QNC=90°,∴QC=22QN NC +=219,∵sin ∠ACM=AM AC =NQQC,∴AM=65719,∵△APR 是等边三角形,∴∠APM=60°,∵PM=PR ,cos30°=AM AP ,∴AP=121919,PM=RM=61919,∴MC=22AC AM -=141919,∴PC=CM ﹣PM=81919,∵PK CP CK QN CQ CN ==,∴CK=2819,PK=12319,∴OK=CK ﹣CO=919,∴点P 坐标(﹣919,12319),∴PA+PC+PG 的最小值为219,此时点P 的坐标(﹣919,12319).考点:二次函数综合题;旋转的性质;最值问题;压轴题.10.复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.【答案】①真,②假,③假,④真,理由和所用的数学方法见解析.【解析】试题分析:根据方程思想,特殊与一般思想,反证思想,分类思想对各结论进行判断.试题解析:①真,②假,③假,④真.理由如下:①将(1,0)代入,得,解得.∴存在函数,其图像经过(1,0)点.∴结论①为真.②举反例如,当时,函数的图象与坐标轴只有两个不同的交点.∴结论②为假.③∵当时,二次函数(k是实数)的对称轴为,∴可举反例如,当时,二次函数为,当时,y随x的增大而减小;当时,y随x的增大而增大.∴结论③为假.④∵当时,二次函数的最值为,∴当时,有最小值,最小值为负;当时,有最大值,最大值为正.∴结论④为真.解决问题时所用的数学方法有方程思想,特殊与一般思想,反证思想,分类思想考点:1.曲线上点的坐标与方程的关系;2.二次函数的性质;3.方程思想、特殊元素法、反证思想和分类思想的应用.。

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。

中考数学专项练习二次函数(含解析)

中考数学专项练习二次函数(含解析)

中考数学专项练习二次函数(含解析)【一】单项选择题1.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是()A.〔1,0〕 B.〔0,1〕 C.〔0,-1〕 D.〔-1,0〕2.与y=2〔x﹣1〕2+3形状相同的抛物线解析式为〔〕A.y=1+x2B.y=〔2x+1〕2C.y =〔x﹣1〕2D.y=2x 23.二次函数的解析式为,那么该二次函数图象的顶点坐标是〔〕A.(-2,1)B.(2,1)C.(2,-1)D.(1,2)4.如图,二次函数y=ax2+bx+c(a#0)的图象如下图,给出以下四个结论:①abc=0,②a+b+c>0,③b=3a, ④4ac—b2<0;其中正确的结论有〔〕A.1个B.2个C.3个D.4个5.如图,二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A〔3,2〕,与x轴交于点B〔2,0〕,假设0<y1<y2 ,那么x 的取值范围是〔〕A.0<x<2 B.0<x <3 C.2<x<3 D.x <0或x>36.如图,抛物线y=ax2+bx+c交x轴于(-1,0)、(3,0)两点,那么以下判断中,错误的选项是〔〕A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1和3D.当-1<x<3时,y<07.对抛物线y=-x2+2x-3而言,以下结论正确的选项是()A.与x轴有两个交点B.开口向上 C.与y轴交点坐标是(0,3) D.顶点坐标是(1,-2)8.在抛物线y=-x2+1 上的一个点是().A.(1,0)B.(0,0)C.〔0,-1)D.〔1,I)9.如下图的抛物线是二次函数y=ax2-3x+a2-1的图像,那么以下结论错误的选项是〔〕A.当y<0时,x>B.当-3<x<0时,y>0C.当x<时,y随x的增大而增大 D.抛物线可由抛物线y=-x2平移得到10.二次函数y=x2﹣2x+4化为y=a〔x﹣h〕2+k的形式,以下正确的选项是〔〕A.y=〔x﹣1〕2+2B.y=〔x﹣1〕2+3 C.y=〔x﹣2〕2+2 D.y=〔x﹣2〕2+4【二】填空题11.抛物线y=〔m﹣1〕x2+4的顶点是此抛物线的最高点,那么m的取值范围是________12.将抛物线向右平移3个单位长度,再向下平移2个单位长度,得到的抛物线为y=x2﹣4x,那么原来抛物线的解析式是________13.二次函数y=ax2+bx+c〔a≠0〕的图象如下图,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的选项是________.〔填正确结论的序号〕14.二次函数y=2〔x﹣〕2+3,当x________时,y随x的增大而增大15.如果函数y=〔a﹣1〕x2是二次函数,那么a的取值范围是_____ ___.16.抛物线y=ax2+3与x轴的两个交点分别为〔m,0〕和〔n,0〕,那么当x=m+n时,y的值为________.17.假设抛物线y=x2﹣2x+m〔m为常数〕与x轴没有公共点,那么实数m的取值范围为________.18.如图,边长为1的正方形ABCO,以A为顶点,且经过点C的抛物线与对角线交于点D,点D的坐标为________.19.如果抛物线y=〔2+k〕x2﹣k的开口向下,那么k的取值范围是___ _____.【三】解答题20.〝母亲节〞前夕,我市某校学生积极参与〝关爱贫困母亲〞的活动,他们购进了一批单价为20元的〝孝文化衫〞在课余时间进行义卖,并将所得利润捐给贫困母亲.在义卖的过程中发现〝这种文化衫每天的销售件数y 〔件〕与销售单价x〔元〕满足一次函数关系:y=﹣3x+108〔20<x<36〕〞.如果义卖这种文化衫每天的利润为p〔元〕,那么销售单价定为多少元时,每天获得的利润最大?最大利润是多少?21.二次函数的图象经过A〔﹣1,0〕、B〔3,0〕、C〔1,2〕三点,求函数解析式.22.用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边l的变化而变化,当l是多少时,场地的面积S最大?23.假设二次函数y=ax2+bx+c的图像最高点为〔1,3〕经过〔﹣1,0〕两点,求此二次函数的解析式.【四】综合题24.某旅行社推出一条成本价位500元/人的省内旅游线路,游客人数y 〔人/月〕与旅游报价x〔元/人〕之间的关系为y=﹣x+1300,:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.〔1〕要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;〔2〕求经营这条旅游线路每月所需要的最低成本;〔3〕当这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?25.商场进了一批家用空气净化器,成本为1200元/台.经调查发现,这种空气净化器每周的销售量y〔台〕与售价x〔元/台〕之间的关系如下图:〔1〕请写出这种空气净化器每周的销售量y与售价x的函数关系式〔不写自变量的范围〕;〔2〕假设空气净化器每周的销售利润为W〔元〕,那么当售价为多少时,可获得最大利润,此时的最大利润是多少?26.某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y〔元/千度〕〕与电价x〔元/千度〕的函数图象如图:〔1〕当电价为600元/千度时,工厂消耗每千度电产生利润是多少?〔2〕为了实现节能减排目标,有关部门规定,该厂电价x〔元/千度〕与每天用电量m〔千度〕的函数关系为x=5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?【一】单项选择题【考点】二次函数图象上点的坐标特征【解析】【分析】抛物线与y轴的交点横坐标为0,令x=0求y,可得抛物线与y轴交点的纵坐标.【点评】此题考查了抛物线与坐标轴交点坐标的求法.在抛物线解析式中,令x=0可求抛物线与y轴的交点坐标,令y=0可求抛物线与x轴的交点坐标【考点】二次函数的性质【解析】【解答】解:y=2〔x﹣1〕2+3中,a=2.应选D、【分析】抛物线的形状只是与a有关,a相等,形状就相同.【考点】二次函数的性质,二次函数的三种形式【解析】【分析】直接根据二次函数的的顶点式写出顶点坐标(2,1).应选B.【考点】二次函数图象与系数的关系【考点】二次函数与不等式〔组〕【考点】二次函数的性质,抛物线与x轴的交点,二次函数与不等式〔组〕【解析】【分析】根据抛物线y=ax2+bx+c交x轴于(-1,0)、(3,0)两点再结合图象特征依次分析即可。

中考数学专项复习《二次函数的三种形式》练习题及答案

中考数学专项复习《二次函数的三种形式》练习题及答案

中考数学专项复习《二次函数的三种形式》练习题及答案一、单选题1.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)2.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+73.把二次函数y=x2﹣2x﹣1配方成顶点式为()A.y=(x﹣1)2B.y=(x+1)2﹣2C.y=(x+1)2+1D.y=(x﹣1)2﹣24.已知二次函数y=(x−1m)(mx−4m)(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则n≥2+12mD.若x<n时,都有y随着x的增大而减小,则n≤2+12m5.将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.-5B.5C.3D.-36.用配方法将y=x2﹣8x+12化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+4B.y=(x﹣4)2﹣4C.y=(x﹣8)2+4D.y=(x﹣8)2﹣47.将二次函数y=x2-4x-1化为y=(x-h)2+k的形式,结果为()A.y=(x+2)2+5B.y=(x+2)2−5C.y=(x−2)2+5D.y=(x−2)2−5 8.将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.﹣5B.5C.3D.﹣39.抛物线y=(x+2)2−3的对称轴是()A.直线x=2B.直线x=-2C.直线x=-3D.直线x=310.抛物线y=(x−2)2的顶点坐标是()A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)11.下列二次函数中,顶点坐标是(2,-3)的函数解析式为()A.y=(x-2)2+3B.y=(x+2)2+3C.y=(x-2)2-3D.y=(x+2)2-312.通过配方法将二次函数y=ax2+bx+c(a≠0)化成y=a(x﹣h)2+k的形式,此二次函数可变形为( )A .y=a (x+ b 2a )2+ 4ac−b 24aB .y=a (x ﹣ b 2a )2+ 4ac−b 24aC .y=a (x+ b 2a )2+ b 2−4ac 4aD .y=a (x ﹣ b 2a )2+ b 2−4ac 4a二、填空题13.关于x 的一元二次方程x 2+bx+c=0的两根为x 1=1,x 2=2,那么抛物线y=x 2+bx+c 的顶点坐标为 .14.如图,正方形ABCD 的顶点A ,B 与正方形EFGH 的顶点G ,H 同在一段抛物线上,且抛物线的顶点同时落在CD 和y 轴上,正方形边AB 与EF 同时落在x 轴上,若正方形ABCD 的边长为4,则正方形EFGH 的边长为15.抛物线y=x 2-2x+5化成y=a(x-h)2+k 的形式是 .16.将二次函数y=x 2﹣2x+3写成y=a (x ﹣h )2+k 的形式为 17.将二次函数y=x 2﹣2x+4化成y=(x ﹣h )2+k 的形式,则k=18.把二次函数的表达式y=x 2﹣6x+5化为y=a (x ﹣h )2+k 的形式,那么h+k=三、综合题19.把下列函数化为y=a (x+m )2+k 形式,并求出各函数图象的顶点坐标、对称轴、最大值或最小值:(1)y=x 2﹣2x+4; (2)y=100﹣5x 2.20.已知二次函数y=x 2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x 取什么值时,y 随x 的增大而增大;x 取什么值时,y 随x 增大而减小.21.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.22.已知二次函数y=x2−2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.如图,在平面直角坐标系xOy中,抛物线y=ax2+(2a﹣ma)x﹣2am(a<0)与x轴分别交于点A、C,顶点坐标为D.(1)当a=﹣1,m=1时.①求点D的坐标;②若F为线段AD上一动点,过点F作FH⊥x轴,垂足为H,交抛物线于点P,当PH+OH的值最大时,求点F的坐标.(2)当m=23时,若另一个抛物线y=ax2﹣(6a+ma)x+6am的顶点为E.试判断直线AD是否经过点E?请说明理由.24.对于二次函数y= 12x2﹣3x+4(1)配方成y=a(x﹣h)2+k的形式.(2)求出它的图象的顶点坐标和对称轴.(3)求出函数的最大或最小值.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】D5.【答案】D6.【答案】B7.【答案】D8.【答案】D9.【答案】B10.【答案】A11.【答案】C12.【答案】A13.【答案】( 32,- 14)14.【答案】2 √5﹣215.【答案】y=(x-1)2+416.【答案】y=(x﹣1)2+217.【答案】318.【答案】﹣119.【答案】(1)解:y=x2﹣2x+4=x2﹣2x+1+3=(x﹣1)2+3.顶点坐标是(1,﹣1),对称轴为x=1,最小值为﹣1(2)解:y=100﹣5x2.顶点坐标是(0,100),对称轴为x=0,最大值为10020.【答案】(1)解:y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1(2)解:开口向上,对称轴是x=3,顶点坐标是(3,﹣1)(3)解:x>3时,y随x的增大而增大;x<3时,y随x增大而减小21.【答案】(1)解:∵OM=ON=4∴M点坐标为(4,0),N点坐标为(0,4)设抛物线解析式为y=a(x﹣4)2把N(0,4)代入得16a=4,解得a= 1 4所以抛物线的解析式为y= 14(x﹣4)2= 14x2﹣2x+4(2)解:∵点A的横坐标为t∴DM=t﹣4∴CD=2DM=2(t﹣4)=2t﹣8把x=t代入y= 14x2﹣2x+4得y= 14t2﹣2t+4∴AD= 14t2﹣2t+4∴l=2(AD+CD)=2(14t2﹣2t+4+2t﹣8)= 12t2﹣8(t>4)22.【答案】(1)解:∵⊥=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3∴把函数y=x2﹣2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.23.【答案】(1)解:①解:当a=-1,m=1时y=−x2−x+2= −(x+12)2+94∴点D的坐标为(−12,94)②∵y=−x2−x+2当y=0时解得:x1=−2∴点A的坐标为(−2,0)设直线AD的表达式为:y=kx+b(k≠0){0=−2k+b94=−12k+b解得{k=32b=3∴直线AD的表达式为:y=32x+3∵F为线段AD上一动点设点F的横坐标为t∵FH⊥x轴,垂足为H,交抛物线于点P∴点P的横坐标也为t,点P的纵坐标为−t2−t+2∴P (t,−t2−t+2),H(t,0)∴PH+OH= −t2−t+2+0−t= −t2−2t+2= −(t+1)2+3∴当t=−1时,PH+OH有最大值当t=−1时,y=32×(−1)+3= 32∴F(−1,3 2)(2)解:∵m= 2 3∴y=ax2+(2a−ma)x−2am= ax2+(2a−23a)x−43a= a(x+23)2−169a∴D (−23,−169a)∵y=ax2−(6a+ma)x+6am= ax2−(6a+23a)x+4a= a(x−103)2−649a∴E (103,−649a)∵y=ax2+(2a−23a)x−43a当y=0时,ax2+(2a−23a)x−43a=0解得x1=−2∴A(-2,0)设直线AD的表达式为:y=mx+n{−2m+n=0−23m+n=−169a解得{m=−43an=−83a∴直线AD的表达式为y=−43ax−83a当x=103,y=−43a⋅103−83a= −649a∴点E在直线AD上∴直线AD经过点E.24.【答案】(1)解:y= 12x2﹣3x+4 = 12(x2﹣6x)+4= 12[(x﹣3)2﹣9]+4= 12(x﹣3)2﹣12(2)解:由(1)得:图象的顶点坐标为:(3,﹣1 2)对称轴为:直线x=3(3)解:∵a= 12>0∴函数的最小值为:﹣1 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》——难度题1、从如图所示的二次函数y = ax 2+bx +c (a ≠0)的图象中,得出了下面五条信息:①ab > 0 ②a +b +c < 0 ③b +2c > 0 ④a -2b +4c > 0 ⑤32a b . 其中正确信息的序号是 ① ② ③ ④ ⑤2、如图,二次函数2y ax bx c (0≠a )的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①0ab,②24b a ,③02a b c ,④01b ,⑤当1x时,0y .其中正确结论的序号是 ①②③④o x y-113、已知二次函数y =ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①b 2>4ac ;②abc >0;③2a ﹣b =0;④8a+c <0;⑤9a+3b+c <0,其中结论正确的是①②⑤ .(填正确结论的序号)4、二次函数y= ax 2+bx+c 的图象如图所示,给出下列结论:①2a+b >0;②b >a >c ;③若﹣1<m <n <1,则m+n <a b ;④3|a |+|c |<2|b |. 其中正确的结论是 ①③④ (写出你认为正确的所有结论序号).5、二次函数y=ax 2+bx+c 图象如图,下列正确的序号为 ①③④ ①bc >0;②2a ﹣3c <0;③2a+b >0;④ax 2+bx+c =0有两个解x 1,x 2,x 1>0, x 2<0;⑤a+b+c >0;⑥当x >1时,y 随x 增大而减小.【解】①∵抛物线开口向上,∴a >0,∵对称轴在y 轴右侧,∴a ,b 异号即b <0, ∵抛物线与y 轴的交点在负半轴,∴c <0,∴bc >0,故①正确;②∵a >0,c <0,∴2a ﹣3c >0,故②错误;③∵对称轴x =﹣<1,a >0,∴﹣b <2a ,∴2a+b >0,故③正确;④由图形可知二次函数y=ax 2+bx+c 与x 轴的两个交点分别在原点的左右两侧, 即方程ax 2+bx+c=0有两个解x 1,x 2,当x 1>x 2时,x 1>0,x 2<0,故④正确; ⑤由图形可知x=1时,y=a+b+c <0,故⑤错误;⑥∵a >0,对称轴x=1,∴当x >1时,y 随x 增大而增大,故⑥错误.综上所述,正确的结论是①③④6、如图,二次函数y=ax 2+bx+c (a >0)图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1,3.与y 轴负半轴交于点C ,在下面五个结论中:①2a ﹣b =0;②a+b+c >0;③c =﹣3a ;④只有当a =21时,△ABD 是等腰直角三角形;⑤使△ACB 为等腰三角形的a 值可以有四个.其中正确的结论是 ③④ .(只填序号)7、二次函数y=ax 2+bx+c (a ≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a+b =0;②9a+c >3b ;③8a +7b +2c >0;④当x >﹣1时,y 的值随x 值的增大而增大.其中正确的结论有( B )A.1个B.2个C.3个D.4个8、(2014年四川)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.a bc<0B.﹣3a+c<0 C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c9、二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是(B)A.4个B. 3个C.2个D.1个10、二次函数bx x y +=2的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (t 为实数)在41<<-x 的范围内有解,则t 的取值范围是 81<≤-t11、如图,已知抛物线y 1=-2x 2+2,直线y 2=2x +2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2.例如:当x =1时,y 1=0, y 2=4, y 1<y 2,此时M = 0. 下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小; ③使得M 大于2的x 值不存在; ④使得M = 1的x 值是 21-或22.其中正确的是 ③④12、二次函数y =ax 2+bx +c (a ≠0)图象如图,下列结论:①abc >0; ②3a +c <0; ③当m ≠1时,a +b >am 2+bm ;④a ﹣b +c >0; ⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2.其中正确的有 xy Oy 2 y 1②③⑤( 填序号)13、如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为 214、如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y = x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027,4027).2 1 - 1 O xy15、如图,抛物线y =ax 2+bx +c 的对称轴是x = 1 3,小亮通过观察得出了下面四条信息:①c <0, ②abc <0, ③a -b +c >0, ④2a -3b =0.你认为其中正确的有____①③ ____(把正确的番号填在横线上)16、二次函数y=x 2+bx 的图象如图,对称轴为直线x =1,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣3≤x <4的范围内有解,则t 的取值范围是﹣1≤t ≤1517、已知抛物线y =-x 2+6x -5与x 轴交于点A 、B (A 在B 的左侧),顶点为C ,CD ⊥y 轴于D ,P 是x 轴上方抛物线对称轴上一点,且S △P AD =2S △PBC ,则点P 的坐标为_)8,3()58,3(或____【方法】设点,将面积与坐标建立等量关系,用差量法求三角形面积18、已知抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,顶点为D ,点P 是抛物线的对称轴上一点,以点P 为圆心的圆经过A 、B 两点,且与直线CD 相切,则点P 的坐标为_____)462,1()462,1(---或____【方法】设点坐标;三角函数;勾股定理19、已知抛物线y =x 2-2mx +4m -8的顶点为A .(1)若以A 为一个顶点作该抛物线的内接正三角形ABC (B 、C 两点都在拋物线上),则△ABC 的面积为____33______;(2)若抛物线y =x 2-2mx +4m -8与x 轴交点的横坐标均为整数,则整数m 的值为____2_____【方法】利用特殊几何形的长度角度关系,设点坐标;将点的坐标代入抛物线方程,建立方程求解。

【方法】判别式对应完全平方式,方程组求整数解20、已知抛物线y = 1 3x 2+bx +c 经过B (0,1)、C (3,2)两点,点A 是x 轴上一点,使得△ABC 是以BC 为底的等腰三角形,点P 是抛物线对称轴上的一个动点,满足S △ABP =2S △ABC ,则点P 的坐标_____)29,1()211,1( 或________ 【方法】两直线垂直,斜率为负倒数。

21、函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0; ②b+c +1=0; ③3b+c +6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的序号为 ③④解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.22、如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的序号有①②③⑤【解】∵开口向上,∴a>0,∵与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b<0,∴abc>0;故①正确;∵对称轴x=﹣=1,∴b+2a=0;故②正确;∵抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,∴抛物线与x 轴的另一个交点为(4,0);故③正确;∵当x =﹣1时,y=a ﹣b+c <0,∴a+c <b ,故④错误;∵a ﹣b+c <0,b +2a =0,∴3a+c <0;故⑤正确.23、抛物线y=x 2+bx+c 的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y =(x ﹣1)2﹣4,则b = 2,c = 0【解】函数y=(x ﹣1)2﹣4的顶点坐标为(1,﹣4),∵是向右平移2个单位,再向下平移3个单位得到,∴1﹣2=﹣1,﹣4+3=﹣1, ∴平移前的抛物线的顶点坐标为(﹣1,﹣1),∴平移前的抛物线为y =(x +1)2﹣1,即y=x 2+2x ,∴b =2,c = 0.故选B .24、(2013•义乌市)如图,抛物线y=ax 2+bx+c 与x 轴交于点A (﹣1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x >3时,y <0; ②3a+b >0;③﹣1≤ a ≤32 ; ④3≤n ≤4中, 正确的有 ①③ (填写序号)【解】①∵抛物线y=ax 2+bx+c 与x 轴交于点A (﹣1,0),对称轴直线是x=1, ∴该抛物线与x 轴的另一个交点的坐标是(3,0),∴根据图示知,当x >3时,y <0.故①正确;②根据图示知,抛物线开口方向向下,则a <0.∵对称轴x =﹣=1,∴b =﹣2a ,∴3a+b =3a ﹣2a=a <0,即3a+b <0.故②错误; ③∵抛物线与x 轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴a c =﹣3,则a =﹣3c . ∵抛物线与y 轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣3c ,﹣=1,∴b =﹣2a =,∴n=a+b+c =c .∵2≤c ≤3,∴≤c ≤4,即≤n ≤4.故④错误.综上所述,正确的说法有①③.25、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴为x =﹣21.下列结论中,正确的是 ④(填序号)①abc >0 ②a+b =0 ③2b+c >0 ④4a+c <2b【解】①∵开口向上,∴a >0,∵抛物线与y 轴交于负半轴,∴c <0,∵对称轴在y 轴左侧,∴﹣ab 2<0,∴b >0,∴abc <0,故本选项错误; ②∵对称轴:x =﹣a b 2=﹣21,∴a=b ,故本选项错误;③当x =1时,a+b+c=2b+c <0,故本选项错误;④∵对称轴为x =﹣,与x 轴的一个交点的取值范围为x 1>1,∴与x 轴的另一个交点的取值范围为x 2<﹣2,∴当x=﹣2时,4a ﹣2b+c <0,即4a+c <2b ,故本选项正确26、如图,抛物线y=x 2+bx +与y 轴相交于点A ,与过点A 平行于x 轴的直线相交于点B (点B 在第一象限).抛物线的顶点C 在直线OB 上,对称轴与x 轴相交于点D .平移抛物线,使其经过点A 、D ,则平移后的抛物线的解析式为 y = x 2﹣29x +29 . 解:∵令x =0,则y=,∴点A (0,),根据题意,点A 、B 关于对称轴对称,∴顶点C 的纵坐标为×=,即=,解得b 1=3,b 2=﹣3,由图,﹣>0,∴b <0,∴b=﹣3, ∴对称轴为直线x =﹣=,∴点D 的坐标为(,0),设平移后的抛物线的解析式为y=x 2+mx+n ,则,解得, 所以 y = x 2﹣29x +29 27、若直线y=m (m 为常数)与函数⎪⎩⎪⎨⎧>≤=)2(4)2(2x xx x y 的图象恒有三个不同的交点,则常数m 的取值范围是 0<m <2 .【解】分段函数⎪⎩⎪⎨⎧>≤=)2(4)2(2x xx x y 的图象如图:故要使直线y=m (m 为常数)与函数⎪⎩⎪⎨⎧>≤=)2(4)2(2x xx x y 的图象恒有三个不同的交点,常数m 的取值范围为0<m <2,28、如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=﹣x2+6x上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为l =﹣2m2+8m+12.【解】把x=m代入抛物线y=﹣x2+6x中,得AD=﹣m2+6m把y=﹣m2+6m代入抛物线y=﹣x2+6x中,得﹣m2+6m=﹣x2+6x解得x1=m,x2=6﹣m∴C的横坐标是6﹣m,故AB=6﹣m﹣m=6﹣2m∴矩形的周长是l=2(﹣m2+6m)+2(6﹣2m)即l=﹣2m2+8m+12。

相关文档
最新文档