橡胶增韧 环氧异相增韧的原理

合集下载

关于环氧树脂胶黏剂增韧改性的分析

关于环氧树脂胶黏剂增韧改性的分析

关于环氧树脂胶黏剂增韧改性的分析[摘要]环氧树脂胶黏剂,它属于固化剂、基体树脂、溶剂、增韧剂、增塑剂、填料等各种组分经由化学及物理混合多种方法,所形成有着良好功能性、黏结性,在工程领域当中所需用到的黏胶剂。

那么,为更进一步了解此类黏胶剂的增韧改性具体方法及其情况,鉴于此,本文主要探讨环氧树脂胶黏剂自身增韧改性情况,仅供业内相关人士参考。

[关键词]胶黏剂;环氧树脂;增韧改性前言:因环氧树脂胶黏剂,它和其余胶黏剂所具备优势特点较为不同,故其现阶段在众多行业领域当中实现较为广泛的应用。

但因其呈较大脆性及较弱韧性,因而,对环氧树脂胶黏剂自身增韧改性情况开展综合分析较为必要。

1、简述环氧胶内部成分及其增韧改性基本机理情况1.1在主要成分层面针对环氧胶内部成分,通常以基体树脂、固化剂、增塑剂及增韧剂、溶剂为主。

针对基体树脂层面,现阶段以纯环氧树脂及改性之后的环氧树脂为主。

环氧树脂,其自身黏结强度及抗压性、黏结性及力学性能相对较好,但韧性弱;针对固化剂,其属于环氧胶内部重要成分。

生产过程当中,通常需结合生产条件及其性能指标等,合理选定固化剂;针对增塑剂即增韧剂,其主要是因基体树脂与固化剂相互间经化学反应之后所形成一种固化物,呈现出较脆质地、较差韧性及其抗冲强度。

故生产过程当中需要向着固化物内部添加一定量的增塑剂及增韧剂等,确保其韧性及耐冲性能可得到增强;针对溶剂层面,其属于聚合物的反应介质。

实际应用当中,可以与具体需求结合予以合理选用。

1.2在基本机理层面一是,针对分散相撕裂及塑性拉伸基本机理层面。

此项理论观点,即外部力作用至改性树脂之后,使得裂纹形成,且处于环氧树脂内部持续增长情况下,橡胶会以颗粒形式渗入裂纹内部,连接好裂纹两端位置。

外力持续增强情况下,橡胶颗粒将部分能量吸收,其自身会被逐渐拉长或撕裂,对环氧树脂后期被撕裂整个进度可起到减缓作用,环氧树脂则更具韧性[1];二是,针对微裂纹的钝化增韧基本机理层面。

环氧树脂胶粘剂增韧改性的研究

环氧树脂胶粘剂增韧改性的研究

环氧树脂胶粘剂增韧改性的研究一、本文概述Overview of this article环氧树脂胶粘剂是一种广泛应用于工业生产和日常生活中的重要材料,因其优异的机械性能、良好的化学稳定性和较强的粘附力而备受关注。

然而,随着科技的发展和应用领域的不断拓展,传统的环氧树脂胶粘剂在某些特定场合下已无法满足使用需求,尤其是在需要更高柔韧性和抗冲击性的场合。

因此,对环氧树脂胶粘剂进行增韧改性研究具有重要的现实意义和应用价值。

Epoxy resin adhesive is an important material widely used in industrial production and daily life, which has attracted attention due to its excellent mechanical properties, good chemical stability, and strong adhesion. However, with the development of technology and the continuous expansion of application fields, traditional epoxy resin adhesives can no longer meet the usage needs in certain specific situations, especially in situations where higher flexibility and impact resistance are required. Therefore, studying the tougheningmodification of epoxy resin adhesives has important practical significance and application value.本文旨在探讨环氧树脂胶粘剂的增韧改性方法,以提高其柔韧性和抗冲击性。

环氧树脂增韧改性的作用环氧树脂怎么增韧改性

环氧树脂增韧改性的作用环氧树脂怎么增韧改性

环氧树脂增韧改性的作用,环氧树脂怎么增韧改性环氧树脂具有优良的物理机械性能、电绝缘性能、耐药品性能和粘接性能,以其独特的优势应用在各行各业。

环氧树脂地坪漆中的溶剂大多是对人体是有害的,如MDA、TDl是致癌物质,会残留在环氧树脂地坪内,慢慢挥发出来。

这就是美国人不做环氧树脂地坪的根本原因,所以环氧树脂地坪漆也不适合做家装。

现在流行做纳路特混凝土密封固化剂抛光混凝土金钻磨石地坪,产品具有无(无TVOC、无毒、无缝),防(防尘、防滑、防水)、抗(抗压、抗渗、抗老化)、耐(耐腐蚀、耐摩擦、耐刮伤),规格高端,样式多选的显著特点。

当然,环氧树脂在应用过程中也存在一定的缺陷。

如一般固化物偏脆,抗剥离、抗开裂、抗冲击性能较差。

若改善环氧树脂的脆性,一般都采用引入橡胶弹性体来提高韧性。

对环氧树脂增韧改性主要是增强环氧树脂的韧性。

一、环氧树脂增韧改性的原理1、用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性;2、用热塑性树脂连续地爨穿于热固性树脂中形成互传网络来增韧改性;3、通过改变简练网络的化学结构以提高网链分子的活动能力来增韧;4、控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。

二、环氧树脂增韧性改性优缺点1 热塑性弹性体增韧:这种方法属于网络穿透式增韧,意思就是把长链的弹性体强迫混合到环氧树脂中,环氧树脂固化后,里面有网络穿透的弹性链条---这种方法如果是弹性体的耐温性好于环氧树脂如聚醚砜与硅氧烷等,能带来弹性,并提升固化物Tg,但这些物质一般很难喝环氧互混,需要专门的设备。

此外,如果弹性体的耐温性差,将严重影响固化物的tg。

2 无机刚性粒子或纳米粒子:带来韧性,也不会造成耐热性下降,但同样混合困难。

真正商业化应用的,主要是以下方式3 反应性弹性体增韧:通过可以环氧树脂反应,将弹性体嵌入到环氧树脂三位固化结构中来增韧,反应性弹性体种类很多,主要有:聚氨酯类:增韧效果好,就是耐热性损失太大,固化物不耐高温。

环氧树脂的增强增韧

环氧树脂的增强增韧

李健民:环氧树脂的增强增韧第29卷第12期粘接 Adhesi on i n Ch i na环氧树脂的增强增韧李健民 编译中图分类号:TQ 433.4+37 文献标识码:B文章编号:1001-5922(2008)12-0050-031 前言环氧树脂(EP)问世60年以来以其优异性能至今保持着高性能高分子材料的地位。

但是与热塑性树脂相比,环氧树脂最大缺点是其脆性。

所以对EP 的增韧研究由来已久,改性方法也多种多样,如用液态弹性体增韧;用交联的橡胶粒子增韧;用有机弹性体 无机填料复合改性;用核/壳型橡胶粒子改性;用热塑性工程合金塑料改性等。

最近又出现了介晶体(m esogen ic)为主链的EP ,由于其网络链的取向而使自身增韧,介晶型环氧结构如式(1)。

(1)本文介绍EP 增强增韧的方法、机理,及新近取得的进展。

2 EP 通过弹性体增强增韧2.1 CTBN 增韧EP 中加入弹性体增韧的同时,为防止其耐热性降低,应使弹性体在EP 中是呈亚微米粒子分布。

A F YEE 等人研究过用CTB N 改性EP 的机理。

认为:1)在裂缝附近,橡胶相由于应力集中而向着裂纹的前端膨胀并引起空穴化;2)与膨胀的CTBN 橡胶相连接的EP 基体发生剪切变形;3)EP 基体相的交联密度越低,CTBN 改性效果越好;4)在断裂面周边可观察到空穴化及剪切变形,从而可证明韧性得以提高。

此结果说明,增韧的原因不仅靠橡胶分散相而且靠EP 相的剪切变形。

2.2 中空粒子增韧由于增韧机理是因EP 基体的变形,不难想象,就不一定非要弹性体不可。

Baghere 和Ke ifer 等人,通过在EP 体系中引入微细的中空粒子增韧,加入了这种中空粒子的EP 破坏韧性与粒子间基体的厚度间的关系见图1。

引入中空粒子的EP 与加入弹性体的EP 破坏韧性值基本相同,两者的破坏断面的形态也基本相同。

这一结果表明,EP 的增强增韧不一定非加弹性体不可,假若能把EP 基体横向的约束解除,也是能够增强增韧的。

环氧树脂增韧途径与机理

环氧树脂增韧途径与机理

环氧树脂增韧途径与机理环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。

由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。

因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。

一、序言目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性;用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性;通过改变交联网络的化学结构以提高网链分子的活动能力来增韧;控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。

近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(IPN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。

这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。

随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。

中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。

采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。

使用较多的有聚醚砜(PES)、聚砜(PSF)、聚醚酰亚胺(PEI)、聚醚醚酮(PEEK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。

据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。

(完整版)增韧理论

(完整版)增韧理论

增韧理论:塑料共混改性的一个重要内容是提高一种塑料的韧性,使其满足使用场合和环境对材料韧性的要求。

比较成熟的是橡胶增韧技术,但近几年与发展了非弹性体增韧技术,如无机刚性粒子增韧塑料等。

⑴弹性体直接吸收能量理论:当试样受到冲击时会产生微裂纹,这时橡胶颗粒跨越裂纹两岸,裂纹要发展就必须拉伸橡胶,橡胶形变过程要吸收大量能量,从而提高了塑料的冲击强度。

⑵屈服理论:橡胶增韧塑料高冲击强度主要来源于基体树脂发生了很大的屈服形变,基体树脂产生很大屈服形变的原因,是橡胶的热膨胀系数和泊松比均大于塑料的,在成型过程中冷却阶段的热收缩和形变过程中的横向收缩对周围基体产生静水张应力,使基体树脂的自由体积增加,降低其玻璃化转变温度,易于产生塑性形变而提高韧性。

另外是橡胶粒子的应力集中效应引起的。

⑶裂纹核心理论:橡胶颗粒充作应力集中点,产生了大量小裂纹而不是少量大裂纹,扩展众多的小裂纹比扩展少数大裂纹需要较多的能量。

同时,大量小裂纹的应力场相互干扰,减弱了裂纹发展的前沿应力,从而,会减缓裂纹发展并导致裂纹的终止。

⑷多重银纹理论:由于增韧塑料中橡胶粒子数目极多,大量的应力集中物引发大量银纹,由此可以耗散大量能量。

较大的橡胶粒子还是银纹终止剂,小粒子不能终止银纹。

⑸银纹-剪切带理论:是普遍接受的一个重要理论。

大量实验表明,聚合物形变机理包括两个过程:一是剪切形变过程,二是银纹化过程。

剪切过程包括弥散性的剪切屈服形变和形成局部剪切带两种情况。

剪切形变只是物体形状的改变。

分子间的内聚能和物体的密度基本不变。

银纹化过程则使物体的密度大大下降。

一方面,银纹体中有空洞。

说明银纹化造成了材料一定的损伤,是次宏观断裂破坏的先兆;另一方面,银纹在形成、生长过程中消耗了大量能量,约束了裂纹的扩展,使材料的韧性提高,是聚合物增韧的力学机制之一,所以,正确认识银纹化现象,是认识高分子材料变形和断裂过程的核心,是进行共混改性塑料,尤其是增韧塑料设计的关键之一。

环氧树脂增韧改性技术的研究进展

环氧树脂增韧改性技术的研究进展
者 问有 相互 牵 引作用 , 基体 有一定 的定 向趋势 , 使
3 刚性纳 米粒 子增韧 环氧树 脂 利用 化 学 、物 理 方法 ,在 环氧 树脂 中引人 细
有 比原来 较好 的拉 伸 强度 : 同时体 系形成 刚 柔相
问、密 度较 高的 网络 ,提高 了冲击 强度 。 张 宏 元 等 l合 成 了 一 种 侧 链 型 液 晶聚 合 物 5 】
树 脂粘接 性 强度 高 ,电绝缘 性优 良,机械 强度 高, 收缩 率低 ,尺 寸稳定 ,耐化 学试 剂 以及 加 工性 良
好 。总之环 氧树 脂 具有优 良的综 合性 能 ,因而 在
中,而 导致材料 模量 和玻璃 化温 度 的下 降。
武渊 博等 【 用端 环氧 基丁腈 橡胶 ( T N) 1 1 采 EB 对环 氧 树脂 进行 增韧 ,研 究 了增 韧环氧 树 脂浇注
有 序 、深度 分 子交 联 的聚合 物 网络 ,它 融合 了液 晶有序 与 网络 交联 的优 点 ,具有 更高 的力 学性 能 和 耐热 性 。 L P增韧 环氧树 脂 是通过 原位复 合 的 TC 方法 来 实施 的 , 其机 理可概括 为银 纹一 剪切带 的银
但液氮 温度 下可 使冲 击韧性 增加 5%。液 氮温 度 9
析 ( C)和 偏光 显微镜 ( O )对聚合 物 结构 DS PM 和液 晶性 能进行 表 征 ,探 讨其 对环 氧 树脂共 混 物 力学 性 能的影 响 , 并分 析共混 物 的微 相分 离结 构 。 结果 表 明, T 1 固化剂 时 , L P对环 氧树脂 用 3作 SC
有较 好 的增 强增 韧效 果 ,在 强度和 玻璃 化温 度不 降低 的情 况 下 ,断裂伸 长 度 比未 改性 固化物 最大 提高 26倍 ,但用 三 乙醇胺作 固化 剂 时,S C . L P对

端羧基丁腈橡胶增韧改性环氧树脂的研究

端羧基丁腈橡胶增韧改性环氧树脂的研究

端羧基丁腈橡胶增韧改性环氧树脂的研究1. 引言1.1 研究背景端羧基丁腈橡胶增韧改性环氧树脂作为一种新型复合材料,在航空航天、汽车、电子等领域具有广泛的应用前景。

目前,随着科技的不断进步和工业制造的高速发展,对于材料性能和功能的要求也越来越高,传统的环氧树脂由于其脆性和缺乏韧性而难以满足现代工业的需求。

因此,开展端羧基丁腈橡胶增韧改性环氧树脂的研究具有重要意义。

通过将端羧基丁腈橡胶引入环氧树脂体系中,可以有效提高环氧树脂的韧性和强度,同时具有较好的耐热性和耐化学腐蚀性能。

这种复合材料的研究将为高性能材料的开发提供新的思路和方法,促进材料科学领域的进步。

因此,深入研究端羧基丁腈橡胶增韧改性环氧树脂的性能与应用具有重要的理论和实际意义,对推动材料科学的发展和提升我国在高性能材料领域的竞争力具有积极的促进作用。

1.2 研究目的研究目的是为了探究端羧基丁腈橡胶在环氧树脂中的增韧效果及机理,进一步提高环氧树脂的性能和应用范围。

通过深入研究端羧基丁腈橡胶与环氧树脂之间的相互作用,实现对环氧树脂的改性,从而提高其强度、韧性和耐热性等性能。

研究目的还在于探讨端羧基丁腈橡胶在环氧树脂中的最佳添加比例和改性方法,为工业生产提供技术支持和指导。

通过此研究,我们可以更好地认识端羧基丁腈橡胶增韧改性环氧树脂的作用机理,为材料工程领域的发展提供新的解决方案,推动端羧基丁腈橡胶在环氧树脂中的应用和开发。

1.3 研究意义端羧基丁腈橡胶增韧改性环氧树脂是目前研究领域中备受关注的热点之一。

其研究意义主要体现在以下几个方面:1. 提高环氧树脂的性能:传统的环氧树脂在某些应用领域下存在着脆性和强度不足的问题,而端羧基丁腈橡胶作为增韧剂,可以有效地提高环氧树脂的韧性和强度,从而使其更加适用于工程领域。

2. 拓展环氧树脂的应用范围:通过端羧基丁腈橡胶增韧改性,可以使环氧树脂在航空航天、汽车制造、建筑材料等领域得到更广泛的应用。

这将推动相关行业的发展,提升产品的性能和竞争力。

环氧树脂建筑结构胶粘剂的增韧机理

环氧树脂建筑结构胶粘剂的增韧机理

环氧树脂建筑结构胶粘剂的增韧机理张炜刘宇星赵世琦摘要简述了环氧树脂建筑结构胶增韧的必要性;环氧树脂增韧与传统的增柔之间的区别,环氧树脂增韧的结构特征;综述了环氧树脂增韧的历史及现状,并对不同弹性体增韧方法的特点进行了评述;通过具体实例论述了胶粘剂本体韧性的提高与粘接强度的提高的对应关系,举例介绍了在建筑结构胶中广泛使用的典型环氧树脂/胺类固化剂体系的增韧方法,并简要说明了使用原位分相型增韧技术时的注意事项。

关键词 环氧树脂;建筑结构胶;增韧;原位分相一、建筑结构胶增韧的必要性许多双酚A型环氧树脂/胺类固化剂组成的配方体系可以在室温条件下固化,因而被广泛用做建筑结构胶粘剂的基料。

但是目前的建筑工程对建筑结构胶粘剂提出了越来越高的性能要求,不仅希望结构胶具有更高的粘接强度(拉伸剪切强度、正拉强度),更好的耐低温、耐疲劳性能,而且不能使结构胶的耐热性、抗压强度等下降过多。

通常双酚A型环氧树脂固化物质地硬脆,耐开裂和冲击性能较差,如果仅在环氧树脂、固化剂种类、配比方面进行调配是难于满足以上要求的。

采用环氧树脂增韧技术,将环氧树脂均相固化物转变为具有多相结构的环氧树脂合金,是当前制备高性能建筑结构胶粘剂的极为有力的技术手段,受到了广泛的重视。

二、环氧树脂的增韧提到增加韧性,往往令人想到向树脂中加邻苯二甲酸二丁酯或邻苯二甲酸二辛酯等非活性的增塑剂,它们与树脂间没有任何化学键相连接,存在于树脂交联网络中,在分子链段相互运动之中起某种“润滑”作用,因而使树脂固化物柔化,而且增塑剂有可能会随时间慢慢迁移到树脂固化物的表面。

此外,使用一些具有柔性分子链的固化剂如长链脂肪族胺类、柔性环氧树脂如聚丙二醇二缩水甘油醚等,它们能够通过反应连接到交联网络之中,从而增加交联网链的柔性,这一类物质不会象二丁酯、二辛酯那样有迁移析出到固化物表面的可能。

这些物质都是使材料整体的分子结构柔性化,而且柔化后的树脂仍然是均相体系,胶粘剂增加了柔性粘接强度虽有了某种程度的提高,但耐热性例如热变形温度HDT或玻璃化转变温度T g往往下降几十度,所以也就大大降低了高温下的性能。

橡胶增韧塑料机理(精华)

橡胶增韧塑料机理(精华)

5期第高分子通报?13 ?橡胶增韧塑料机理彭, 乔金梁, 魏根栓静 1 2摘要: 综述了橡胶增韧塑料机理研究的发展与现状,着重探讨了橡胶增韧机理中有关脆韧转变的定量研究,同时也讨论了分散相的形态参数、界面相容性和韧性测试条件以及分散相与基体的性能等因素对橡胶增韧塑料性能及增韧的影响,最后提出了橡胶增韧塑料研究的发展趋势。

关键词: 橡胶; 橡胶增韧; 塑料; 进展引言聚合物材料在实际使用过程中,不仅需要具有较高的强度,而且还应具有较高的韧性,因此有关塑料增韧的研究一直是高分子材料科学的重要课题和热点。

自从19 世纪40 年代以来, 工业上就广泛采用加入少量橡胶来提高刚性聚合物的抗断裂性能,因而橡胶增韧技术也随之蓬勃发展起来。

目前几乎所有类型的刚性聚合物( 包括无定形、半结晶型热塑性树脂和热固性树脂) 的橡胶增韧材料都被制造出来。

但由于橡胶增韧聚合物的断裂行为十分复杂,并且随组成、形态和测试条件变化而显著变化,使得增韧机理的研究进程发展得相对缓慢。

迄今为止,橡胶增韧聚合物的结构与性能关系中一些重要的方面还没有被正确地认识,它们仍是科学家们争相研究的焦点。

研究橡胶增韧塑料的机理十分重要,它将指导我们更好地进行分子设计,以得到综合性能良好的工程材料。

现在,一些研究工作者们将新的实验方法与新的模型方法相结合已经取得了前所未有的进展,应该说增韧机理的研究正处于定量研究的发展趋势中。

本文主要综述近年来有关增韧机理的定量研究。

1增韧机理的发展增韧机理的研究最早开始于50 年代初, 人们从脆性基体与橡胶分散相所组成的物理模型出发,围绕着橡胶相如何增韧机理而展开。

纵观增韧理论的发展,它主要经历了微裂纹理论、多重银纹理论和剪切屈服理论等阶段。

目前被人们较普遍接受的增韧理论是银纹2剪切带理论,该理论是[1 ,2 ] Bucknall 等人在70 年代提出的,其主要思想为: 橡胶颗料在增韧体系中发挥着两个重要的作用, 一是作为应力集中中心诱发大量银纹和剪切带,二是控制银纹的发展,并使银纹终止而不致发展成破坏性裂纹。

聚合物增韧方法及增韧机理(1)

聚合物增韧方法及增韧机理(1)

聚合物增韧方法及增韧机理*陈立新 蓝立文 王汝敏(西北工业大学化工系,西安市710072)收稿日期:2000-07-03作者简介:陈立新女,1966年生,博士、讲师,已发表论文20余篇。

* 先进复合材料国防科技重点实验室基金资助。

摘要 探讨了聚合物增韧方法及增韧机理,为材料的研制与开发提供新的思路和准则。

关键词 增韧 机理 聚合物T oughening mechanism and methods of polymerChen Lixin Lan Liw en Wang Rumin(Dept.of Chemical Engineer ing ,N orthwest U niversity,Xi .an 710072)Abstract T he toughening mechanism and methods of polymer are discussed in differ ent aspects.Some new ideas and principles are also prov ided for the development of mater ials.Keyw ords T oug hening M echanism Polymer1 前言聚合物增韧一直是高分子材料科学研究的重要内容。

最早采用弹性体来增韧聚合物,如通过橡胶增韧苯乙烯-丙烯腈共聚物(SAN)树脂,制备了性能优良的ABS 工程塑料;通过液体端羧基丁腈橡胶(CTBN)增韧环氧[1];端氨基丁腈(ATBN )增韧BM [2],提高了树脂的断裂韧性。

但在提高韧性的同时,却使刚度、强度和使用温度大幅度降低。

自20世纪80年代中期,人们开始讨论研究采用非弹性体代替橡胶增韧聚合物的新思路[3~6],先后获得了PC/ABS 、PC/AS 、PP/ABS 刚性有机粒子增韧体系,以及热塑性树脂(PEI,PH ,PES 等)贯穿于热固性树脂(EP,BMI)网络中的增韧体系。

橡胶改性环氧的增韧和增柔

橡胶改性环氧的增韧和增柔

橡胶改性环氧的增韧和增柔(2012-02-05 11:10:39)标签:分类:技术分享环氧增韧增柔丁腈橡胶ctbn活性稀释剂在环氧行业,对于橡胶改性剂的增韧性能有很大误解,很多人认为,因为是橡胶改性的产品,所以当其添加到环氧体系中,应该增加体系的柔性(flexibility)和粘弹性(elasticity)。

这是不正确的,CVC公司有一系列牌号HyPox的产品均是橡胶改性产品,包括几种:RA 840,RA 1340,RF 1320,RF 1341,RF 928,RF 933,RM 20,RM 22,RK 84但这些橡胶改性剂并非增加体系的柔性和粘弹性,它们主要是在固化过程中,发生相分离,在第一相中形成微小的橡胶集束,从而改进体系的韧性。

材料的整体力学性能,如压缩强度/模量,玻璃化转变温度,都显示第一相的特征。

第二相在体系中,通过吸收微裂纹发展,从而提高体系的韧性。

这种橡胶增韧效果可以在未加填料的体系中观察到,由于第二相(橡胶相)的存在,增韧后的体系变得不透明(opaque),如下图所示:左边的样品是未添加橡胶改性剂的体系,右面的样品含15PHR的橡胶改性剂(以100份树脂计)增韧体系有两个主要的特点:1.将吸收更大的能量以使微裂纹扩展2.几乎不会牺牲产品的承载能力,如模量,Tg等增柔体系也会显示出更大的能量,从而扩展微裂纹,但是同时会损失模量和Tg。

下表显示了增柔和增韧体系中性能变化对比:Erisys GE-36的增柔Erisys GE-36是一种特殊的增柔剂(活性稀释剂),在不同的固化剂体系中,它显示出不同的增柔特性。

由下图外观可见,TETA+Epalloy 7190(普通双酚A环氧)的体系中,GE-36增柔效果非常明显。

图中从上至下,GE-36的添加量从0增加到20%。

我们之前已经见过RA1340增韧的Epalloy 7190,固化过程中将发生相分离,随着GE-36添加量加大,则不透明程度增加。

环氧树脂的增韧改性方法

环氧树脂的增韧改性方法

环氧树脂的增韧改性方法摘要:环氧树脂(EP)是聚合物基复合材料应用最广泛的基体树脂。

EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、粘接以及电子电气绝缘材料、先进复合材料基体等领域得到广泛应用[1-3]。

因此,对EP增韧增强一直是人们改性EP的重要研究课题之一。

一般的EP填充剂和增韧剂都存在增强相与树脂基体间的界面粘接性较差的问题,韧性的改善是以牺牲材料强度、模量及耐热性为代价的,使其物理、力学和热性能的提高受到限制。

笔者对国内EP增韧增强改性方法的最新进展做了简单的综述。

关键词:环氧树脂增韧改性1环氧树脂的增韧改性1.1橡胶弹性体改性利用橡胶弹性体增韧EP的实践始于上世纪60年代,主要通过调节两者的溶解度参数,控制胶化过程中相分离所形成的海岛结构,以分散相存在的橡胶粒子就可以起到中止裂纹、分枝裂纹、诱导剪切变形的作用,从而提高EP的韧性.用于EP增韧的橡胶和弹性体必须具备2个基本条件:首先,所用的橡胶在固化前必须能与EP相容,这就要求橡胶的相对分子质量不能太大;而EP固化时,橡胶又要能顺利地析出来,形成两相结构,因此橡胶分子中两反应点之间的相对分子质量又不能太小[4]。

其次,橡胶应能与EP 发生化学反应,才可产生牢固的化学交联点。

因此EP增韧用的橡胶一般都是RLP (反应性液态聚合物)型的,相对分子质量在1000~10000,且在端基或侧基上带有可与环氧基反应的官能团[5]。

近年来,随着高分子相容性理论的发展和增容技术的进步,环氧树脂与热塑性树脂的合金化增韧改性获得了长足的发展,有效地克服了橡胶弹性体改性环氧树脂体系的不足。

用于环氧树脂增韧改性的热塑性树脂主要有聚砜(PSF)、聚醚砜(PES)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚苯醚(PPO)、聚碳酸酯(PC)等。

液体丁腈橡胶增韧改性环氧树脂的研究进展

液体丁腈橡胶增韧改性环氧树脂的研究进展

液体丁腈橡胶增韧改性环氧树脂的研究进展目录一、内容描述 (2)1. 研究背景 (3)2. 研究意义 (4)3. 研究目的与内容 (5)二、液体丁腈橡胶增韧改性环氧树脂的理论基础 (6)1. 液体丁腈橡胶的特性 (7)2. 环氧树脂的性能与应用 (8)3. 增韧改性的原理与方法 (9)三、液体丁腈橡胶增韧改性环氧树脂的实验研究 (10)1. 实验材料与方法 (11)2. 改性环氧树脂的制备工艺 (12)3. 性能测试与表征手段 (13)四、实验结果与分析 (14)1. 力学性能分析 (15)2. 物理性能分析 (16)3. 化学稳定性分析 (17)4. 成型工艺分析 (18)五、液体丁腈橡胶增韧改性环氧树脂的应用前景 (20)1. 在涂料领域的应用 (21)2. 在胶粘剂领域的应用 (22)3. 在复合材料领域的应用 (23)4. 在其他领域的应用展望 (24)六、结论与展望 (25)1. 研究成果总结 (26)2. 存在问题与不足 (27)3. 后续研究方向与展望 (28)一、内容描述随着材料科学的日新月异,新型高分子材料层出不穷,其中液体丁腈橡胶(LNR)作为一种综合性能优异的材料,在增韧改性环氧树脂领域展现出了显著的应用潜力。

本文旨在综述液体丁腈橡胶增韧改性环氧树脂的研究进展,深入探讨其增韧机理、方法、应用及未来发展趋势。

液体丁腈橡胶(LNR)以其优异的耐油性、耐磨性和耐候性而著称,然而其低温脆性限制了在某些领域的应用。

环氧树脂以其高强度、高硬度、高交联密度和良好的耐腐蚀性等优点被广泛应用于涂料、胶粘剂、复合材料等领域。

环氧树脂的脆性是其应用过程中的主要瓶颈之一,通过增韧改性提高环氧树脂的冲击强度和延伸率成为了研究的热点。

增韧机理研究:研究者们对液体丁腈橡胶增韧改性环氧树脂的增韧机理进行了深入探讨。

液体丁腈橡胶通过物理吸附和化学键合两种方式与环氧树脂基体相结合,形成互补的结构,从而提高环氧树脂的冲击强度和延伸率。

橡胶增韧环氧树脂机理

橡胶增韧环氧树脂机理

2、“银纹--剪切带”机理
“银纹--剪切带”机理示意图 (灰色:环氧相 黑色:外来相
白色:孔洞)
改性环氧树脂中的外来 相橡胶颗粒在固化冷却 过程受到流体静拉力的 作用,负荷时裂纹前端 又会受到三向应力场的 作用。这两种作用力叠 加,使外来相颗粒内部 或外来相颗粒与基体间 的界面破裂而产生孔洞。
这些孔洞的产生一方面可以缓解裂纹尖端累积的三 向应力;另一方面又会增加橡胶上的应力集中,使 孔洞化作用进一步发生,并且诱发橡胶颗粒间基体 树脂的局部剪切屈服。这种剪切屈服又会导致裂纹 尖端的钝化,从而进一步减少基体树脂中的切带”机理
银纹—剪切带机理:橡胶粒子作为应力集 中物,在外力作用下诱发大量银纹和剪切 带,吸收能量。橡胶粒子和剪切带控制和 终止银纹发展,使银纹不至形成裂纹。
三轴应力空化机理:基体与分散相界面呈 现脱离状态,在外力作用下发生三轴应力 致使分散相粒子周围空化而吸收能量。
Thank you for listening!
橡胶增韧环氧树脂
橡胶类弹性体增韧EP是较早开始的增韧 方法, 对其技术的研究也较成熟。 其
增韧机理主要是“银纹--钉锚”机理和 “ 银纹--剪切带”机理。
增韧效果不仅取决于橡胶与EP连 接的牢固强度,也与二者的相容性和分 散性以及EP的固化过程有关。
1.“银纹--钉锚”机理
(白色:环氧相 黑色:外来相)
微纤(银纹质) 微纤是取向结构,具有强度
银纹机理:橡胶粒子作为应力集中物诱发 基体产生银纹而吸收能量。
“银纹——钉锚”又称为“ 颗粒撕裂拉伸机 理 ”,指向环氧相中引入外来相,外来相在连续 的环氧相中以颗粒、条状或其它形状分散存在外来 相,其有与环氧相相当的弹性模量和远大于基体的 断裂伸长率,裂纹在环氧相中产生并延伸,外来相 橡胶颗粒诱发基体产生银纹在裂纹,而橡胶颗粒起 桥梁或钉锚作用,对裂纹的进一步扩大或延伸起到 约束闭合作用,而稳定银纹在力的方向上是取向结 构,具有强度,从而共同阻止形成宏观断裂。

增韧剂的各种增韧机理

增韧剂的各种增韧机理

1、增韧剂的各种增韧机理不同类型的增韧剂,有着不同的增韧机理。

(1)液体聚硫橡胶可与环氧树脂反应,引入一部分柔性链段,降低环氧树脂模量,提高了韧性,却牺牲了耐热性。

(2)液体丁腈橡胶作为环氧树脂的增韧剂,室温固化时几乎无增韧效果,粘接强度反而下降;只有中高温固化体系,增韧与粘接效果较明显。

(3)端羧基液体丁腈橡胶增韧环氧树脂,固化前相容,固化后分相,形成“海岛结构”,既能吸收冲击能量,又基本不降低耐热性。

(4)T一99多功能环氧固化剂固化环氧树脂使交联结构中引进了柔性链段,不产生分相结构,在提高韧性的同时基本不降低耐热性。

(5)热塑性树脂连续贯穿于环氧树脂网络中,形成半互穿网络型聚合物,致使环氧树脂固化物韧性提高。

(6)纳米粒子尺寸为1~100nm,具有极大的比表面积,表面原子又有极高的木饱和性,因此表面活性非常大。

环氧基团在界面上与纳米粒子形成远大于范德华力的作用,能很好地引发微裂纹,吸收能量。

纳米SiO2和纳米黏土既能引发银纹,又能终止裂纹。

同时,纳米粒子具有很强的刚性,裂纹在扩展时遇到纳米粒子发生箨向或偏转,吸收能量而达到增韧目的。

另外,纳米粒子与树脂具有良好的相容性,使基体对冲击能量的分散能力和吸收能力提高,导致韧性增大。

2、增韧剂的选用原则举例根据树脂的类型和胶黏剂的用途选择恰当的增韧剂,才会获得良好的综合性能。

(1)环氧树脂胶黏剂用选用羧基液体丁腈橡胶、端羧基液体丁腈橡胶、聚硫橡胶、液体硅橡胶、聚醚、聚砜、聚酰亚胺、纳米碳酸钙、纳米二氧化钛等;(2)酚醛树脂胶黏剂可选用羧基丁腈橡胶、液体丁腈橡胶、聚乙烯醇缩丁醛、聚醚砜、聚苯醚酮。

水溶性酚醛树脂以羧基丁腈胶乳、聚乙烯醇作增韧剂。

(3)快固丙烯酸酯结构胶黏剂常选用丙烯酸酯橡胶、羧基丁腈橡胶、氯丁橡胶、氯磺化聚乙烯、ABS树脂等;(4)α-氰基丙烯酸酯胶黏剂宜选用丙烯酸酯橡胶、ABS、SBS、SEBS 等;(5)不饱和聚酯树脂胶黏剂宜选用液体丁腈橡胶、聚乙烯醇缩丁醛、聚醋酸乙烯等;(6)脲醛树脂胶黏剂可选用聚醋酸乙烯乳液、聚乙烯醇等。

废橡胶粉增韧环氧沥青及其机理研究

废橡胶粉增韧环氧沥青及其机理研究

K o n g Q i n g l e i Wa n g S h u a i Wa n g G u i z h e n S o n g S h a n s h a n Z h a n g H a o
( X C MG C o n s t r u c t i o n M a c h i n e r y C o . , L t d . , J i a n g s u Xu z h o u , 2 2 1 0 0 4 )
胶粉与环氧沥青 固化产生 了互穿 网络结构 , 导致材料强度和韧性均 明显增加 。
关键词
废橡胶粉
环氧沥青
低温性能
改性机理
Pr e p a r a t i o n a n d Me c h a n i s m o f Cr u mb Ru b b e r To u g h e n e d Ep o x y As p h a l t
Ab s t r a c t T h e p r o p e  ̄ y o f r e s i s t a n c e t o l o w— — t e mp e r a t u r e c r a c k i n g o f t h e e p o x y a s p h a l t f o r r o a d p a v e me n t c a n b e e f f e c t i v e l y i mp r o v e d b y t h e a d d i t i o n o f c r u mb ub r b e r .T h e i n f l u e n c e o f r e a c t i o n t e mp e r a t u r e ,c r u mb ub r b e r a n d ma l e i c a n h y d id r e c o n t e n t o n i t s p r o p e  ̄ y wa s i n v e s t i g a t e d .T h e o p t i ma l t e c h n i q u e w a s d e t e r mi n e d b y o  ̄ h o g o n a l e x p e r i — me n t a l me t h o d a s f o l l o ws :r e a c t i o n t e mp e r a t u r e o f 1 7 0  ̄ C, a d d i t i o n c o n t e n t o f 1 2 g c u mb r ub r b e r a n d 3 . 2 g ma l e i c a n — h y d i r d e p e r 1 0 0 g a s p h a l t r e s p e c t i v e l y .T h e c u mb r ub r b e r mo d i f i e d e p o x y a s p h a l t h a s r u p t u r e e l o n g a t i o n o f 1 . 2 5 % a t

环氧树脂增韧途径与机理教程文件

环氧树脂增韧途径与机理教程文件

环氧树脂增韧途径与机理环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。

由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。

因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。

一、序言目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性;用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性;通过改变交联网络的化学结构以提高网链分子的活动能力来增韧;控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。

近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(IPN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。

这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。

随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。

中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。

采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。

使用较多的有聚醚砜(PES)、聚砜(PSF)、聚醚酰亚胺(PEI)、聚醚醚酮(PEEK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。

据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。

(建筑工程管理)环氧树脂建筑结构胶粘剂的增韧机理

(建筑工程管理)环氧树脂建筑结构胶粘剂的增韧机理

(建筑工程管理)环氧树脂建筑结构胶粘剂的增韧机理环氧树脂建筑结构胶粘剂的增韧机理刘宇星张炜赵世琦北京金岛奇士材料科技有限X公司清华大学高分子研究所摘要简述了环氧树脂建筑结构胶增韧的必要性;环氧树脂增韧和传统的增柔之间的区别,环氧树脂增韧的结构特征;综述了环氧树脂增韧的历史及现状,且对不同弹性体增韧方法的特点进行了评述;通过具体实例论述了胶粘剂本体韧性的提高和粘接强度的提高的对应关系,举例介绍了在建筑结构胶中广泛使用的典型环氧树脂/胺类固化剂体系的增韧方法,且简要说明了使用原位分相型增韧技术时的注意事项。

关键词环氧树脂;建筑结构胶;增韧;原位分相壹、建筑结构胶增韧的必要性许多双酚A型环氧树脂/胺类固化剂组成的配方体系能够在室温条件下固化,因而被广泛用做建筑结构胶粘剂的基料。

可是目前的建筑工程对建筑结构胶粘剂提出了越来越高的性能要求,不仅希望结构胶具有更高的粘接强度(拉伸剪切强度、正拉强度),更好的耐低温、耐疲劳性能,而且不能使结构胶的耐热性、抗压强度等下降过多。

通常双酚A型环氧树脂固化物质地硬脆,耐开裂和冲击性能较差,如果仅在环氧树脂、固化剂种类、配比方面进行调配是难于满足之上要求的。

采用环氧树脂增韧技术,将环氧树脂均相固化物转变为具有多相结构的环氧树脂合金,是当前制备高性能建筑结构胶粘剂的极为有力的技术手段,受到了广泛的重视。

二、环氧树脂的增韧提到增加韧性,往往令人想到向树脂中加邻苯二甲酸二丁酯或邻苯二甲酸二辛酯等非活性的增塑剂,它们和树脂间没有任何化学键相连接,存在于树脂交联网络中,在分子链段相互运动之中起某种“润滑”作用,因而使树脂固化物柔化,而且增塑剂有可能会随时间慢慢迁移到树脂固化物的表面。

此外,使用壹些具有柔性分子链的固化剂如长链脂肪族胺类、柔性环氧树脂如聚丙二醇二缩水甘油醚等,它们能够通过反应连接到交联网络之中,从而增加交联网链的柔性,这壹类物质不会象二丁酯、二辛酯那样有迁移析出到固化物表面的可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

橡胶增韧环氧异相增韧的原理
橡胶增韧环氧树脂的原理主要包括橡胶与环氧树脂的相容性、橡胶在环氧树脂中的分散性以及环氧树脂的固化过程。

1. 橡胶增韧机理:橡胶粒子作为应力集中物诱发基体产生银纹而吸收能量。

其中,“银纹-钉锚”机理是橡胶粒子作为应力集中物诱发基体产生银纹而
吸收能量。

2. 相容性:橡胶与环氧树脂的相容性对增韧效果有很大影响。

如果相容性不好,会导致橡胶粒子在环氧树脂中分散不均匀,影响增韧效果。

3. 分散性:为了使橡胶粒子在环氧树脂中均匀分散,需要选择合适的分散剂和分散方法。

分散剂可以提高橡胶粒子与环氧树脂界面的粘附力,促进橡胶粒子的分散。

分散方法可以采用机械搅拌、超声波振动等方式,使橡胶粒子在环氧树脂中均匀分散。

4. 固化过程:环氧树脂的固化过程中,橡胶粒子可以起到促进固化反应的作用,同时也可以吸收固化过程中产生的热量,降低固化温度,缩短固化时间。

总之,通过改善橡胶与环氧树脂的相容性、提高橡胶在环氧树脂中的分散性和优化环氧树脂的固化过程,可以有效地提高环氧树脂的增韧效果。

相关文档
最新文档