一元二次方程培优专题(教师版)

合集下载

(教师)一元二次方程综合培优

(教师)一元二次方程综合培优

七中近几年考试真题1、已知0200052=--x x,则()()211223-+---x x x 的值是( D ) A 、2001 B 、2002 C 、2003 D 、2004 答案:D解:由0200052=--x x 得:200042+=-x x x()()()()20042004224421122112222223=-+=-+-++-=-+--+-=-+---x x x x x x x x x x x x x2、已知0120042=+-a a ,则_________120044007222=++-a a a .答案:2002解:由0120042=+-a a 得:a a 200412=+,120042-=a a ,20041=+aa原式()200212200420044007120042=+-=+--=aa a a a3、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=ba.答案:57解:由05200572=++b b 得:0712005152=+⨯+⎪⎭⎫ ⎝⎛b b∵1≠ab ,即ba 1≠∴把a 和b 1作为一元二次方程07200552=++x x 的两根∴571==⨯b a b a答案:897分析:此题只需先令06≥=-t x ,用x 表示t ,代入求y 关于t 的二次函数的最值即可。

解:令06≥=-t x ,26t x -=则811241212221262222+⎪⎭⎫ ⎝⎛--=++-=+-=-+=t t t t t x x y又0≥t ,且y 关于t 的二次函数开口向下,则在41=t 处取得最大值即y 最大值为8112,即8976、已知0=++c b a ,2=abc ,0 c ,则( )A 、0 abB 、2-≤+b aC 、3-≤+b aD 、4-≤+b a 答案:B分析:由0=++c b a ,2=abc ,0 c ,得到a ,b 两个负数,再由c b a -=+,cab 2=,这样可以把a ,b 看作方程022=++c cx x 的两根,根据根的判别式得到0242≥⨯-=∆cc ,解得2≥c ,然后由c b a -=+得到2-≤+b a .解:∵0=++c b a ,2=abc ,0 c ∴0 a ,0 b ,0 c∴c b a -=+,cab 2=∴可以把a ,b 看作方程022=++ccx x∴0242≥⨯-=∆cc ,解得2≥c∴()2≥+-=b a c ,即2-≤+b a7、已知8=-b a ,0162=++c ab ,则________=++c b a . 答案:0分析:本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口。

培优专题01 一元二次方程的解法-解析版

培优专题01 一元二次方程的解法-解析版

培优专题01 一元二次方程的解法◎方法一直接开平方法(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,.对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a(2)直接开平方法适用于解形如x2 = p或(mx+a)2 = p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。

(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

1.(2022·浙江绍兴·八年级期末)一元二次方程x2 -1=0的根是()A.x1=x2=1B.x1=1,x2=-1C.x1=x2=-1D.x1=1,x2=0【答案】B【分析】先移项,再两边开平方即可.【详解】解:∵x2-1=0,∴x2=1,∴x=±1,即x1=-1,x2=1.故选:B.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2.(2022·安徽滁州·八年级期末)如果关于x 的方程2(9)4x m -=+可以用直接开平方法求解,那么m 的取值范围是( )A .3m >B .3m ³C .4m >-D .4m ³-【答案】D【分析】根据直接开平方法求解可得.【详解】解:∵2(9)4x m -=+,且方程2(9)4x m -=+可以用直接开平方法求解,∴40m +³,∴4m ³-.故选:D .【点睛】此题主要考查了直接开平方法解一元二次方程,正确化简方程是解题关键.3.(2022·全国·九年级课时练习)关于x 的方程2x p =.(1)当0p >时,方程有__________的实数根;(2)当0p =时,方程有__________的实数根;(3)当0p <时,方程__________.4.(2022·安徽合肥·八年级期末)方程290x -=的解为______.5.(2022·全国·九年级单元测试)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成a cb d ,定义a cad bcb d=-,上述记号就叫做2阶行列式.(1)若21493xx=,求x的值.(2)若11611x xx x+-=-+,求x的值.◎方法二 配方法1、配方法的一般步骤可以总结为:一移、二除、三配、四开;2、把常数项移到等号的右边;3、方程两边都除以二次项系数;4、方程两边都加上一次项系数一半的平方,把左边配成完全平方式;5、若等号右边为非负数,直接开平方求出方程的解。

一元二次方程专题能力培优(含答案)

一元二次方程专题能力培优(含答案)

一元二次方程专题能力培优(含答案)解得:m≠2m10当m≠2时,原方程可化为x-m+1=0.2.C解析:将方程化简可得(m-6)x+(m-6)=0,由于常数项为0,所以m-6=0,即m=6.3.a=2解析:由于一次项系数为0,所以根据一元二次方程的求根公式可得:x1=x2=-b/2a,代入a-b+c=0中得a=2.4.a=2解析:将方程化简可得(2a-4)x+(3a+6)x+(a-8)=0,由于一次项系数为0,所以2a-4+3a+6=0,解得a=2.5.D解析:由题可得另一个根为-b,代入x1x2=a/c=-a/b得到b=-2a,代入a-b得到a=2b,所以a-b=2b-b=b=2.6.a/2解析:由于a-b+c=0,所以c=b-a,代入一元二次方程的求根公式可得x1=(b+√(b^2-4ac))/2a,x2=(b-√(b^2-4ac))/2a,代入x1x2=a/c得到a=(b^2-a^2)/(b-a),解得a/2=b-a,即a=2b-2a,解得a/2.7.2012解析:由一元二次方程的求根公式可得a=2013/2+√(2013^2/4-1),代入a-2012a-2013/2得到2012.2或者当m+1+(m-2)≠0且m+1=1时,它是一元一次方程。

解得:m=-1,m=0.因此,当m=-1或m=0时,为一元一次方程。

给定方程m^2-1=0,解得m=-1.因为m-1≠0,所以这是一元一次方程。

解方程3a+6=0,得到a=-2.因此,这是一元一次方程。

根据题意,方程x+bx+a=0的一个根是-a(a≠0)。

由此得到a-b=-1.解方程x^2=1,得到x=±1.因此,x=-1.已知实数a是一元二次方程x-2013x+1=0的解,因此a-2013a+1=0.解得a=-1/2012.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为-8或9.如果代数式x+6x+m是一个完全平方式,则m=9.用配方法证明:无论x为何实数,代数式-2x^2+4x-5的XXX小于零。

一元二次方程培优专题讲义(最新整理)

一元二次方程培优专题讲义(最新整理)

数学培优专题讲义:一元二次方程一.知识的拓广延伸及相关史料1.一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1)配方法:如,经配方得2670x x ++=,再直接用开平方法;2(3)2x +=(2)公式法;(3)因式分解法。

这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程,只2670x x ++=要变形为即可,或原方程22(3)0x +-=经配方化为,再求解时,2670x x ++=2(3)2x +=还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。

公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。

由此可见,对因式分解法应予以足够的重视。

因式分解法还可推广到高次方程。

2.我国古代的一元二次方程提起代数,人们自然就把它和方程联系起来。

事实上,过去代数的中心问题就是对方程的研究。

我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。

下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.”这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题.上面的问题选自杨辉所著的《田亩比类乘除算法》。

原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解.3. 掌握数学思想方法,以不变应万变。

本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。

(1)转化思想我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。

因此,转化思想就是解方程过程中思维活动的主导思想。

在本章,转化无所不在,无处不有,可以说这是本章的精髓和特色之一,其表现主要有以下方面:①未知转化为已知,这是解方程的基本思路:②一元二次方程转化为一元一次方程,这是通过将原方程降次达到的:③特殊转化为一般,一般转化为特殊。

人教版九年级上册数学 一元二次方程(培优篇)(Word版 含解析)

人教版九年级上册数学 一元二次方程(培优篇)(Word版 含解析)

用含 n 的算式表示出 PQ 的长度,注意需要添加绝对值符号.
3.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克 达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.
(1)从去年年底至今年 3 月 20 日,猪肉价格不断走高,3 月 20 日比去年年底价格上涨了
60%.某市民在今年 3 月 20 日购买 2.5 千克猪肉至少要花 200 元钱,那么去年年底猪肉的
=4,从而得到 x=2 时,周长的最小值为 8;
(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油 量最小的形式速度. 【详解】
(1)∵x+ ≥2 =4,
∴当 x= 时,2(x+ )有最小值 8.
即 x=2 时,周长的最小值为 8;
故答案是:2;8;
问题 2:

当且仅当
,即 x= 时,函数 y=x+ 的最小值为 2 .
阅读理解上述内容,解答下列问题: 问题 1:
已知一个矩形的面积为 4,其中一边长为 x,则另一边长为 ,周长为 2(x+ ),求当 x=
时,周长的最小值为

问题 2:
汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时 70~110 公里之间行驶时(含

即 x=90 时,“=”成立,
所以,当 x=90 时,函数取得最小值 9,
此时,百公里耗油量为

所以,该汽车的经济时速为每小时 90 公里,经济时速的百公里耗油量为 10L. 【点睛】 本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料, 易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.

人教【数学】培优易错难题一元二次方程辅导专题训练及详细答案

人教【数学】培优易错难题一元二次方程辅导专题训练及详细答案

⼈教【数学】培优易错难题⼀元⼆次⽅程辅导专题训练及详细答案⼀、⼀元⼆次⽅程真题与模拟题分类汇编(难题易错题)1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停⽌,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?(2)若点P从点A移动到点B停⽌,点Q随点P的停⽌⽽停⽌移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停⽌时,点P随点Q的停⽌⽽停⽌移动,试探求经过多长时间△PBQ的⾯积为12cm2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的⾯积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表⽰出PQ的长度,利⽤PE2+EQ2=PQ2列出⽅程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的⽅程(16-5x)2=64,通过解⽅程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴PQ=62cm;∴经过2s时P、Q两点之间的距离是62cm;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的⾯积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB?BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP?CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y,则1 2QP?CB=12(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的⾯积为 12cm2.考点:⼀元⼆次⽅程的应⽤.2.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过⼏秒后△PBQ的⾯积等于4cm2?【答案】经过2秒后△PBQ的⾯积等于4cm2.【解析】【分析】作出辅助线,过点Q 作QE ⊥PB 于E ,即可得出S △PQB =12×PB×QE ,有P 、Q 点的移动速度,设时间为t 秒时,可以得出PB 、QE 关于t 的表达式,代⼊⾯积公式,即可得出答案.【详解】解:如图,过点Q 作QE ⊥PB 于E ,则∠QEB =90°.∵∠ABC =30°,∴2QE =QB .∴S △PQB =12PBQE .设经过t 秒后△PBQ 的⾯积等于4cm 2,则PB =6﹣t ,QB =2t ,QE =t .根据题意,12(6﹣t )?t =4. t 2﹣6t+8=0.t 2=2,t 2=4.当t =4时,2t =8,8>7,不合题意舍去,取t =2.答:经过2秒后△PBQ 的⾯积等于4cm 2.【点睛】本题考查了⼀元⼆次⽅程的运⽤,注意对所求的值进⾏检验,对于不合适的值舍去.3.已知关于x 的⽅程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第⼀个⽅程的两个实数根的差的平⽅等于第⼆个⽅程的⼀整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在⽅程①中,由⼀元⼆次⽅程的根与系数的关系,⽤含n 的式⼦表⽰出两个实数根的差的平⽅,把⽅程②分解因式,建⽴⽅程求n ,要注意n 的值要使⽅程②的根是整数.【详解】若存在n 满⾜题意.设x1,x2是⽅程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2,由⽅程②得,(x+n-1)[x-2(n+1)]=0,①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍),综上所述,n=0.4.解⽅程:2332302121x x x x --= ? ?--.【答案】x=15或x=1 【解析】【分析】设321x y x =-,则原⽅程变形为y 2-2y-3=0, 解这个⼀元⼆次⽅程求y ,再求x .【详解】解:设321x y x =-,则原⽅程变形为y 2-2y-3=0.解这个⽅程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-.解得x=15或x=1.经检验:x=15或x=1都是原⽅程的解.∴原⽅程的解是x=15或x=1.【点睛】考查了还原法解分式⽅程,⽤换元法解⼀些复杂的分式⽅程是⽐较简单的⼀种⽅法,根据⽅程特点设出相应未知数,解⽅程能够使问题简单化,注意求出⽅程解后要验根.5.关于x 的⼀元⼆次⽅程()22210x k x k +-+=有两个不等实根1x ,2x . (1)求实数k 的取值范围;(2)若⽅程两实根1x ,2x 满⾜121210x x x x ++-=,求k 的值.【答案】(1) k <14;(2) k=0. 【解析】【分析】(1)根据⼀元⼆次⽅程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1?x2=k2,代⼊x1+x2+x1x2-1=0,即可求出k值.【详解】解:(1)∵关于x的⼀元⼆次⽅程x2+(2k-1)x+k2=0有两个不等实根x1,x2,∴△=(2k-1)2-4×1×k2=-4k+1>0,解得:k<14,即实数k的取值范围是k<14;(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1?x2=k2,∵x1+x2+x1x2-1=0,∴1-2k+k2-1=0,∴k2-2k=0∴k=0或2,∵由(1)知当k=2⽅程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解⼀元⼆次⽅程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意⽤根与系数的关系解题时要考虑根的判别式,以防错解.6.某⽔果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该⽔果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最⼤,最⼤利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最⼤,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解⼀元⼆次⽅程即可求解,(3)表⽰出最⼤利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10 0,⼆次函数向下,函数有最⼤值,当x=59时, 利润最⼤,为3610元.【点睛】本题考查了⼆次函数的实际应⽤,中等难度,熟悉⼆次函数的实际应⽤是解题关键.7.已知关于x的⽅程x2﹣2x+m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该⽅程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代⼊求出即可;(2)求出m=1或2,代⼊后求出⽅程的解,即可得出答案.【详解】(1)∵⽅程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原⽅程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原⽅程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解⼀元⼆次⽅程,能根据题意求出m的值和m的范围是解此题的关键.8.已知关于x的⽅程(x-3)(x-2)-p2=0.(1)求证:⽆论p取何值时,⽅程总有两个不相等的实数根;(2)设⽅程两实数根分别为x1、x2,且满⾜x12+x22=3 x1x2,求实数p的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把⽅程化成⼀般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据⼀元⼆次⽅程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代⼊计算,得到⼀个关于p 的⼀元⼆次⽅程,解⽅程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵⽆论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴⽆论p 取何值时,⽅程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=,∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.9.⼭西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的⼏折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x 元.根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240,化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元. 此时,售价为:60﹣6=54(元),54100%=90%60. 答:该店应按原售价的九折出售.10.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问⼏秒后,△PBQ的⾯积为8cm2?(2)出发⼏秒后,线段PQ的长为42cm ?(3)△PBQ的⾯积能否为10 cm2?若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒2 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的⾯积为8cm2,则PB=6-t,BQ=2t,根据三⾓形⾯积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为2cm,依题意得AP=x,BP=6-x,BQ=2x,利⽤勾股定理列⽅程求解;(3)将△PBQ的⾯积表⽰出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的⾯积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)× 2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的⾯积为8 cm2;(2)设x秒后,PQ=2 cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为2 cm;(3)设经过y秒,△PBQ的⾯积等于10 cm2,S△PBQ=12×(6-y)× 2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4× 10=-4< 0,∴△PBQ的⾯积不会等于10 cm2.【点睛】本题考查了⼀元⼆次⽅程的应⽤,熟练的掌握⼀元⼆次⽅程的应⽤是本题解题的关键.。

人教数学 一元二次方程的专项 培优 易错 难题练习题及详细答案

人教数学 一元二次方程的专项 培优 易错 难题练习题及详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 1=1+3,x 2=1﹣3 【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可. 试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3, 解得:x 1=1+3,x 2=1﹣3.2. y 与x 的函数关系式为:y=1.7x (x≤m );或( x≥m) ;3.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值.【答案】(1)32k ≥ (2)4 【解析】 试题分析:根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论.根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值. 试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥ ⎪⎣⎦⎝⎭, 解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+, 因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得1242k k ,==- ,又因为32k ≥,所以4k =.4.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β. (1)求m 的取值范围; (2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】 【分析】(1)根据△≥0即可求解, (2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可.【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0, 解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0解得:m 1=﹣1,m 1=3, 由(1)知m≥-34, ∴m 1=﹣1应舍去, ∴m 的值为3. 【点睛】本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.5.(问题)如图①,在a×b×c (长×宽×高,其中a ,b ,c 为正整数)个小立方块组成的长方体中,长方体的个数是多少? (探究)探究一:(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB 上共有1+2=232⨯=3条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为3×1×1=3. (2)如图③,在3×1×1个小立方块组成的长方体中,棱AB 上共有1+2+3=342⨯=6条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为6×1×1=6. (3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB 上共有1+2+…+a=()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为______. 探究二:(4)如图⑤,在a×2×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2=232⨯=3条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+×3×1=()3a a 12+.(5)如图⑥,在a×3×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2+3=342⨯=6条线段,棱AD 上只有1条线段,则图中长方体的个数为______. (6)依此类推,如图⑦,在a×b×1个小立方块组成的长方体中,长方体的个数为______.探究三:(7)如图⑧,在以a×b×2个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC 上有()b b 12+条线段,棱AD 上有1+2=232⨯=3条线段,则图中长方体的个数为()3a a 12+×()b b 12+×3=()()3ab a 1b 14++.(8)如图⑨,在a×b×3个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有()b b 12+条线段,棱AD 上有1+2+3=342⨯=6条线段,则图中长方体的个数为______.(结论)如图①,在a×b×c 个小立方块组成的长方体中,长方体的个数为______. (应用)在2×3×4个小立方块组成的长方体中,长方体的个数为______. (拓展)如果在若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论. 【答案】探究一:(3)()a a 12+ ;探究二:(5)3a (a+1);(6)()()ab a 1b 14++ ;探究三:(8)()()3ab a 1b 12++ ;【结论】:①()()()abc a 1b 1c 18+++ ;【应用】:180;【拓展】:组成这个正方体的小立方块的个数是64,见解析. 【解析】 【分析】(3)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (5)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (6)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (8)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (结论)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (应用)a=2,b=3,c=4代入(结论)中得出的结果,即可得出结论; (拓展)根据(结论)中得出的结果,建立方程求解,即可得出结论.【详解】解:探究一、(3)棱AB 上共有()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为()a a 12+ ×1×1=()a a 12+ ,故答案为()a a 12+ ;探究二:(5)棱AB 上有()a a 12+ 条线段,棱AC 上有6条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+ ×6×1=3a (a+1),故答案为3a (a+1); (6)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+ ×()b b 12+×1=()()ab a 1b 14++,故答案为()()ab a 1b 14++;探究三:(8)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有6条线段,则图中长方体的个数为()a a 12+ ×()b b 12+×6=()()3ab a 1b 12++,故答案为()()3ab a 1b 12++;(结论)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有()c c 12+条线段,则图中长方体的个数为()a a 12+×()b b 12+×()c c 12+=()()()abc a 1b 1c 18+++,故答案为()()()abc a 1b 1c 18+++;(应用)由(结论)知,()()()abc a 1b 1c 18+++,∴在2×3×4个小立方块组成的长方体中,长方体的个数为()()()2342131418⨯⨯⨯+⨯+⨯+=180,故答案为为180;拓展:设正方体的每条棱上都有x 个小立方体,即a=b=c=x , 由题意得33(1)8x x +=1000, ∴[x (x+1)]3=203, ∴x (x+1)=20,∴x 1=4,x 2=-5(不合题意,舍去) ∴4×4×4=64所以组成这个正方体的小立方块的个数是64. 【点睛】解此题的关键在于根据已知得出规律,题目较好,但有一定的难度,是一道比较容易出错的题目.6.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值.【答案】(1)m 的最小整数值为4-;(2)3m = 【解析】 【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题. 【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯-⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥-∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =-92m ≥-3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.7.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解. 【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】 【分析】(1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论. 【详解】(1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数, ∴k =0,∴原方程可化为x 2+x =0, ∴x 1=0,x 2=﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.关于x 的一元二次方程(k -2)x 2-4x +2=0有两个不相等的实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值.【答案】(1)k <4且k ≠2.(2)m =0或m =83-. 【解析】(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k 的不等式组,解不等式组即可求得对应的k 的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值. 详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根, ∴△=16-8(k-2)=32-8k >0且k-2≠0. 解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3, 将k=3代入原方程得:方程x 2-4x+3=0, 解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0. 把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-. ∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.9.已知关于x 的一元二次方程x 2+(2k +1)x +k 2=0①有两个不相等的实数根. (1)求k 的取值范围;(2)设方程①的两个实数根分别为x 1,x 2,当k =1时,求x 12+x 22的值. 【答案】(1)k >–14;(2)7 【解析】 【分析】(1)由方程根的判别式可得到关于k 的不等式,则可求得k 的取值范围; (2)由根与系数的关系,可求x 1+x 2=-3,x 1x 2=1,代入求值即可. 【详解】(1)∵方程有两个不相等的实数根, ∴>0∆,即()22214410k k k +-=+>,解得14k >-;(2)当2k =时,方程为2x 5x 40++=, ∵125x x +=-,121=x x ,∴()222121212225817x x x x x x +=+-=-=.本题主要考查根的判别式及根与系数的关系,熟练掌握根的判别式与根的个数之间的关系是解题的关键.10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售. 【解析】 【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折. 【详解】(1)设每千克茶叶应降价x 元.根据题意,得: (400﹣x ﹣240)(200+10x×40)=41600. 化简,得:x 2﹣10x +240=0. 解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售. 【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。

人教培优易错试卷一元二次方程辅导专题训练及详细答案

人教培优易错试卷一元二次方程辅导专题训练及详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥, 解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=, 224723k k ∴-+=,解得4k =,或2k =-, 134k ≤, 4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.2.解方程:(3x+1)2=9x+3.【答案】x 1=﹣13,x 2=23. 【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x ﹣2=0,解得:x 1=﹣13,x 2=23. 点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.3.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.4.已知关于x 的一元二次方程有两个实数x 2+2x+a ﹣2=0,有两个实数根x 1,x 2. (1)求实数a 的取值范围;(2)若x 12x 22+4x 1+4x 2=1,求a 的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.7.已知关于x的方程x2-(m+2)x+(2m-1)=0。

一元二次方程(培优)

一元二次方程(培优)

一元二次方程(培优)一元二次方程是一种只含一个未知数x,最高次数是2次的整式方程。

任何一个关于x的一元二次方程都能化成一般形式ax²+bx+c=0,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

1.对于方程(m²-m-2)x²+mx+n=0,条件是m不等于-1或2,才能成为一元二次方程。

2.方程x³-4x=0的解是-2,0,2.3.已知方程x²-2(k-4)x+k²-6k+8=0有两个相等的实数根,则k的值是4.4.若x₁,x₂是方程3x²+x-1=0的两个根,则x₁+x₂=-1/3.5.方程(x/(x-1))+2/(x-2)=3/(x-3)的根的情况是有一整数根。

6.设客车原来行驶的速度为每小时xkm,则所列的方程是20/(x+10)=20/(x-10)+6/60.7.当m<-2时,关于x,y的方程组x=my,y-x+1=0的实数解有3个。

8.如果方程 $x^2+x-1=0$ 的两个实数根为 $a,b$,那么代数式 $a^3+a^2b+ab^2+b^3$ 的值为()A、-3B、3C、-1D、1910.若 $a,b$ 都是实数且 $a\neq b。

ab\neq 0$,且满足$a^2=3a+1.b^2=3b+1$,则代数式 $a^2+b^2$ 的值是()A、7B、9C、11D、1011.若方程 $x^2-3x+k^2-5k-6=0$ 有一个根为 $k$,则另一根为 $6-k$。

12.已知方程 $x^2+4x-2k=0$ 的一个根为 $a$,比另一根$\beta$ 小 $2$,则 $a+\beta+k=2$。

13.若 $\begin{cases}x=5\\x+y=m\end{cases}$ 是方程组的一组解,则它的另一组解是 $\begin{cases}y=m-5\\x=5\end{cases}$。

2021年九年级数学培优(北师大版)第2讲 一元二次方程概念和解法(教师版)

2021年九年级数学培优(北师大版)第2讲  一元二次方程概念和解法(教师版)
(2)公式法:公式法是由配方法演绎得到的,同样适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 的值.
(3)因式分解法:适用于右边为0(或可化为0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法.
【教师备课提示】说到方程,大家都知道方程是怎么来的吗???说到一元二次方程不得不提到三个人,丢番图,花拉子米和韦达的故事(根据进度控制故事时长).
(2)公式法解决: ,所以由公式法知 Nhomakorabea故解为 , .
【教师备课提示】第一,通过这道题,逐步锻炼孩子们自己遇到一个一元二次方程的题时,自己选择自己觉得最简单的方法;第二,老师可给学生总结,一般遇到这种问题的时候,大家可以先把式子变为一元二次方程的一般形式,然后能因式分解的就因式分解,但是因式分解需要会拼凑,逐步培养感觉,不能因式分解的可以选择用公式法,但是同学们一定要把公式法记对了并且会推导;第三,让同学们自己出一个一元二次方程,让学生们自己解下.
④解出这两个一元一次方程的解可得到原方程的解.
2.一元二次方程解法的灵活运用
直接开方法,配方法,公式法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.
(1)配方法:配方法是解一元二次方程的基本方法,把一元二次方程的一般形式 (a、b、c为常数, )转化为它的简单形式 ,这种转化方法就是配方,之后再用直接开平方法就可得到方程的解.
(2) , , , , ;
(3) , , , .
【教师备课提示】这道题主要是练习用配方法去解一元二次方程,需要学生多去体验.
解方程:(1) (2)
【解析】(1) , ,
∴原方程的解为: , ;
(2) ,

人教中考数学二轮 一元二次方程 专项培优及答案

人教中考数学二轮 一元二次方程 专项培优及答案

一、一元二次方程真题与模拟题分类汇编(难题易错题)1.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.2.解方程:(3x+1)2=9x+3.【答案】x1=﹣13,x2=23.【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x﹣2=0,解得:x1=﹣13,x2=23.点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.3.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S 的值为2∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.4.已知关于x 的一元二次方程()2204m mx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根; (2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)134x +=,2x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可.【详解】(1)由题意得:24b ac ∆=- =()22404m m m +->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得134x +=,234x =. 【点睛】 本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.5.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2. (1)求实数k 的取值范围;(2)是否存在实数k ,使得x 1·x 2-x 12-x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)当k≤14时,原方程有两个实数根(2)不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立 【解析】试题分析:(1)根据一元二次方程根的判别式列出不等式,解之即可;(2)本题利用韦达定理解决.试题解析:(1)∆= ()()2221420k k k +-+≥,解得14k ≤(2)由2212120x x x x --≥得 2121230x x x x ()-+≥, 由根与系数的关系可得:2121221,2x x k x x k k +=+=+代入得:22364410k k k k +---≥,化简得:()210k -≤,得1k =.由于k 的取值范围为14k ≤, 故不存在k 使2212120x x x x --≥.6.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值.【答案】(1)m <3;(2)m =2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m ﹣2)>0.∴m <3;(2)∵m <3 且 m 为正整数,∴m =1或2.当 m =1时,原方程为 x 2﹣2x ﹣1=0.它的根不是整数,不符合题意,舍去;当 m =2时,原方程为 x 2﹣2x =0.∴x(x ﹣2)=0.∴x 1=0,x 2=2.符合题意.综上所述,m =2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m 的值和m 的范围是解此题的关键.7.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.【答案】(1)a ≤174;(2)x =1或x =2 【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a%,求a 的值.【答案】(1)售价为每千克65元;(2)a=35.【解析】【分析】(1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x元,则每千克的利润为10-x元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.9.已知关于x 的一元二次方程x 2﹣6x+(2m+1)=0有实数根.(1)求m 的取值范围;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.【答案】(1)m≤4;(2)3≤m≤4.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-4(2m+1)≥0,然后解不等式即可; (2)根据根与系数的关系得到x 1+x 2=6,x 1x 2=2m+1,再利用2x 1x 2+x 1+x 2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m 的取值范围. 试题解析:(1)根据题意得△=(-6)2-4(2m +1)≥0,解得m≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1,而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20, 解得m≥3,而m≤4,所以m 的范围为3≤m≤4.10.关于x 的一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x 1,x 2,且|x 1|=|x 2|﹣2,求m 的值及方程的根.【答案】(1)证明见解析;(2)x 1=﹣,x 2=﹣1或【解析】试题分析:(1)根据一元二次方程的判别式△=b 2﹣4ac 的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-ba,x1•x2=ca,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣35)2+365,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2=ca=﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣x2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x2。

人教版九年级上册数学同步培优第二十一章 一元二次方程 一元二次方程

人教版九年级上册数学同步培优第二十一章 一元二次方程  一元二次方程
返回
14.根据一元二次方程根的定义,解答下列问题: 一个三角形两边的长分别为3 cm和7 cm,第三边的长为a cm
,且整数a满足a2-10a+21=0,求这个三角形的周长. 解:由题意可得4<a<10.(第一步) ∵a是整数,∴a可取5,6,7,8,9.(第二步) 当a=5时,a2-10a+21=52-10×5+21≠0,故a=5不是方
返回
2.以下是关于x的一元二次方程的是( D )
A.x2-
1 x2
=2
B.ax2+bx+c=0
C.3x2-2xy+y2=0 D. x-122=0
返回
3.已知关于x的方程(m+2)x|m|+2x-1=0. (1)当m为何值时,原方程是一元一次方程?
解:由题意得,当m=0时,2x+1=0是一元一次方程; 当m+2=0,即m=-2时,2x-1=0是一元一次方程; 当m=±1时,(m+2)x|m|+2x-1=0是一元一次方程. 综上可知,当m=-2,0,±1时,原方程是一元一次方程.
程的根.
同理可知a=6,a=8,a=9都不是方程的根,只有a=7是
方程的根.(第三步)
∴这个三角形的周长是3+7+7=17(cm). 上述过程中,第一步的根据是_三__角__形__任__意__两__边__之__和__大__于____ _第__三__边__,__任__意__两__边__之__差__小__于__第__三__边______,第三步应用了 _分__类__讨__论_____的数学思想,确定a的值的根据是 _方__程__根__的__定__义___.
人教 九年级上
第二十一章 一元二次方程
21.1 一元二次方程
习题链接
提示:点击 进入习题
1 见习题 2 D
6D

一元二次方程培优讲义

一元二次方程培优讲义

一元二次方程培优讲义1、一元二次方程的一般式:20 (0)++=≠,a为二次项系数,bax bx c a为一次项系数,c为常数项。

2、一元二次方程的解法(1)直接开平方法(也可以使用因式分解法)①2(0)=±=≥解为:x ax a a②2+=±+=≥解为:x a b()(0)x a b b③2+=±+=≥解为:ax b c()(0)ax b c c④22()()()+=+≠解为:()ax b cx d a c+=±+ax b cx d(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法如:20(,0)()0+=≠⇔+=此类方程适合用提供因此,而ax bx a b x ax b且其中一个根为0290(3)(3)0-=⇔-=x x x xx x x-=⇔+-=230(3)0---=⇔--=3(21)5(21)0(35)(21)0x x x x x注意:提取整个因式的方法非常常见,解题的过程中一定要认真观察。

22x x x-+=⇔-=41290(23)0694(3)4x x x-+=⇔-=2224120(6)(2)0x x x x+-=⇔-+=25120(23)(4)0 x x x x--=⇔-+=2十字相乘法非常实用,注意在解题的过程中多考虑。

(3)配方法①二次项的系数为“1”的时候:直接将一次项的系数除于2进行配方,如下所示:2220()()022P P x Px q x q ++=⇔+-+= 示例:22233310()()1022x x x -+=⇔--+=②二次项的系数不为“1”的时候:先提取二次项的系数,之后的方法同上:22220 (0)()0 ()()022b b b ax bx c a a x x c a x a c a a a++=≠++=⇒-⇒++=g 222224()()2424b b b b ac a x c x a a a a-⇒+=-⇒+= 示例: 22221111210(4)10(2)2102222x x x x x --=⇔--=⇔--⨯-=备注:实际在解方程的过程中,一般也只是针对1a =±且b 为偶数时,才使用配方法,否则可以考虑使用公式法来更加简单。

初中数学培优:一元二次方程

初中数学培优:一元二次方程

初中数学培优:一元二次方程一、用换元法解一元二次方程【典例】若实数x,y满足x2﹣2xy+y2+x﹣y﹣6=0,则x﹣y的值是()A.﹣2或3B.2或﹣3C.﹣1或6D.1或﹣6【解答】解:设x﹣y=m,则原方程可化为:m2+m﹣6=0,解得m1=2,m2=﹣3,所以,x﹣y的值2或﹣3.故选:B.【巩固】已知方程2+1+32+1=0,如果设2+1=y,那么原方程可以变形为关于y的整式方程是.【解答】解:2+1+32+1=0,设2+1=y,则原方程化为:1+3y=0,即1+3y2=0,故答案为:1+3y2=0.二、含绝对值解一元二次方程【典例】已知方程x2﹣|2x﹣1|﹣4=0,则满足该方程的所有根之和为()A.2−6B.1−6C.0D.1【解答】解:当2x﹣1≥0时,即x≥12,原方程化为:x2﹣2x﹣3=0,∵(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,∵﹣1<12,∴x2=﹣1(舍去),∴x=3,当2x﹣1<0,即x<12时,原方程化为:x2+2x﹣5=0,∴(x+1)2=6,∴x+1=±6,∴x1=﹣1+6,x2=﹣1−6,∵﹣1+6>12,∴x1=﹣1+6(舍去),∴x=﹣1−6.则3+(﹣1−6)=2−6.故选:A.【巩固】已知方程x2﹣2|x|﹣15=0,则此方程的所有实数根的和为()A.0B.﹣2C.2D.8【解答】解:①当x>0时,方程化为:x2﹣2x﹣15=0,即(x+3)(x﹣5)=0,∴x+3=0,x﹣5=0,解得x1=﹣3(舍去),x2=5,②当x<0时,方程化为:x2+2x﹣15=0,即(x﹣3)(x+5)=0,∴x﹣3=0,x+5=0,解得x3=3(舍去),x4=﹣5,③当x=0时,方程不成立.∴此方程的所有实数根的和为:5+(﹣5)=0.或原方程可化为:(|x|﹣5)(|x|+3)=0,即|x|﹣5=0,|x|+3=0,∴|x|=5,|x|=﹣3(舍去),解得x=5或﹣5,∴此方程的所有实数根的和为:5+(﹣5)=0.故选:A.三、一元二次方程求值类问题【典例】设α,β是一元二次方程x2+3x﹣7=0的两个根,则α2+3α+αβ=.【解答】解:∵α,β是一元二次方程x2+3x﹣7=0的两个根,∴αβ=﹣7,α2+3α﹣7=0,∴α2+3α=7,∴α2+3α+αβ=7﹣7=0;故答案为:0.【巩固】已知a是方程x2﹣2020x+1=0的一个根,则2−2019+20202+1的值为()A.2017B.2018C.2019D.2020【解答】解:∵a是方程x2﹣2020x+1=0的一个根,∴a2﹣2020a+1=0,即a2+1=2020a,a2=2020a﹣1,则2−2019+20202+1=2020a﹣1﹣2019a+20202020=a﹣1+1=2+1−1=2020−1=2019.故选:C.巩固练习1.已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x﹣1的值为()A.±2B.0或﹣4C.0D.2【解答】解:由y=x2+3x,则(x2+3x)2+2(x2+3x)﹣3=0,可化为:y2+2y﹣3=0,分解因式,得,(y+3)(y﹣1)=0,解得,y1=﹣3,y2=1,当x2+3x=﹣3时,Δ=32﹣3×4=﹣3<0,方程无实数根,当x2+3x=1时,Δ=9+4×1=13>0.∴x2+3x﹣1=0故选:C.2.用[x]表示不大于x的最大整数,则方程x2﹣2[x]﹣3=0的解的个数为()A.1B.2C.3D.4【解答】解:因为x≥[x],方程变形为2[x]=x2﹣3,2x≥x2﹣3,解此不等式得:﹣1≤x≤3.现将x的取值范围分为5类进行求解(1)﹣1≤x<0,则[x]=﹣1,原方程化为x2﹣1=0,解得x=﹣1;(2)0≤x<1则[x]=0,原方程化为x2﹣3=0,无解;(3)1≤x<2,则[x]=1,原方程化为x2﹣5=0,无解;(4)2≤x<3,则[x]=2,原方程化为x2﹣7=0,解得x=7;(5)x=3显然是原方程的解.综合以上,所以原方程的解为﹣1,7,3.故选:C.3.定义新运算△:a△b=a+(a+1)+(a+2)+…+(a+b﹣1),其中b为正整数.如果(x △3)△(2x)=13,则x=()A.1或−138B.1或0C.−138D.1【解答】解:∵a△b=a+(a+1)+(a+2)+…+(a+b﹣1)=ab+[1+2+…+(b﹣1)]=ab+(K1)2,∴(x△3)△(2x)=(3x+3)△(2x)=(3x+3)(2x)+(2K1)(2p2=8x2+5x=13,∴(x﹣1)(8x+13)=0,x1=1,x2=−138.但x2=−138使得2x不是正整数,与△运算的定义不符,∴x=1.故选:D.4.用配方法解方程x2+6x+5=0,配方后所得的方程是()A.(x+3)2=﹣4B.(x﹣3)2=﹣4C.(x+3)2=4D.(x﹣3)2=4【解答】解:把方程x2+6x+5=0的常数项移到等号的右边,得到x2+6x=﹣5,方程两边同时加上一次项系数一半的平方,得到x2+6x+9=﹣5+9,配方得(x+3)2=4.故选:C.5.对于实数m,n,先定义一种新运算“※”如下:m※n=2+,(≥p2+,(<p,若x※(﹣2)=10,则实数x的值为.【解答】解:分两种情况:当x≥﹣2时,∵x※(﹣2)=10,∴x2+(﹣2)=10,x2=12,x=23或x=﹣23(舍去);当x<﹣2时,∵x※(﹣2)=10,∴(﹣2)2+x=10,∴x=6(舍去);综上所述:x=23,故答案为:23.6.方程(2007x)2﹣2006×2008x﹣1=0的较大根为a,方程x2+2006x﹣2007=0的较小根为b,则a﹣b=.【解答】解:(2007x)2﹣2006×2008x﹣1=0,原方程可化为,20072x2+(﹣20072+1)x﹣1=0,(x﹣1)(20072x+1)=0,解得x1=1,x2=−120072.∵所求方程x2+2006x﹣2007=0,则原方程可化为,(x﹣1)(x+2007)=0,解得x3=1,x4=﹣2007.方程(2007x)2﹣2006×2008x﹣1=0的较大根为x1=1,方程x2+2006x﹣2007=0的较小根为x4=﹣2007;则a﹣b=1﹣(﹣2007)=2008.7.设实数x满足方程|x2﹣1|﹣x|x+1|=0,则x的值为.【解答】解:|x2﹣1|﹣x|x+1|=0,∴|x+1|(|x﹣1|﹣x)=0.当|x+1|=0时,x=﹣1;当|x﹣1|﹣x=0时,得|x﹣1|=x.若x≥1,得x﹣1=x,矛盾,舍去.若x<1,得1﹣x=x,解得x=12.综上所述,x=﹣1或12.故答案为﹣1或12.8.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+20202+1的值.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+20202020K1+1=a+1−1=2+1−1=2020K1+1−1=2020﹣1=2019.9.已知关于x的方程x2+ax+b=0(b≠0)与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2﹣x﹣6=0与x2﹣2x﹣3=0互为“同根轮换方程”.(1)若关于x的方程x2+4x+m=0与x2﹣6x+n=0互为“同根轮换方程”,求m的值;(2)若p是关于x的方程x2+ax+b=0(b≠0)的实数根,q是关于x的方程2+2B+12=0的实数根,当p、q分别取何值时,方程x2+ax+b=0(b≠0)与2+2B+12=0互为“同根轮换方程”,请说明理由.【解答】解:(1)∵方程x2+4x+m=0与x2﹣6x+n=0互为“同根轮换方程”,∴4m=﹣6n.设t是公共根,则有t2+4t+m=0,t2﹣6t+n=0.解得t=K10.∵4m=﹣6n.∴t=−6.∴(−6)2+4(−6)+m=0.∴m=﹣12.(2)当公共解为p时,∴p2+ap+b=0,p+q=﹣2a,p×q=12b,∴p=﹣3a,q=a,∴当p=﹣3a,q=a(a≠0)时,方程x2+ax+b=0(b≠0)与2+2B+12=0互为“同根轮换方程”,当公共解为q时,∴q2+2aq+12b=0,p+q=﹣a,p×q=b,∴p=2a,q=﹣3a,∴当p=2a,q=﹣3a(a≠0)时,方程x2+ax+b=0(b≠0)与2+2B+12=0互为“同根轮换方程”,设公共解为x0,∵p是关于x的方程x2+ax+b=0(b≠0)的实数根,q是关于x的方程2+2B+12=0的实数根,∴p+x0=﹣a,q+x0=﹣2a,p×x0=b,q×x0=12b,∴x0=﹣3a,p=2a,q=a,b=﹣6a2,∴当p=2a,q=a(a≠0)时,方程x2+ax+b=0(b≠0)与2+2B+12=0互为“同根轮换方程”,10.阅读下列材料:已知实数x,y满足(x2+y2+1)(x2+y2﹣1)=63,试求x2+y2的值.解:设x2+y2=a,则原方程变为(a+1)(a﹣1)=63,整理得a2﹣1=63,a2=64,根据平方根意义可得a=±8,由于x2+y2≥0,所以可以求得x2+y2=8.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.根据阅读材料内容,解决下列问题:(1)已知实数x,y满足(2x+2y+3)(2x+2y﹣3)=27,求x+y的值.(2)填空:①分解因式:(x2+4x+3)(x2+4x+5)+1=.②已知关于x,y的方程组1r1J12r2J2的解是=9=5,关于x,y的方程组12−21r1J1−122−22r2J2−2的解是.【解答】解:(1)设2x+2y=a,则原方程变为(a+3)(a﹣3)=27,整理,得:a2﹣9=27,即a2=36,解得:a=±6,则2x+2y=±6,∴x+y=±3;(2)①令a=x2+4x+3,则原式=a(a+2)+1=a2+2a+1=(a+1)2=(x2+4x+4)2=(x+2)4;②由方程组12−21r1J1−122−22r2J2−2得12−21+1+1=122−22+2+2=2,整理,得:1(−1)2+1=12(−1)2+2=2,∵方程组1r1J12r2J2的解是=9=5,∴方程组1(−1)2+1=12(−1)2+2=2的解是:(−1)2=9 =5∴x﹣1=±3,且y=5,解得:=4=5或=−2=5,故答案为:(x+2)4,=4=5或=−2=5.11.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=5时,△ABC是等腰三角形,求此时m的值.【解答】解:(1)∵x=2是方程的一个根,∴4﹣2(2m+3)+m2+3m+2=0,∴m=0或m=1;(2)∵Δ=(2m+3)2﹣4(m2+3m+2)=1,∴x=2r3±12∴x1=m+2,x2=m+1,∵AB、AC(AB<AC)的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵BC=5,△ABC是等腰三角形,∴当AB=BC时,有m+1=5,∴m=5−1;当AC=BC时,有m+2=5,∴m=5−2,综上所述,当m=5−1或m=5−2时,△ABC是等腰三角形.12.已知方程(m﹣1)x2﹣(m2+2)x+(m2+2m)=0,(n﹣1)x2﹣(n2+2)x+(n2+2n)=0(其中m,n都是正整数,且m≠n≠1)有一个公共根,求m n•n m的值.【解答】解:将一元二次方程(m﹣1)x2﹣(m2+2)x+(m2+2m)=0分解因式解得[(m﹣1)x﹣(m+2)](x﹣m)=0∴=r2K1或x=m(m≠1)将一元二次方程,(n﹣1)x2﹣(n2+2)x+(n2+2n)=0分解因式解得[(n﹣1)x﹣(n+2)](x﹣n)=0∴=r2K1或x=n(n≠1)∵方程(m﹣1)x2﹣(m2+2)x+(m2+2m)=0,(n﹣1)x2﹣(n2+2)x+(n2+2n)=0有一个公共根,且m,n都是正整数,且m≠n≠1=解得mn=m+n+2由奇偶性可知,m,n都为偶数∵m≠n≠1∴m=2,n=4或n=2,m=4∴m n•n m=24•42=16×16=256。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程培优专题Part1 可化为一元二次方程的高次方程在遇到这类可转化为一元二次方程的高次方程时,通常有两种转化方法.1.因式分解法:如果所遇到的高次方程可以因式分解成两个或者多个一元二次式或一元一次式的乘积的形式,可以用因式分解法.2.整体换元法:在一个式子中要善于观察几个式子的关系,有某种特殊的关系如倒数、几倍、差值为常数、或者和为常数的,可以用整体换元法,实现降次的目的.Part2可化为一元二次方程的分式方程在遇到这类可转化为一元二次方程的分式方程时,通常有两种转化方法.1.去分母法:在遇到分式方程时,往往先去分母,即通分然后求解.2.整体换元法:在一个分式方程中,如果有的式子含有某种特殊的关系如倒数、几倍、差值为常数、或者和为常数的时候可以考虑整体换元法,实现化简的目的.注意:在分式方程中,不管用什么方法解出来,最后一定要验根,因为要使得分式方程有意义,分母不为0,在这个过程中可能产生增根.Part3 可化为一元二次方程的绝对值方程在遇到这种可转化为一元二次方程的绝对值方程时,通常有两种转化方法.1.分类讨论法:遇到绝对值方程时,可以先去绝对值,而去绝对值,就意味着要分类讨论.第一步,找出分段点,考虑当绝对值符号内的式子等于0时,x的取值,由此划分x取值.第二步,根据x取值讨论去绝对值,得到相应转化的一元二次方程.第三步,用合适的方法求解,但是解得的解应该在讨论的x取值内.第四步,依次写出满足绝对值方程的所有根.2.整体换元法:在遇到一个特定的方程时,如果分类讨论,虽然可行但较为繁琐,可以考虑用整体换元法.注意:在绝对值方程中,要记着考虑绝对值的非负性.Part4 可转化为一元二次方程的根式方程在遇到这类可转化为一元二次方程的根式方程时,通常有两种转化方法.1.两边平方法:等式的两边同时平方,然后化简得到相应的一元二次方程.2.整体换元法:在含根式方程的一个方程中,如果几个式子存在特殊的关系,可以考虑整体换元法.特别注意:在根式中解的时候,解一定要使得根号下非负;在整体换元的时候要考虑到换的元的取值范围内,在取值范围内的解才有意义,最后也要像分式方程那样进行验根.【例1】解方程:(1)x x x 53+5+6=0(2)()x x x x 222-2-3=2-4-7(3)()()=x x 331999-+-19981【答案】(1)由题意得()x x x 42+5+6=0,所以x =0或x x 42+5+6=0,当x x 42+5+6=0时,得()()x x 22+2+3=0, 此时方程无解.综上所述,原方程得解为x =0. (2)令t x x 2=-2-3,则x x t 2-2=+3,代入原方程得:()t t 2=2+3-7,即得到t t 2-2+1=0,()t 2-1=0,t =1, 将t 的表达式代入得x x 2-2-3=1,即x x 2-2-4=0,解得x =1±所以x x 12=1+=1-(3)令t x =1999-,则x t -1998=1-,则()=t t 33+1-1,所以t t 23-3+1=1, 得t 1=0,t 2=1,将t 的代数式代入得到x 1=1999,x 2=1998.【例2】解分式方程:(1)x x x x2142++=1+2-42-(2)()()x x x x 222+16+1+=7+1+1【答案】(1)把第三个分式的分母x 2-变形为x -2,得()()x x x x x 142+-=1+2+2-2-2. 方程两边都乘以()()x x +2-2,得()()()x x x x x -2+4-2+2=+2-2, 即x x 2-3+2=0,解得x 1=1,x 2=2.检验:把x =1化入最简公分母,它不等于0,所以x =1是原方程的根; 把x =2代入最简公分母,它等于0,所以x =2是增根. 因此原方程的根是x =1.(2)设x y x 2+1=+1,那么x x y 2+11=+1,于是原方程变形为y y 62+=7. 方程的两边都乘以y ,约去分母,得y y 22-7+6=0.解这个方程,得y 1=2,y 23=2.当y =2时,x x 2+1=2+1,去分母,整理得x x 2-2-1=0.所以x =,当y 3=2时,x x 2+13=+12,去分母,整理得x x 22-3-1=0.所以x .检验:把x x 分别原方程的分母,各分母都不等于0,所以它们都是原方程的根.综上:原方程的根是x 1x 2,x 3,x 4 【例3】(1)x x x x x2212-6++2+=0 (2)x x x x 4322+3-16+3+2=0(3)x x x x x 54326-41+97-97+41-6=0【答案】(1)换元的方法x 1=1,x 2=-2x 3=-2(2)显然x ≠0,两边同除以x 2,得:x x x x 22322+3-16++=0,即x x x x 2211⎛⎫⎛⎫2++3+-16=0 ⎪ ⎪⎝⎭⎝⎭,令t x x1=+,则x t x 2221+=-2,所以方程可化为:()t t 22-2+3-16=0,即:t t 22+3-20=0,解得t 1=-4,t 25=2,解得x x 1+=-4,或x x 15+=2,∴x 1=-2+x 2=-2x 31=2,x 4=2.(3)观察知x =1为原方程的一个解,于是x -1必为左边代数式的一个因式.于是有()()x x x x x 432-16-35+62-35+6=0.得x =1或x x x x 4326-35+62-35+6=0, 下面来解x x x x 4326-35+62-35+6=0, 显然x ≠0,两边同除以x 2,得:x x x x 22166-35+62-35+=0,即:x x x x 2211⎛⎫⎛⎫6+-35++62=0 ⎪ ⎪⎝⎭⎝⎭,令y x x 1=+,则y x x2221=++2,所以方程可化为:()y y 26-2-35+62=0,即:y y 26-35+50=0.解得:y 15=2,y 210=3,即x x 15+=2,x x 110+=3.解得:x 1=2,x 21=2,x 3=3,x 41=3.于是原方程的解为x 1=2,x 21=2,x 3=3,x 41=3,x 5=1.【例4】解方程()||x x 22-1-32-1+2=0.【答案】原方程可写为||||x x 22-1-32-1+2=0,令||t x =2-1,得t t 2-3+2=0,即()()t t -1-2=0,解得t 1=1,t 2=2.由||x 2-1=1,得x 1=0,x 2=1.由||x 2-1=2,得x 33=2,x 41=-2.∴原方程的根为x 1=0,x 2=1,x 33=2,x 41=-2. 【例5】解方程:(1)||x x 2-2-1-4=0(2)()()x x x -2+3=3+【答案】(1)令,x 2-1=0得x 1=2,以12为分界点把数轴划分为两个区间,分别求解. ①当x 1<2时,则x 2-1<0,原方程可化为x x 2+2-5=0.所以x =x =;②当≥x 12时,则≥x 2-10,原方程可以化为x x 2-2-3=0,所以x =3或x =-1(舍去).综上所述,原方程的解为x 1=-1-,x 2=3.(2)分情况讨论:令()()x x -2+3=0得x =2或x =-3,以-3和2为分界点把数轴划分为四个区间,分别求解.①当≥x 2时,方程化为()()x x x -2+3=3+,即x 2=9, 解得:x 1=3,x 2=-3(舍去);②当≤x -3<2时,方程化为()()x x x --2+3=3+,即x x 2+2-3=0, 解得:x 3=1,x 4=-3;③当x <-3时,方程化为()()x x x -2+3=3+,即=9x 2, 解得:x 5=3(舍去),x 6=-3(舍去),综上所述,原方程的解为x 1=3,x 2=1,x 3=-3.【例6】解方程:(12 (2=(3【答案】(12;两边平方,得x x +8=5+20+4,x --4;两边平方整理,得x x 2+3-4=0,解得x 1=-4,x 2=1;经检验,x 2=1是增根,舍去,x 1=-4是原方程的根.(2)x x x 2+1+-3+=4;x +2=()x x x x 22+4+4=42-5-3;x x 27-24-16=0;()()x x 7+4-4=0,∴x 14=-7,x 2=4;经检验,x 14=-7是增根,舍去;x 2=4是原方程的根.(3)y =,y 1=,于是原方程可变形为y y 2-=1化为整式方程得y y 2--2=0,解之得y 1=2,y 2=-1;当y =22,解得x =10,当y =-1=-1,无实数解;经检验x =10是原方程的解. 【例7】x 7x 7,两边同时平方得x x x x x 2227+9+13=49+7-5+13-14整理得x x 249-14=14两边同时除以()x x 7≠0,得x 7-2=, 两边同时平方得x x x x 2249-28+4=28-20+52, 整理得()()x x 3+47-12=0,解得x 14=-3,x 212=7,经检验,x 4=-3是原方程的增根,则原方程的解为:x 12=7.【课后作业】1.解方程:()()x x x x 22++1+=22. (1)x x x x x x 2+11+5-=-33-3(2)x x x x 2213--2=1-1-3. (1)x x x x 2⎛⎫⎛⎫+5+6=0 ⎪ ⎪+1+1⎝⎭⎝⎭(2)()()x x x x x x 22228+23-1+=11-1+2 (3)x x x x 2318⎛⎫2-+12=-5 ⎪⎝⎭4. 解方程:(1)x x x x 4326-35+62-35+6=0(2)22+229+x x x x x 54326-9+77-6=05. 解方程:||||x x x -3+2=06.解方程:(13(25=0【作业答案】1. 令x x y 2+=,原方程为y y 2+-2=0,y 1=-2,y 1=1.由y 1=-2,得x x 2++2=0,因为<△0,所以无解.由y 2=1,得x x 2+-1=0,x =. 2. (1)x =-4,x =1(舍去,增根);(2)x 1=-3,x =1(增根);3.(1)x 12=-3,x 23=-4;(2)设x xy x 22+2=-1,得y 13=8,y 2=1,由y 13=8,得x 11=-5,x 2=-3,由y 2=1,得x 1=-2.(3)先别忙着把x x 23⎛⎫2- ⎪⎝⎭展开.把等号右边各式都移到等号左边,得x x x x 2318⎛⎫2-+12-+5=0 ⎪⎝⎭.可变形为x x x x 233⎛⎫⎛⎫2-+62-+5=0 ⎪ ⎪⎝⎭⎝⎭,设x y x 32-=, 原方程可化为y y +6+5=0.所以y 1=-1,y 2=-5.由x x 32-=-1,得x x 22+-3=0,得x 13=-2,x 2=1.由x x 32-=-5,得x x 22+5-3=0.得x 3=-3,x 41=2.经检验,这四个根都适合.所以原分式方程的解是x 13=-2,x 2=1,x 3=-3,x 41=2.4. (1)显然x ≠0,两边同除以x 2,得:x x x x22166-35+62-35+=0,即:x x x x 2211⎛⎫⎛⎫6+-35++62=0 ⎪ ⎪⎝⎭⎝⎭(1),令y x x1=+,则y x x 2221=++2,所以方程(1)可化为:()y y 26-2-35+62=0,即:y y 26-35+50=0.解得:y 15=2,y 210=3,即x x 15+=2,x x 110+=3.解得:x 1=2,x 21=2,x 3=3,x 41=3.(2)观察知x =-1为原方程的一个解,于是x +1必为左边代数式的一个因式.于是有()()x x x x x 432+16-35+62-35+6=0.得-x =1或x x x x 4326-35+62-35+6=0, 下面来解x x x x 4326-35+62-35+6=0, 显然x ≠0,两边同除以x 2,得:x x x x 22166-35+62-35+=0,即:x x x x 2211⎛⎫⎛⎫6+-35++62=0 ⎪ ⎪⎝⎭⎝⎭,令y x x 1=+,则y x x2221=++2,所以方程可化为:()y y 26-2-35+62=0,即:y y 26-35+50=0.解得:y 15=2,y 210=3,即x x 15+=2或x x 110+=3.解得:x 1=2,x 21=2,x 3=3,x 41=3.于是原方程的解为x 1=2,x 21=2,x 3=3,x 41=3,-x 5=1.5. (1)当x <0时,原方程化为x x 2-3-2=0,解得x =x =(舍去);(2)当≥x 0时,原方程化为x x 2-3+2=0,解得x =1或x =2;综上所述,原方程有3个解:x 1,x 2=1,x 3=2.6.(1)先把一个根号移到右边,然后两边同时平方,最后解得x =1;(2)换元法,最后得到x 3=5.。

相关文档
最新文档