2020年数学选修2-3人教A全册学案--01离散型随机变量

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 1.1离散型随机变量

教学目标:

知识目标:1.理解随机变量的意义;

2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量

的例子;

3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.

能力目标:发展抽象、概括能力,提高实际解决问题的能力.

情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.

教学重点:随机变量、离散型随机变量、连续型随机变量的意义

教学难点:随机变量、离散型随机变量、连续型随机变量的意义

授课类型:新授课

教具:多媒体、实物投影仪

第一课时

思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?

掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1 ) .

在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.

定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,,,… 表示.

思考2:随机变量和函数有类似的地方吗?

随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.

例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .

利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?

定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .

离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….

思考3:电灯的寿命X 是离散型随机变量吗?

电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.

在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:

与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.

连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量

如某林场树木最高达30米,则林场树木的高度是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序

注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚

ξη⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.

ξ

相关文档
最新文档