华东师大版八年级上册数学知识总结

合集下载

第15章 数据的收集与表示(单元小结)八年级数学上册(华东师大版)

第15章 数据的收集与表示(单元小结)八年级数学上册(华东师大版)

25
15
5
4
1
根据抽样调查结果,估计该校七年级600名学生中,80分(含80分) 以上的学生有________人.
【详解】600×25+15=480(人)
50
故答案为:480.
单元小结
考点训练四 制作扇形统计图描述数据
【例4】经调查,某班学生上学所用的交通工具中,自行车占
1 ,公交车占 1 ,其他占 1 ,请画出扇形统计图描述
2
3
6
以上统计数据.
【解析】分别求得扇形的圆心角的度数,
然后作出扇形统计图即可. 解:自行车所在扇形的圆心角为:
360°× 1 =180°, 公交车占360°×
2
1 =120°,其他占360°× 1=60°,
3
6
∴扇形统计图为:
单元小结
方法总结 制作扇形统计图的步骤: (1)将数据分组整理,列出统计表; (2)分别计算出各部分在总体中所占的百分比; (3)分别计算出各部分相应的扇形圆心角的度数,扇形 圆心角的度数=360°×该部分占总体的百分比; (4)用圆规画圆,利用量角器作出各圆心角,从而把圆面 按百分比分成若干个扇形; (5)分别将各部分占总体的百分比及相应的名称标注在扇 形,并写出标题.
【详解】由题可知:第四小组的频数=5--(2+8+15+5)=20, 频率=频数÷样本容量=20÷50=0.4; 故答案是0.4.
单元小结
考点训练三 频数分布表的应用
【例3】为了解某市九年级男生的身高情况,随机抽取了该市100名九 年级男生,他们的身高x(cm)统计如下:
组别(cm) x≤160 160<x≤170 170<x≤180 x>180

华师大版-数学-八年级上册-华东师大版数学八年级上第十三章 全等三角形

华师大版-数学-八年级上册-华东师大版数学八年级上第十三章 全等三角形

第十三章全等三角形应知一、基本概念命题:可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题。

在数学中,许多命题是由题设(或已知条件)、结论两部分组成的。

题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成"如果.......,那么......."的形式。

用"如果"开始的部分就是题设,而用"那么"开始的部分就是结论。

对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。

如果两个命题中一个命题的条件和结论分别是另一个命题的条件和结论的否定,则这两个命题称互为否命题。

二、基本法则1. 四种命题的关系(见下图)。

2. 假命题的证明:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为"举反例"。

⑵公理:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。

⑶定理:有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。

⑷逆定理:如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理。

3. 全等三角形的判定:⑴如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简写成“边角边”或简记为(S.A.S.)⑵如果两个三角形有两角及其夹边对应相等,那么这两个三角形全等。

简写成“角边角”或简记为(A.S.A.)⑶如果两个三角形有两角和其中一角的对边对应相等,那么这两个三角形全等。

2016华东师大版八年级数学上册知识点总结

2016华东师大版八年级数学上册知识点总结

2016华东师大版八年级数学上册知识点总结知识点内容 备注平方根概念:如果一个数的平方等于a ,那么这个数叫做a的平方根 算术平方根:正数a的正的平方根 记作:性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有考点: (a 的取值范围a)②()③(a 的取值范围为任意实数)④= 例:=()=5⑤=a(a 为任意实数) 例:=2,=—2立方根概念:如果一个数的立方等于a,那么这个数叫做a 的立方根 性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0实数1. 包括有理数和无理数2. 实数与数轴上的点一一对考点:判断下列的数哪些是无理数? 有理数:分数和整数的统称如:,, 0都是有理数数学8年级上册第十一章:数的开方知识点内容备注幂的运同底数幂同底数幂相乘,底数不变,指数相加逆用:=应常见的无理数(无限不循环小数)有:①π②开方开不尽的数,如,等算的乘法幂的乘方幂的乘方,底数不变,指数相乘逆用:例:积的乘法积的乘方,把积的每一个因式分别相乘,再把所得的幂相乘==逆用:例=1同底数幂的除法同底数幂相处,底数不变,指数相减逆用:例:若=2,则的值是?整式的乘法单项式与单项式相乘单项式与单项式相乘,只要将它们的系数、相同的字母的幂分别相乘,对于只在一个单项式中出现的字母,连同它的指数一起作例:·=[3·(-2)]·(·x)·(y·)=为积的一个因式单项式与多项式相乘单项式与多项式相乘,将单项式分别乘以多项式的每一项,再将所得的积相加例:(-2=(-2+(-2) =-6+10多项式与多项式多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加例:(X+2)(X—3)==整式的除法单项式除于单项式单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式例:24=(24)()()=8多项式除于单多项式除于单项式,先用这个多项式的每一项除于这个单项例:(9)(3x)=9=3项式式,再把所得的商相加乘法公式平方差公式两数和与这两数差的积,等于这两数的平方差例:(a+b)(a-b)=逆用:=(a+b)(a-b)两数和的平方公式两数和的平方,等于这两数的平方和加上它们的积的2倍例:逆用两数差的平两数差的平方,等于这两数的平方和减去它们例:逆用方公式的积的2倍因式分解定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解因式分解的方法:①提公因式法②运用乘法公式法=(a+b)(a-b)常考点:①两种因式分解法一起运用(先提公因式,然后再运用公式法)例:=②“1”常常要变成“”例:第十三章:全等三角形知识内容备注点全等三角形性质:全等三角形的对应边和对应角相等三角形全等的判定:1. (边边边)S.S.S.:如果两个三角形的三条边都对应地相等,那么这两个三角形全等。

2022八年级数学上册第11章数的开方11.1平方根与立方根2算数平方根授课课件新版华东师大版61

2022八年级数学上册第11章数的开方11.1平方根与立方根2算数平方根授课课件新版华东师大版61

感悟新知
总结
知3-讲
(1)算术平方根和数的平方、绝对值一样,都是非负 数,即 a ≥0,a2≥0,|a|≥0;当几个非负数的和 为0时,其中每一个非负数都为0.
(2)只有非负数才有算术平方根,因此当出现 a , a ,
即被开方数互为相反数时,a只有为0才都有意义.
感悟新知
1. 若 a2(b2)20,则ab的值等于( )
谢谢观赏
You made my day!
复习提问
引的出问一题个,那么立即可以得到另一个.
感悟新知
知识点 1 算数平方根的定义
知1-导
定义:正数a的正的平方根,叫做a的算术平方根. 规定:0的算术平方根是0.
表示方法:a的算术平方根记为 a ,读作“根号 a”; a叫做被开方数.
感悟新知
例 1 下列说法正确的是( A ) A.3是9的算术平方根 B.-2是4的算术平方根 C. (- 2)²的算术平方根是-2 D.-9的算术平方根是3
知1-练
感悟新知
知1-练
导引:要正确把握算术平方根的定义.因为3的平方等于 9,所以3是9的算术平方根;因为-2不是正数, 所以-2不是4的算术平方根;因为(-2)²=4,而 22=4,所以2是(-2)2的算术平方根;负数没有算 术平方根.
感悟新知
归纳
知1-讲
算术平方根具有双重非负性,被开方数是非 负数,它的算术平方根也是非负数.
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月22日星期二2022/3/222022/3/222022/3/22 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/222022/3/222022/3/223/22/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/222022/3/22March 22, 2022

11.2+第1课时+实数的概念+课件+2023-2024学年华东师大版数学八年级上册

11.2+第1课时+实数的概念+课件+2023-2024学年华东师大版数学八年级上册
0.212 112 111 2…,π3.
整数集合:
{ 0, (-3)2,3 -125,…
};
分数集合:
{ 272,0.25,…
};
无理数集合:
{-3 9,π-3.14, 22,2 3-1,0.212 112 111 2…,π3,… }.
【规律方法】判断一个数是什么数应从化简结果来看,注意无理数
的几种常见类型:①开方开不尽的数,如3 9为无理数;②π或化简 后含π的数;③定义本身的形式,如 0.212 112 111 2…;④无理数 与有理数的和差一定是无理数;⑤无理数乘以或除以一个非 0 有理 数为无理数,如π3.
②若 m 是有理数,n 是无理数,则 mn 一定是无理数;
③若一个数的平方根等于它的算术平方根,则这个数是 0 或 1;
④无理数包括正无理数、0、负无理数.
A.0 个

B.1 个
C.2 个
D.3 个
12.对金山于办实公软数件有p限,公我司 们规定:用{ p }表示不小于 p的最小整数.例如:
{ 4}=2,{ 3}=2,现在对 72 进行如下操作:72 { 第一次 72}=9 第二次
2-3,…
}; }; };
非负数集合:
{ 21.3,0,- 3 -81,1.212 112 111 2…,( 2)2,}….
10.有 6 个数:0.142 7,(-0.5)3,3.141 6,272,-2π,0.102 002 0
00 2…,若无理数的个数为 x,整数的个数为 y,非负数的个数为
z,求|3 y +x z |的值.
6.[2023·宁夏]如图,点 A、B、C 在数轴上,点 A 表示的数是-
1,点 B 是 AC 的中点,线段 AB= 2,则点 C 表示的数是_______

华东师大版八年级上册数学知识点集及思维导图

华东师大版八年级上册数学知识点集及思维导图

初中数学知识点华东师大版初中数学八年级上册 第11章 数的开方 知识点 典型例题、平方根 .平方根 1)定 已知正数m 有两个平方义:如果一个数的平方等于a ,那么这个数叫做a 的平方根.(2)表示方法:)0(,≥±a a . (3)性质:正数有两个互为相反数的平方根;零的平方根是零;负数没有平方根.2.算术平方根 (1)定义:正数a 的正的平方根,叫做a 的算术平方根.0的算术平方根是0.(2)表示方法:)0(,≥a a .(3)重要性质:双重非负性:)0(,0≥≥a a其他具有非负性的式子:a n a n ,(2为正整数).运算性质:如果几个非负数的和为0,那么每一个非负数都为0. (4)运算性质:一个非负数的算术平方根的平方等于它本身,)0(,)(2≥=a a a . 一个实数的平方的算术平方根等于它的绝对值,a a =2. 3.开平方定义:求一个非负数的平方根的运算,叫做开平方. 二、立方根 1.立方根 (1)定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根.(2)表示方法:3a . (3)性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0.(4)运算性质:a a a ==3333)(. 三、实数 1.无理数定义:无限不循环小数叫做无理数. 2.实数有理数和无理数统称实数. 3.实数的分类 按定义分:⎪⎩⎪⎨⎧⎩⎨⎧无理数分数整数有理数实数按性质分:根,分别是a+3与2a -15,求a 的值,并求这个正数m.已知a a -=-22,求a 的取值范围.若0a 2=++c b ,求a 、b 、c 的值.已知实数a 、b 、c 在数轴上的位置如图所示,化简:222)(c a c b a a ---++一个数的立方根是它本身,则这个数是 .计算:=-33)2( .有下列各数:2π,0,9,32.0 ,2-1,722,⋅⋅⋅3030030003.0,其中无理数有 . 求一个无理数的整数部分和小数部分:已知a 是11的整数部分,b 是11的小数部分,求a 和b 的值.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零正无理数正有理数正实数实数 4.实数与数轴上点的关系 实数与数轴上的点一一对应. 5.实数大小比较常有方法平方法;做差法;倒数法;做商法比较大小:23____32 32____3-5+华东师大版初中数学八年级上册 第12章 整式的乘除 知识点典型例题一、幂的运算 1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.已知32=x ,求32+x 的值.华东师大版初中数学八年级上册第13章全等三角形知识点典型例题一、命题、定理与证明1.命题(1)定义:表示判断的语句叫做命题.(2)组成:命题是由条件和结论两部分组成。

最新华东师大版八年级数学上册知识点总结

最新华东师大版八年级数学上册知识点总结

最新华东师大版八年级数学(shùxué)上册知识点总结最新华东师大版八年级数学(shùxué)上册知识点总结华师版八年级上册知识点总结第十一章:数的开方知识点平方根内容概念:如果一个数的平方等于a,那么这个数叫做a的平方根算术(suànshù)平方根:正数a的正的平方根记作:a性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根概念:如果一个数的立方等于a,那么这个数叫做a的立方根性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0考点:①〔a的取值范围(fànwéi)a≥〕②(的取值范围≥)③(a的取值范围为任意实数)(≥)④==(多项式与多项式多项式与多项式相乘,先用一个多项式的每一项分别(fēnbié)乘以另一个多项式的每一项,再把所得的积相加例:〔某+2〕〔某3〕=+=例:24÷=〔24÷〕〔÷〕〔÷〕=8整式的除法单项式相除,把系数、同底数幂分别相除作为商的因式,对单项式除于单项式于只在被除式中出现的字母,那么连同它的指数一起作为商的一个因式多项式除于单项式,先用这个多项式除于单项式多项式的每一项除于这个单项式,再把所得的商相加例:(9+)÷(3某)=9÷÷+÷=3+例:(a+b)(a-b)=逆用:=(a+b)(a-b)例:(+)=++逆用++=(+)例:()=+逆用+=()常考点:①两种因式分解法一起运用〔先提公因式,然后再运用公式法〕例:++=++=(+)乘法公式平方差公式两数和与这两数差的积,等于这两数的平方差两数和的平方公式两数和的平方,等于这两数的平方和加上它们的积的2倍两数差的平方公式两数差的平方,等于这两数的平方和减去它们的积的2倍定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解因式分解的方法:因式分解①提公因式法②运用乘法公式法=(a+b)(a-b)++=(+)+=()②“1〞常常要变成“12〞例:=()=+〔〕第十三章:全等三角形知识点全等三角形内容性质:全等三角形的对应边和对应角相等三角形全等的判定:1.〔边边边〕S.S.S.:如果两个三角形的三条边都对应地相等,那么这两个三角形全等。

华东师大版八年级数学上册

华东师大版八年级数学上册

华东师大版八年级数学上册一、全等三角形。

1. 概念。

- 能够完全重合的两个三角形叫做全等三角形。

- 对应顶点、对应边、对应角:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2. 全等三角形的性质。

- 全等三角形的对应边相等。

- 全等三角形的对应角相等。

3. 全等三角形的判定。

- SSS(边边边):三边对应相等的两个三角形全等。

- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。

- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

- AAS(角角边):两角和其中一个角的对边对应相等的两个三角形全等。

- HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

二、轴对称。

1. 轴对称图形。

- 如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

- 对称轴是一条直线,它把一个图形分成两个完全相同的部分。

2. 轴对称变换。

- 由一个平面图形得到它的轴对称图形叫做轴对称变换。

- 性质:- 关于某条直线对称的两个图形是全等形。

- 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

- 两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3. 线段的垂直平分线。

- 定义:经过线段中点并且垂直于这条线段的直线,叫做线段的垂直平分线。

- 性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

- 判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

三、实数。

1. 平方根。

- 如果一个数的平方等于a,那么这个数叫做a的平方根。

- 正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

- 表示方法:正数a的平方根记为±√(a)。

2. 算术平方根。

- 正数a的正的平方根叫做a的算术平方根,记作√(a)。

华东师大版八年级上册数学整册教学课件

华东师大版八年级上册数学整册教学课件

华东师大版八年级上册数学整册教学课件一、教学内容1. 第五章:三角形5.1 三角形的性质5.2 三角形的判定5.3 三角形的角平分线、中线、高线5.4 勾股定理及其逆定理2. 第六章:不等式与不等式组6.1 不等式及其性质6.2 不等式的解法6.3 不等式组及其解法3. 第七章:函数及其图像7.1 变量与函数7.2 函数的图像7.3 一次函数7.4 一次函数的图像与性质7.5 一次函数的应用二、教学目标1. 掌握三角形的基本性质、判定方法,以及角平分线、中线、高线的性质和应用。

2. 理解并掌握不等式及其性质,能够熟练求解一元一次不等式及不等式组。

3. 理解函数的概念,掌握一次函数的图像、性质及应用。

三、教学难点与重点1. 教学难点:三角形的判定方法及性质不等式的解法一次函数的图像与性质2. 教学重点:三角形在实际问题中的应用不等式组在实际问题中的求解一次函数在实际问题中的应用四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体课件2. 学具:三角板、直尺、圆规、练习本、草稿纸五、教学过程1. 实践情景引入:通过实际生活中与三角形、不等式、一次函数相关的问题,激发学生的学习兴趣,引导学生进入学习状态。

2. 例题讲解:通过讲解典型例题,引导学生理解并掌握三角形、不等式、一次函数的基本概念和性质。

3. 随堂练习:设计针对性强的练习题,让学生在实际操作中巩固所学知识。

4. 小组讨论:将学生分组,针对重难点问题进行讨论,培养学生的合作意识和解决问题的能力。

六、板书设计1. 板书内容:知识点框架关键概念、性质、定理典型例题及解题步骤练习题及答案2. 板书要求:结构清晰,层次分明语言简练,重点突出七、作业设计1. 作业题目:第五章:三角形练习题1)证明三角形的内角和为180°。

2)已知三角形两边之和大于第三边,求第三边的取值范围。

第六章:不等式与不等式组练习题1)解一元一次不等式:2x 3 > 5。

2019华东师大初中数学八年级上册尺规作图 知识讲解

2019华东师大初中数学八年级上册尺规作图  知识讲解

尺规作图知识讲解【学习目标】1.知道基本作图的常用工具,能正确、熟练的运用尺规作图的叙述语言,并会用尺规作常见的几种基本图形;2.根据三角形全等判定定理,掌握用尺规作三角形及作一个三角形与已知三角形全等;【要点梳理】要点一、基本作图1.尺规作图的定义利用没有刻度直尺和圆规作图,简称为尺规作图.要点诠释:尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.2.常见基本作图本套教科书设计的基本尺规作图包括:1.作一条线段等于已知线段;2.作一个角等于已知角;3.作一个角的平分线;4.作一条线段的垂直平分线;5.过一点作已知直线的垂线.要点诠释:1.要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达;2.本节中继续学习用直尺、圆规做一条线段等于已知线段、一个角等于已知角、作一条线段的垂直平分线等.要点二、根据三角形全等用尺规作三角形根据三角形全等判定定理,应用基本尺规作图作三角形以及作一个三角形与已知三角形全等.【典型例题】类型一、基本作图1、(2014秋•太谷县校级期末)如图,已知线段a、b,求作一条线段使它等于2a+b.【思路点拨】首先画一条射线,再在射线上分别截取a,b即可得出等于2a+b的线段.【答案与解析】解:如图所示:AB即为所求.【总结升华】此题主要考查了简单作图,关键是掌握作一条线段等于已知线段的作法.举一反三:【变式】已知线段a、b、c,用直尺和圆规作出一条线段,使它等于a+c-b.【答案】解:先在射线上作线段AB=a,画出线段BC=c,再在AC上截取AC=b,所以线段CD=a+c-b.如图所示:2、作图题(尺规作图,不写作法,但保留作图痕迹)如图,已知,∠α、∠β.求作∠AOB,使∠AOB=∠α+2∠β.【思路点拨】先作∠BOC=∠β,再以OC为一边,在∠BOC的外侧作∠COD=∠β,再以OB为一边,在∠BOD的外侧作∠AOB=∠α,∠AOD即是所求.【答案与解析】解:只要方法得当,有作图痕迹就给分,无作图痕迹不给分.【总结升华】此题主要考查作一个角等于已知角的综合应用.举一反三:【变式】请把下面的直角进行三等分.(要求用尺规作图,不写作法,但要保留作图痕迹.)【答案】解:(1)以点B为一顶点作等边三角形;(2)作等边三角形点B处的角平分线.3、作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.【思路点拨】作∠MON角平分线和线段AB的垂直平分线,交点P即是所求.【解析】解:如图,【总结升华】此题主要考查角平分线和线段的垂直平分线的作法;注意角平分线到角两边的距离相等;线段垂直平分线上到线段两个端点的距离相等.举一反三:【变式】(2014•上城区校级模拟)数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)【答案】解:如图,点P就是要找的点.类型二、作三角形4、已知∠α和线段a和b,作一个三角形,使其中一个角等于∠α,且这个角的两边长分别为a和b.(要求:用尺规作图,并写出已知、求作、保留作图痕迹)已知:求作:【思路点拨】先作∠ACB=∠α,然后以点C为圆心,以a长为半径画弧,与边BC相交于点B,再以点C为圆心,以b的长为半径画弧与CA相交于点A,连接AB即可得解.【解析】解:已知:∠α,线段a,b,求作:△ABC,是∠C=∠α,BC=a,AC=b,如图所示,△ABC即为所求作的三角形.【总结升华】本题考查了复杂作图,主要利用了作一个角等于已知角,作一条线段等于已知线段,都是基本作图,需熟练掌握.举一反三:【变式】已知∠α及线段b,作一个三角形,使得它的两内角分别为α和,且两角的夹边为b.(要求:用尺规作图,并写出已知、求作和结论,保留作图痕迹,不写作法)已知:求作:结论:【答案】解:已知:∠α,线段b;求作:△ABC,使得∠B=α,∠C=α,BC=b.结论:如图,△ABC为所求.5、(2016•门头沟区一模)阅读下面材料:数学课上,老师提出如下问题:小明解答如图所示:老师说:“小明作法正确.”请回答:(1)小明的作图依据是;(2)他所画的痕迹弧MN是以点为圆心,为半径的弧.【思路点拨】根据作一个角等于已知角的作法解答即可.【答案与解析】解:(1)小明的作图依据是SSS定理.故答案为:SSS;(2)他所画的痕迹弧MN是以点E为圆心,CD为半径的弧.故答案为:E,CD.【总结升华】本题考查的是作图﹣基本作图,熟知作一个角等于已知角的作法及依据是解答此题的关键.。

初中数学八年级上册教学资料ppt(19份) 华东师大版8

初中数学八年级上册教学资料ppt(19份) 华东师大版8

(ab)(ab) a2 b2
(2)等式右边是这两个数(字母)的 平方差.
公式中的字母的意义 注:必须符合平方差公 很广泛,还可以代表常 式特征的代数式才能用 数,单项式或多项式 平方差公式
找一找 填一填
(a-b)(a+b)
a b a2-b2
(1+x)(1-x)
1x
12-x2
(-3+a)(-3-a) -3 a (-3)2-a2
63 1113 143
64 1212 144
6399 6400
2.从以上的过程中,你发现了什么规律? 3.请用字母表示这一规律,你能说明它的正确
性吗? a 1a 1 a2 1
课堂小结
1. 平方差公式的内涵:平方差公式
(ab)(ab) a2 b2
2. 平方差公式的结构特征: (1)公式的左边是两个二项式的积,在这两个二项式中, 有一项完全相同,另一项互为相反数; (2)公式的右边是乘式中两项的平方差,且完全相同的 项的平方减去互为相反数的一项的平方; (3)对于形如两数和与这两数差相乘,就可以运用上述 公式来计算;
(a+b)(a-b) = a2-b2
几何验证
a
b
a-b (a+b)(a-b)
b a
b a a-b
(a+b)(a-b)=a2-b2
新知归纳
(a+b)(a−b)= a2−b2
两数和与这两数差的积,
等于 这两数的平方差.
这叫平方差公式
大家议一议,平方差公 式有什么 特点?
平方差公式
相同为a
适当交换
(a+b)(a-b)=(a)2-(b)2

1、许多人企求着生活的完美结局,殊不知美根本不在结局,而在于追求的过程。

14.2勾股定理的应用第一课时课件华东师大版数学八年级上册

14.2勾股定理的应用第一课时课件华东师大版数学八年级上册

AB AC2 BC2 12 22 5
答:最短路程为 5 厘米。
例3.如果盒子换成如图长为3cm,宽为2cm,高为
1cm的长方体,蚂蚁沿着表面需要爬行的最短路程
又是多少呢?
B
分析:蚂蚁由A爬到B过程中 较短的路线有多少种情况?
1
A
3
2
(1)经过前面和上底面; (2)经过前面和右面;
B
B
2
(大门宽度一半),米 (卡车
宽度一半)在Rt△OCD中,由
勾股定理得
A

CD= OC 2 OD2
= 12 0.82 =米,
CH=+=>
N
因此高度上有米的余量,所以卡车能通过厂门.
B
2米
C
C
O

D
B
2米 HM
例3.有一个水池,水面是一个边长 为10尺的正方形,在水池的中央有 一根新生的芦苇,它高出水面1尺, 如果把这根芦苇拉向岸边,它的顶端 恰好到达岸边的水面,问这个水池的 深度和这根芦苇的长度各是多少?
解:由题意得,在RtΔABF中 A
AF=AD=BC=10,AB=DC=8
BF AF2 AB2
8
102 82 6
∴FC =4cm
B
设EC=x,则DE=EF=(8-x),
10
6 10
D
8-X
8-X E
X
F4 C
∵EF2=EC2+FC2 ∴ (8-x)2 = x2+42
解得:x=3
试一试
1.长方形纸片ABCD中,AD=4cm,AB=10cm,按如
解:如图,在Rt∆ABC中,∠A=90
C
BC2=AB2+AC2

华东师大初二数学上册知识点

华东师大初二数学上册知识点

华东师大初二数学上册知识点伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。

学习也是一样的,需要积累,从少变多。

下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。

八年级数学三角证明知识点第一章三角形的证明1、等腰三角形(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)直角三角形两个锐角之间的关系定理:直角三角形两个锐角互余。

逆定理:有两个锐角互余的三角形是直角三角形。

(3)含30度的直角三角形的边的定理定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。

(4)命题与逆命题命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(5)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

华东师大初中数学八年级上册完全平方公式(提高)知识讲解

华东师大初中数学八年级上册完全平方公式(提高)知识讲解

完全平方公式(提高)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方.即2222aab ba b ,2222aab ba b .形如222a ab b ,222aab b 的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.【高清课堂400108 因式分解之公式法知识要点】要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到).要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——完全平方公式【高清课堂400108 因式分解之公式法例4】1、分解因式:(1)22363axaxy ay ;(2)42242aa bb ;(3)2222216(4)x y xy ;(4)4224816aa bb .【答案与解析】解:(1)222223633(2)3()axaxyay a x xy y a xy .(2)42242222222()[()()]()()a a bba b ab a b a b ab .(3)2222216(4)x y xy 22222222(4)(4)(44)(44)xy x y xy x y xy x y22222(2)[(44)](2)(2)xy x xy y x y x y .(4)4224222222816(4)[(2)(2)](2)(2)aa bb ab ab ab a b ab .【总结升华】(1)提公因式法是因式分解的首选法.多项式中各项若有公因式,一定要先提公因式,常用思路是:①提公因式法;②运用公式法.(2)因式分解要分解到每一个因式不能再分解为止.举一反三:【变式】分解因式:(1)224()12()()9()x a x a x b x b .(2)22224()4()()x y xy xy .【答案】解:(1)原式22[2()]22()3()[3()]x a xa xb x b 22[2()3()](523)xa xb x a b .(2)原式22[2()]22()()()x y x y x y x y 22[2()()](3)xy xy xy .2、(2016?大庆)已知a+b=3,ab=2,求代数式a 3b+2a 2b 2+ab 3.【思路点拨】先提公因式ab ,再根据完全平方公式进行二次分解,然后带入数据进行计算即可得解.【答案与解析】解:a 3b+2a 2b 2+ab3 = ab (a 2+2ab+b 2)= ab (a+b )2将a+b=3,ab=2代入得,ab (a+b )2=2×32=18.故代数式a 3b+2a 2b 2+ab 3的值是18.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号.举一反三:【变式】若x ,y 是整数,求证:4234x y x y x y x y y 是一个完全平方数. 【答案】解:4234x y x y x y x y y4423xyx yx yx yy22224(54)(56)xxy y x xy y y令2254x xyyu ∴上式2422222(2)()(55)u u y yu y xxy y 即4222234(55)x y x y x y x y y x xy y 类型二、配方法分解因式3、用配方法来解决一部分二次三项式因式分解的问题,如:22228211819131324xx xx x x x xx那该添什么项就可以配成完全平方公式呢?我们先考虑二次项系数为1的情况:如2xbx 添上什么就可以成为完全平方式?2222()2222b b b xbx xxx因此添加的项应为一次项系数的一半的平方.那么二次项系数不是1的呢?当然是转化为二次项系数为1了.分解因式:2352x x .【思路点拨】提出二次项的系数3,转化为二次项系数为1来解决.【答案与解析】解:如2252352333xx xx222555233663xx25493636x2257366x575736666x x1323xx【总结升华】配方法,二次项系数为1的时候,添加的项应为一次项系数的一半的平方. 二次项系数不是1的时候,转化为二次项系数为1来解决. 类型三、完全平方公式的应用4、(2015春?娄底期末)先仔细阅读材料,再尝试解决问题:完全平方公式x 2±2xy+y 2=(x ±y )2及(x ±y )2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x 2+12x ﹣4的最大(小)值时,我们可以这样处理:解:原式=2(x 2+6x ﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x 取什么数,都有(x+3)2的值为非负数所以(x+3)2的最小值为0,此时x=﹣3 进而2(x+3)2﹣22 的最小值是2×0﹣22=﹣22所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:请根据上面的解题思路,探求多项式3x 2﹣6x+12的最小值是多少,并写出对应的x 的取值.【答案与解析】解:原式=3(x 2﹣2x+4)=3(x 2﹣2x+1﹣1+4)=3(x ﹣1)2+9,∵无论x 取什么数,都有(x ﹣1)2的值为非负数,∴(x ﹣1)2的最小值为0,此时x=1,∴3(x ﹣1)2+9的最小值为:3×0+9=9,则当x=1时,原多项式的最小值是9.【总结升华】此题考查了完全平方公式,非负数的性质,以及配方法的应用,熟练掌握完全平方公式是解本题的关键.举一反三:【变式1】若△ABC 的三边长分别为a 、b 、c ,且满足222166100ab c ab bc ,求证:2a cb .【答案】解:22216610abcab bc22222269251035a ab bbbc ca bb c所以22350a b b c2235a bb c所以3(5)a bb c 所以28a c b b c a或因为△ABC 的三边长分别为a 、b 、c ,c ab ,所以8b c a b ,矛盾,舍去. 所以2a cb .【变式2】(2015春?萧山区期中)若(2015﹣x )(2013﹣x )=2014,则(2015﹣x )2+(2013﹣x )2= .【答案】4032.解:∵(2015﹣x )(2013﹣x )=2014,∴[(2015﹣x)﹣(2013﹣x)]2=(2015﹣x)2+(2013﹣x)2﹣2(2015﹣x)(2013﹣x)=4,则(2015﹣x)2+(2013﹣x)2=4+2×2014=4032.。

(完整版)最新华东师大版八年级数学上册知识点总结

(完整版)最新华东师大版八年级数学上册知识点总结
C
F
腰三角形,因此
具有等腰三角
形的一切性质
E
A
性质定理:角平分线上的点到角两边的距离相

已知:OP 平分∠AOB,且 PD⊥ ,PE⊥ ,
结论:PE=PD
B
E
P
性质定理的逆定理:角的内部到角两边距离相
等的点在角的平分线上
已知:PD⊥ ,PE⊥ 且 PE=PD
结论:OP 平分∠AOB
O
论正确
反证法
勾股定理的应用
(把实际问题转化为数学问题)
b
a
拓展:
如果三角形的三边长 a、b、
c 有关系 + ≠ ,那么
这 个 三角 形不 是直 角 三角
形,且边 c 所对的角为直角
①常见的勾股数:3、4、5 或 5、12、13 或 6、8、10、
②路程最短问题:展开圆柱或者正方体,长方体的面积
三角形的一切性质。(等腰三角形包括等边三
角形,等腰大于等边)
②等边三角形的三条边相等
判定:①定义:三条边都相
等的三角形是等边三角形
③等边三角形的三个角相等,都为 60º。
③有一个角等于 60º的等腰
三角形是等边三角形
3
② 三 个 角都 相 等的 三角 形
是等边三角形
第十四章:勾股定理
知识点
内容
备注
形中一条斜边和一条直角边都对应相等,那么
常考点:
①公共边
②公共角
③两直线平行(两直线平行,
同位角相等,内错角相等,
同旁内角互补)
④对顶角(对顶角相等)
2
需要注意:
判定两直角三角形全等:
五个判定都可用,特殊:斜

八年级数学平行线分线段成比例定理华东师大版知识精讲

八年级数学平行线分线段成比例定理华东师大版知识精讲

初二数学平行线分线段成比例定理华东师大版【同步教育信息】一. 本周教学内容:平行线分线段成比例定理主要内容:1. 平行线等分线段定理及推论。

2. 平行线分线段成比例定理及推论。

3. 借助平行线证明线段成比例及相关计算。

教学重点、难点:平行线分线段成比例定理及推论应用。

【知识整理】1. 复习平行线等分线段定理及三角形梯形中位线定理。

A E F G HB C Dl 1l 2l 3l 4EF FG GH1234∴==2. 新知识介绍:平行线分线段成比例定理:三条平行线截两条直线所得的对应线段成比例。

AEFB CD l 1l 2l 3l l l BC EF123////,∴=借助比例性质可得:AB AC DE DF BC AB EFDF==, 3. 平行线分线段成比例定理推论:A E(1)BCDl 1l 2l 3ADEBCDE BCAB AC//∴=或AD BD AE EC =或BD AB EC AC=A E(2)BCDl 1l 2l 3D EAC BDE BCAC AB//∴=或AD DC AE BE =或AC DC ABBE=推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

A 型图D EACBD EABCX 型图4. 逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

AE (E')CBD分析:用同一法假设DE 不平行于BC ,则过D 作DE BC '//AD AB AE AC='又AD AB AEAC=∴=AE AE ' 即E 与E '重合所以DE BC //即:如果ADBDAE EC =,则DE BC //(或 BD AB ECACDE BC =∴,//) 5. 平行于三角形的一边,且和两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。

AE D BCF分析:过E 作EF AB //DE BC DBFE //∴是平行四边形 ∴=DE BF又 EF AB BFBC AE ACDE BC AD AB AE AC////∴=∴=⎧⎨⎪⎪⎩⎪⎪∴==AD AB AE AC DEBC【例题分析】1. 基本概念应用例1. 如图,∆ABC 中,DE BC DE cm BC cm BD cm //,,,,===496求AD 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上
第 11章 数的开方
1.平方根
(1)如果一个数的平方等于a ,那么这个数就叫做a 的平方根。

即:如果a x =2,那么x 叫做a 的平方根
(2)一个正数有两个平方根,它们互为相反数。

其中:正数a 的正的平方根,叫做a 的算术平方根,记作a ,读作“根号a ”, 另一个平方根是它的相反数,即a -。

因此,正数a 的平方根可以记作a ±。

a 称为被开方数。

0的平方根只有一个,就是0,记作00=。

负数没有平方根。

(3)求一个非负数的平方根的运算,叫做开平方。

2.立方根
(1)如果一个数的立方等于a ,那么这个数叫做a 的立方根。

即:如果a x =3
,那么x 叫做a 的立方根
数a 的立方根,记作3a ,读作“三次根号a ”,其中a 称为被开方数,3称为根指数。

(2)求一个数的立方根的运算,叫做开立方。

(3)任何数(正数、负数、0)都有立方根,并且只有一个。

正数有一个正的立方根。

负数有一个负的立方根。

0的立方根是0。

3.无理数 无限不循环小数叫做无理数。

实数 有理数和无理数统称为实数。

实数与数轴上的点一一对应。

第 12章 整式的乘除
1.幂的运算
(1)同底数幂相乘,底数不变,指数相加。

n m n m a a a +=⋅(m 、n 为正整数)
(2)幂的乘方
幂的乘方,底数不变,指数相乘。

()mn n m a a =(m 、n 为正整数)
(3)积的乘方
积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。

()n n n b a ab =(n 为正整数)
(4)同底数幂的除法
同底数幂相除,底数不变,指数相减。

(m 、n 为正整数,m>n ,a 0≠)
2.整式的乘法
(1)单项式与单项式相乘
将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。

(2)单项式与多项式相乘
将单项式分别乘以多项式的每一项,再将所得的积相加。

(3)多项式与多项式相乘
先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。

(a+b )(m+n)=am+bm+an+bn
3.乘法公式
(1)平方差公式:两数和乘以这两数的差,等于这两个数的平方差。

()()22b a b a b a -=-+
(2)完全平方公式:两数和(或差)的平方,等于它们的平方和加上(或减去)这两数积的2倍。

()2222b ab a b a ++=+ ()222
2b ab a b a +-=- 4.整式的除法
(1)单项式除以单项式
把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式。

(2)多项式除以单项式
先把这个多项式的每一项除以这个单项式,再把所得的商相加。

5.因式分解
(1)把一个多项式化为几个整式的积的形式,叫做多项式的因式分解。

(2)公因式:
多项式ma+mb+mc 中的每一项都含有一个相同的因式m ,我们称之为公因式。

(3)提取公因式法:
把公因式提出来,多项式ma+mb+mc 就可以分解成两个因式m 和(a+b+c )的乘积,这种因式分解的方法,叫做提取公因式法。

(4)公式法:将乘法公式反过来用,对多项式进行因式分解的,这种因式分解的方法成为公式法。

(5)十字相乘法:ab x b a x +++)(2
=))((b x a x ++(a 、b 是常数)
公式特点:
1)右边相乘的两个因式都只含有一个相同的字母,都是一次二项式,并且一次项的系数为一。

2)左边是二次三项式,二次项的系数是1,一次项系数是两常数项之和,积的常数项等于两个因式中常数项之积。

第13章 全等三角形
1.命题
判断它是正确的或是错误的句子叫做命题。

正确的命题叫做真命题,错误的命题叫假命题。

命题可以写成“如果……,那么……”的形式。

2.定理
数学中有些命题可以从公理或其他真命题出发,用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定公理。

3.全等三角形的判定
一般三角形 SSS SAS ASA AAS
直角三角形 SSS SAS ASA AAS HL
4.尺规作图
只有使用圆规和没有刻度的直尺这两种工具去作几何图形的方法称为尺规作图。

(1)作一条线段等于已知线段
(2)作一个角等于已知角
(3)作已知角的平分线
(4)经过一已知点(直线上、直线外)作已知直线的垂线
(5)作已经线段的垂直的平分线
6.逆命题
(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。

(2)如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理逆定理。

(3)原命题为真,它的逆命题不一定为真真命题;逆定理、互逆定理,一定是真命题
7.等腰三角形的性质定理1:
等腰三角形的两个底角相等,(简称:“等边对等角”)。

等腰三角形的性质定理2:
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”)
8.等腰三角形的判定
(1)利用定义:两条边相等的三角形叫等腰三角形。

(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)。

(3)有一个角是60°的等腰三角形为等边三角形。

9.角平分线性质定理:
到一个角两边距离相等的点,在这个角的平分线上。

角平分线性质定理的逆定理:
(角的内部)到角的两边距离相等的点在这个角的平分线上
10.线段垂直平分线性质定理:
到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。

线段垂直平分线性质定理的逆定理:
到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
第 14章 勾股定理
1.对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有2
22c b a =+
2.勾股定理:
直角三角形两直角边的平方和等于斜边的平方。

勾股定理的逆定理
如果三角形的一条边的平方等于另外两条边的和,那么这个三角形是直角三角形。

3.直角三角形的判定:如果三角形的三边长a,b,c 有关系,2
22c b a =+,那么这个三角形是直角三角形。

第15章 数据的收集与表示
1. 数据的收集 明确调查对象 确定调查对象 选择调查方法 展开调查 记录结果 得出结论
2. 频数:表示每个对象出现的次数
3. 频率:表示每个对象出现的次数与总次数的比值(或者百分比)。

数据总数
频数频率= 所有小组的频率之和等于1
4. 频数和频率都能够反映每个对象的频繁程度。

5.数据的表示
(1)扇形统计图:是用圆的面积表示一组数据的整体,用圆中扇形的面积与圆面积的比来表示各组成部分在总体中所占的百分比的统计图。

它可以直观的反映出各部分数量在总量中所占的份额。

(2)条形统计图:是用宽度相同的条形的高低或长短来表示数据特征的统计图。

它们可以直观的反映出数据的数量特征。

如果有两个研究对象,常常把两个对象的相应数据并列表示在同一张条形统计图中。

(3)折线统计图:是用折线表示数量变化规律的统计图。

它能反映出各部分数据的变化趋势。

★ 统计图表:可以准确的反映出数据的不同特征。

相关文档
最新文档