ecc256椭圆曲线密钥生成算法
椭圆曲线密码(ECC)加解密算法的实现
![椭圆曲线密码(ECC)加解密算法的实现](https://img.taocdn.com/s3/m/a168d0e5f12d2af90342e687.png)
毕业论文论文题目椭圆曲线密码(ECC)加解密算法的实现学生姓名学号院别数学与信息科学学院专业信息与计算科学班级指导教师完成时间 2011 年 04 月椭圆曲线密码(ECC)加解密算法的实现摘要本文首先介绍椭圆曲线密码体制(ECC);并简明地给出了椭圆曲线的定义;接着以ElGamal公钥体制的ECC加解密的实现为例具体说明了其实现流程;最后分析了实现结果,安全性能和概述了ECC的发展现状,并对其未来的发展作了展望.关键词椭圆曲线密码;公钥密码,数字签名1引言随着政府部门和行业对网络环境和网络资源依赖程度的增强,涉及国家安全和社会公共安全的所有重大问题都在网络上表现出来. 为了确保信息的保密性,完整性,可用性,可控性,避免国家或个人的信息受到非法获取,破坏,篡改等形式的威胁,人们便提出了用密码技术来保障以电子形式保存或传送的数据. 1985年,N. Koblitz和V. Miller分别独立提出了椭圆曲线密码体制 (ECC),这是一种高安全性,高效率的公钥密码体系,它在密钥强度,加解密的处理速度和存储开销上都有着明显的优势. 采用椭圆曲线密码技术使密钥协商协议可充分利用椭圆曲线密码的优势,在更小密钥量下提供了更大的安全性,所需带宽明显减少,而且还大大降低了用户端的计算负担和存储要求.2椭圆曲线密码体制2.1密码体制的含义密码体制分为对称密码体制和非对称密码体制.非对称密码体制是指在加密过程中,密钥被分为一对.这对密钥中的任何一个密钥都可以作为公开密钥通过非保密方式向他人公开, 而另一把作为私有密钥加以保存. 这对密钥具有这样一个特点: 当知道密钥对中的一个密钥时, 要检测出另一个密钥, 在计算上是不可能的. 公开密钥用来对信息进行加密, 则私有密钥用来对信息进行解密, 反之亦然. 在这个系统中, 每个通信实体都有一个加密密钥和一个紧密相关的解密密钥.通信的双方只要知道对方的公钥,就可以进行安全的通信.2.2 椭圆曲线密码体制椭圆曲线密码体制,即基于椭圆曲线离散对数问题的各种公钥密码体制. 最早由Miller和Koblitz [1] 于1985年分别独立地提出. 它是利用有限域上椭圆曲线的有限点群代替基于离散对数问题密码体制中的有限循环群所得到的一类密码体制. 对于椭圆曲线密码系统(ECC)的安全性,其数学基础是计算椭圆曲线离散对数问题(ECDLP)的难解性[2] . 一般来说,ECC没有亚指数攻击,所以它的密钥长度大大地减少,256bit的ECC密码体制成为目前已知公钥密码体制中每位提供加密强度最高的一种体制.3.椭圆曲线的定义所谓椭圆曲线指的是由韦尔斯特拉斯 (Weierstrass)方程:所确定的平面曲线[1].若F是一个域,满足方程的数偶称为域F上的椭圆曲线 E的点. F域可以是有理数域, 也可以是复数域, 还可以是有限域. 椭圆曲线通常用 E 表示.4.ECC算法的设计思想设, 称为Weierstrass多项式. 当在任意点P成立, 则椭圆曲线称为光滑的或非奇异的. 若E是定义在有限域Fq上的椭圆曲线且其(p为素数), 这样的p称为有限域Fq的特征值. E中恰好有一个Z坐标为0的点(0, 1, 0), 我们称它为椭圆曲线的无穷远点, 用O表示. 椭圆曲线上有理点的个数称为该椭圆曲线的阶, 若亦表示椭圆曲线的阶, 则由(其中), 即Hasse定理. 如果椭圆曲线E定义在域Fq上, 其特征值不等于2和3, 则E 的Weierstrass等式可以简化, 做变换, 进而Weierstrass等式变换为, 其中, 判别式, 此式为椭圆曲线的一般形式. 若令, 则等式变为.根据椭圆曲线进行加密通信的过程:1) 用户A选定一条椭圆曲线,并取椭圆曲线上一点, 作为基点G.2) 用户A选择一个私有密钥k, 并生成公开密钥.3) 用户A将和点K, G传给用户B.4) 用户B接到信息后, 将待传输的明文编码到上一点M(编码方法很多,这里不作讨论),并产生一个随机整数r ( r < n ).5) 用户B计算点.6) 用户B将C1、C2传给用户A.7) 用户A接到信息后,计算, 结果就是点M, 即明文.因为再对点M进行解码就可以得到明文. 密码学中,描述一条上的椭圆曲线,常用到六个参量:,其中p、a、b 用来确定一条椭圆曲线,G为基点,n为点G的阶,h 是椭圆曲线上所有点的个数m与n相除的整数部分[3].5. 椭圆曲线参数的选取和基点的确定5.1 选取参数和确定基点的理论分析在基于椭圆曲线的加解密和数字签名的实现方案中,首先要给出椭圆曲线域的参数来确定一条椭圆曲线. 但并不是所有的椭圆曲线都适合加密,是一类可以用来加密的椭圆曲线,也是最为简单的一类. 下面我们就选用作为我们的加密曲线. 这条曲线定义在Fq上: 两个满足下列条件的小于p (p为素数) 的非负整数a、b:则满足下列方程的所有点,再加上无穷远点∞,构成一条椭圆曲线.其中 x, y属于0到p - 1间的整数,并将这条椭圆曲线记为.参数p的选取:p当然越大越安全,但越大,计算速度会变慢,200位左右可以满足一般安全要求,我们将p取为200比特位的素数.参数a、b的选取: 先随机产生小于p - 1的正整数作为参数a, 然后依据条件,判断随机产生的小于p - 1的正整数是否适合作为参数b.基点的确定:随着参数a, b, p确定,这条曲线就定下来了. 先随机产生0到p - 1间的整数作为基点x坐标,计算的结果再开方就得出基点y坐标.5.2 选取参数和确定基点的具体程序实现具体程序实现如下:……{//GetPrime(b,40); //先随机产生一个参数Bmp_expt_d(a, 3, &temp1);mp_sqr(b, &temp2);mp_mul_d(&temp1, 4, &temp3);mp_mul_d(&temp2, 27, &temp4);mp_add(&temp3, &temp4, &temp5);mp_mod(&temp5,p,&temp);if(mp_cmp(&temp, &compare)!=0 ){break; //满足条件跳出循环}}//, 随机产生X坐标,根据X坐标计算Y坐标GetPrime(x1,30); // 随机产生30比特长的X坐标mp_expt_d(x1, 3, &temp6);mp_mul(a, x1, &temp7);mp_add(&temp6, &temp7, &temp8);mp_add(&temp8, b, &tempx);mp_sqrt(&tempx, y1); // 得到Y坐标……私钥的确定:随机选取1到P - 1之间的素数作为私钥d.公钥的确定:由d 乘我们所确定的基点得到公钥K,即.6. 椭圆曲线密码的算法6.1 椭圆曲线密码算法的特点6.1.1 离散性密码算法需要的是离散值的定点运算,而不是连续值的浮点运算,在密码算法中不允许舍入.6.1.2 大数运算密码算法往往是大数运算,椭圆曲线密码体制要求160位的大数运算,但现有微机的CPU最多只支持64位的运算.1) 要求大容量的数据存储.密码运算通常都要利用大容量的数据表,即用空间来换取时间上的加速. 这就要求运算部件具有大容量的存储.2) 包含大量的并行性.6.2 椭圆曲线密码体制中的有关计算6.2.1 椭圆曲线密码体制中的运算类型作为公开密钥算法的一种,椭圆曲线密码体制要用到点乘、点加、模乘、模加、模逆、模幂这些基本运算,它们的执行速度直接决定着椭圆曲线的加密速度. 为了提高它们的速度,可从以下两方面考虑:(1) 采用高速的算法.(2) 实现算法的并行性(以便在硬件设计中利用多处理器进行并行运算):1) 大数乘、大数取模属于整数域上的运算;2) 模加、模乘、模逆、模幂属于有限域上的运算;3) 点加和点乘属于椭圆曲线的点加群上的运算.6.2.2 简述椭圆曲线的点加和纯量乘法由于本人能力有限,短时间内很难做出一些深层次的研究和探讨,因此只能在这里做一点表面文章. 所以本文在这一部分就结合前面对有关大数计算算法进行的阐述,做一些力所能及的事情. 对于一般的椭圆曲线方程,设点,和的坐标.的计算公式如下:,,其中.当P ≠ Q时,.当P = Q时, 对于椭圆曲线方程, 上述的公式变为:,,其中当P ≠ Q时,.当P=Q时, 由上述运算公式, 可以得出点积mP的运算, 即mP = P + P + … + P, 共m个P相加, 这里m∈N.6.3椭圆曲线的点积的具体程序算法设m的二进制表示为,其中, Q = P, 从左到右依次计算:for( i = n - 2 to 0){ Q = 2Q;if(==1) Q=Q+P;}则Q=mP.Return;函数原形为:bool Ecc_points_mul(mp_int*qx, mp_int*qy, mp_int*px, mp_int*py, mp_int*d, mp_int *a,mp_int *p)成功返回true.int Two_points_add(mp_int*x1, mp_int*y1, mp_int*x2, mp_int*y2, mp_int*x3, mp_int *y3, mp_int *a, bool zero, mp_int*p)成功返回1.7.加密文件的读入与输出7.1椭圆曲线的加密体制在Diffe-Hellman公钥系统体制中,具体的椭圆曲线、曲线上点P及P的周期大素数N都是公开信息.A和B要进行通讯,首先得到椭圆曲线E、点P及素数N. 然后用户A将[1, N-1]中随机选取的整数a作为私钥, A将作为自己的公钥传送给用户B, 与此同时B将 [1, N-1]中随机选取的整数b作为私钥, 并将作为自己的公钥传送给A. A、B各自将自己的私钥点乘于对方传过来的公钥得到, 这样就完成了密钥的交换过程.当用户A需要将待传数据m传送给用户B时, A 利用m和生成, 当用户B得到后, 利用密钥交换过程自己生成的和从用户A处得到的加密数据生成数据m.见下图[5]:7.2加密文件的读入与输出的具体程序实现mp_digit只用28比特,因此一个单元最多可存放三个半字节. 为充分利用存取空间,采用一个单元放三个半字节.7.2.1函数putin()的实现函数putin()的实现的作用: 将明文的二进制比特串赋给mp_int数a. 主要循环部分及说明如下:// chlong为要存入的字符数组长for(j=0; j<<="(mp_digit)CHAR_BIT;" *temp 存入字符 255); 左移8位存入高8位并向左移8位,以便放入下一个字符 temp跳过前一个单元,先存入后一单元 *++temp 每次跳七个字符 i + ="7"; 的两个单元中以7个字符为单元循环,把七个字符放入的mp_int 7; j++){(>> 4); //存放被切分的字符的高四位,temp跳回前一个单元//存入第一单元*temp |= (mp_digit) (ch[i-4] & yy); //存放被切分的字符的低四位yy=(mp_digit)15;*temp <<= (mp_digit)CHAR_BIT; //向左移8位,以便放入下一个字符*temp |= (mp_digit)(ch[i-5] & 255); //存入字符*temp <<= (mp_digit)CHAR_BIT; //左移8位*temp |= (mp_digit)(ch[i-6] & 255); //存入字符*temp <<= (mp_digit)CHAR_BIT; //左移8位*temp++ |= (mp_digit)(ch[i-7] & 255);//存放被切分的字符的低四位,temp跳到后一个单元temp++; //再向后跳一单元,这样和下次的++temp实现每次循环跳两个单元}函数原型为:int putin(mp_int*a, char*ch, int chlong)成功返回0.7.2.2函数chdraw( )的实现函数chdraw()实现将mp_int数a中的比特串还原为字符串并赋给字符串ch: chdraw和putin是相反过程,将putin存入字符的过程反过来取出字符.函数原型为:int chdraw(mp_int* a, char*ch)成功返回0.8.密文的存取和读入此过程难点是如何保证存入文件后,再从文件中读取密文并存入mp_int型数后,和原存放密文的mp_int型数不能有一个比特位的改变.存取时先存 *mp->dp的最高8位,再依次往下存后面3个8位. 依据 *mp->dp的特点,最高8位为0000xxxx,因此,可将255作为一个密文段的结束标志,把前一密文段和后一密文段区分开. 这样在密文文件中,密文的存取结构为:0000xxxx|xxxxxxxx|xxxxxxxx|xxxxxxxx|0000xxxx|……|11111111|0000xxxx|xxxxxxxx|…..0字节 1字节 2字节 3字节 4字节 4x字节下一加密段 x为1或0利用fgetc每次读取一个字符,并赋值给一个字符数组. 当a[i]=255,且i%4=0时截止.读出之后赋值就简单了.存密文:int chmistore(mp_int*a, FILE*fp) 成功返回0把密文赋给mp_int型数a: int miwendraw(mp_int*a, char*ch, int chlong) 成功返回0.9. ECC加密的实现9.1 ECC加密实现的理论依据加密时因P长度取值为200比特,所以所取明文长度应在0到199比特之间,另外需要一个附加的标志字节char(255),所以一次取明文最大长为191比特. 在本程序中一次取20字节. 和RSA不同,ECC运算是基于点的运算. 一个点有两个参数,一个X坐标,一个Y坐标. 所以取明文时需一次取两段,前一段做X坐标,后一段做Y坐标. 因此,一次加密明文为40字节. 由于每次加密要取两段,引发了另外一个问题:当加密文件末尾所剩明文长度小于20字节时的处理. 在本程序中,我们的解决是将剩余明文取作X,而将Y取作0,且不加标志字节char(255),这样解密时,程序在Y中找不到标志字节char(255),就不会往解密文中存任何东西.取得明文后,产生一个随机整数r, 计算点;. 将点、坐标,,,依次存入密文文件[6].9.2 ECC加密的具体程序实现for(i=0; i 0) // Residue为剩余字符数{if (Residue <= enlongtemp ){fread(miwenx,1, Residue, fp); //读入字符串miwenx[Residue]=char(255);putin(&mx, miwenx,Residue+1); //文件存入mp_zero(&my);}else{fread(miwenx,1,enlongtemp,fp); //读入字符串miwenx[enlongtemp]=char(255);fread(miweny,1,Residue-enlongtemp,fp); //读入字符串miweny[Residue-enlongtemp]=char(255);putin(&mx, miwenx,enlongtemp+1); //文件存入putin(&my, miweny,Residue-enlongtemp+1); //文件存入}//加密Ecc_points_mul(&c2x,&c2y,px,py,&r,a,p); //C2=rGEcc_points_mul(&tempx,&tempy,qx,qy,&r,a,p); // rKTwo_points_add(&mx,&my,&tempx,&tempy,&c1x,&c1y,a,zero,p); // C1=M+rK//保存密文chmistore(&c1x,fq);chmistore(&c1y,fq);chmistore(&c2x,fq);chmistore(&c2y,fq);}函数原型为:void Ecc_encipher(mp_int*qx, mp_int*qy, mp_int*px,mp_int*py, mp_int*a, mp_int*p);10.ECC解密的实现10.1ECC解密实现的理论依据解密时,依据存密文时放入的结束标志255,读入密文. 依次取4段, 调用miwendraw将密文存入mp_int型数中,还原为加密时存入的点C1和C2坐标c1x, c1y, c2x, c2y. 依据. 计算(d为私钥),得到明文点坐标,. 其中两点减的计算可如下:;计算完毕后调用chdraw取出mp_int中的明文比特串,依次存入解密文件中,完成解密[6].10.2 ECC解密的具体程序实现while(!feof(fp)){//取C1点X坐标i=0;while(1){stemp[i]=fgetc(fp);if(i%4==0){if(int(stemp[i]&0xFF) == 255 ) goto L1;}i++;}L1: miwendraw(&, stemp, i); //取其他坐标Ecc_points_mul(&tempx, &tempy, &, &, k, a, p); // 计算mp_neg(&tempy, &temp); // -Q=(X,-Y)Two_points_add(&,&, &tempx, &temp, &, &, a, zero, p);int chtem;chtem=chdraw(&,stemp); //从ming中取出字符串//保存解密结果for(int kk=0;kk < chtem;kk++){fprintf(fq,"%c",stemp[kk]);}chtem=chdraw(&,stemp); //从ming中取出字符串//保存解密结果for(kk=0; kk < chtem; kk++){fprintf(fq, "%c", stemp[kk]);}}函数原型为:void Ecc_decipher(mp_int*k, mp_int*a, mp_int*p);11. 测试结果及分析为验证系统的加密解密功能,对系统进行了如下测试:测试环境Intel p4; CPU 1.5G; 256M RAM; Windows XP DEV - C++测试结果利用系统对文本文件、BMP、WORD、EXCEL、EXE等文件进行加密,然后解密. 验证结果表明,给定的明文经系统加密后再解密的结果完全一致, 没有一个比特的偏差,较好的实现了ECC的功能.12.结束语目前,国际上公认的比较安全实用的公钥密码体制是 1985年 Koblitz和Miller分别独立提出的建立在椭圆曲线上的离散对数难题基础上的椭圆曲线密码体制(ECC). 经过长期的理论研究和科学实践,ECC得到了迅猛的发展. 现在椭圆曲线密码体制不仅是一个重要的理论研究领域,而且已经从理论研究转化为实际可用的密码算法,促使民用安全技术走向产业化. 当前,国内外很多生产密码产品的公司都在致力于ECC产品的开发. 椭圆曲线加密算法ECC的安全性,是基于计算有限域上椭圆曲线点集所构成的可交换群上定义的离散对数的困难性. 该算法具有安全性能高,计算量小,处理速度快,存储空间占用小和带宽要求低等特点,已在强调速度的领域如PDA,手机,智能卡等方面得到应用.参考文献:[1] 杨超, 高海燕. 椭圆曲线密码体制理论与其安全性研究[J]电脑知识与技术, 2006,(17).[2] 孙跃刚. 椭圆曲线密码体制中若干问题的研究[D]. 吉林大学 2009. [3] 于彬. 椭圆曲线密码算法的研究与实现[D]. 沈阳工业大学.[4] 王庆先. 有限域运算和椭圆曲线数乘运算研究[D]. 电子科技大学2006.[5] 李学俊. 基于椭圆曲线离散对数问题的公钥密码及其算法研究[D].[6] 杨君辉, 戴宗铎, 杨栋毅, 刘宏伟. 关于椭圆曲线密码的实现[J]通信技术,2001(06).On the Realization of the Elliptic Curve Encryption Algorit hmYan MeitingAbstract: In this paper, we first introduce the elliptic curve encryption algorithm, then give the definition of the elliptic curve briefly. The ElGamal public encryption system is based on the elliptic curve theory, and we analyze the process and the security of this encryption system. At last we realize it in c++ and offer the source code.Keywords: elliptic curve encryption algorithm; public-key password, digital signatures。
椭圆曲线公钥密码体制(ECC)
![椭圆曲线公钥密码体制(ECC)](https://img.taocdn.com/s3/m/4d063179ddccda38376baf3b.png)
F2m上椭圆曲线的点的加法逆元
• P = (xP, yP)的加法逆元 -P = (xP, xP + yP) • P + (-P) = O • P+O=P
F2m上椭圆曲线不同的点的加法运算
P = (xP, yP) 。如果 P和 Q是不同的点并且P不等于 -Q, 则P + Q = R
s = (yP - yQ) / (xP + xQ) xR = s2 + s + xP + xQ + a yR = s(xP + xR) + xR + yP
F上的椭圆曲线 2m
定义: 对于曲线
y2 +xy= x3 + ax2 + b b不为0,a,b 属于 F2 m
的解的集合构成
F2m 上的椭圆曲线群。记为 E ( F m )
2
F2m上的椭圆曲线举例
• 作为一个简单的例子, 考略 F2 4 , 其上的不可约多项式为 f(x) = x4 + x + 1. • 元素g = (0010)是生成元. • g的幂为: g0 = (0001) g1 = (0010) g2 = (0100) g3 = (1000) g4 = (0011) g5 = (0110) g6 = (1100) g7 = (1011) g8 = (0101) g9 = (1010) g10 = (0111) g11 = (1110) g12 = (1111) g13 = (1101) g14 = (1001) g15 = (0001)
例题
椭圆曲线T=(m=4,f(x)=x4+x+1,g=0010,a=g4,b=g0) 点P=(g6,g8) 求点R=2P
ecc 密码算法
![ecc 密码算法](https://img.taocdn.com/s3/m/0fda0c0ece84b9d528ea81c758f5f61fb6362859.png)
椭圆曲线密码算法(Elliptic Curve Cryptography,ECC)是一种基于椭圆曲线数学的公开密钥加密算法。
与传统的基于大质数分解难题的加密算法不同,该加密方式基于“离散对数”这种数学难题。
在椭圆曲线上给定一个点G,并选取一个整数k,求解K=kG很容易(注意根据kG求解出来的K也是椭圆曲线上的一个点);反过来,在椭圆曲线上给定两个点K和G,若使K=kG,求整数k是一个难题。
ECC就是建立在此数学难题之上。
此外,ECC使用正向运算很简单,但是反向运算很难,这使得ECC具有较高的安全性。
相对于RSA等其他公钥加密算法,ECC有更高的计算效率,需要的存储空间和传输带宽更少。
在我国,二代身份证正在使用256位的椭圆曲线密码,虚拟货币比特币也选择ECC作为加密算法。
如需了解更多关于ECC密码算法的信息,建议咨询密码学专家或查阅相关的专业书籍。
一种椭圆曲线参数生成的快速算法
![一种椭圆曲线参数生成的快速算法](https://img.taocdn.com/s3/m/65db55f60242a8956aece403.png)
一种椭圆曲线参数生成的快速算法谷勇浩 刘勇(北京邮电大学通信网络综合技术研究所)摘要:椭圆曲线密码体制是公钥密码中的研究热点。
该文介绍了椭圆曲线密码体制的基本概念及相关知识,讨论了目前基于离散对数问题的椭圆曲线密码的研究动态。
本文的创新点是针对目前椭圆曲线研究重点之一——椭圆曲线参数生成算法,给出了一种生成参数a 、b 的快速算法。
这种算法利用了Jacobi 符号和二次剩余的理论,并且用matlab 计算出利用这种算法生成一个椭圆曲线的平均时间,最后我们分析了今后椭圆曲线密码系统的研究方向和重点。
关键词:椭圆曲线;离散对数问题;Jacobi 符号;二次剩余;阶1976年Diffie 和Hellman 提出公钥密码思想以来,国际上提出了许多种公钥密码体制的实现方案。
一些已经被攻破,一些被证明是不可行的。
目前,只有3类公钥密码体制被认为是安全有效的,按照其所依据的数学难题划分为:基于大整数分解问题(IFP ),如RSA 体制和Rabin 体制;基于有限域离散对数问题(DLP ),如Diffie-Hellman 体制和ElGamal 体制;基于椭圆曲线离散对数问题(ECDLP ),如椭圆密码体制。
椭圆曲线应用到密码学上最早是由Neal Koblitz 和Victor Miller 在1985年分别独立提出的。
它是目前已知的公钥体制中,对每一比特所提供加密强度最高的一种体制。
它具有安全性高、密钥量小、灵活性好的特点,受到了国际上的广泛关注。
而SET(Secure Electronic Transaction)协议的制定者已把它作为下一代SET 协议中缺省的公钥密码算法。
深入研究基于椭圆曲线离散对数问题的公钥密码具有很大的现实意义。
1建立椭圆曲线公钥密码体制1.1椭圆曲线域的参数在基于椭圆曲线的加解密和数字签名的实现方案中,首先要给出椭圆曲线域的参数来确定一条椭圆曲线。
在 IEEE P1363标准中,定义其参数为一个七元组:T=(q,FR,a,b,G,n,h),其中q 代表有限域GF(q),q 为素数或2m ;FR 为域表示法,如f(x)为2m F 域元素的不可约多项式的表示法;曲线的方程,当q 为素数时,方程为23ax b y x =++,当q 为2m时,方程为232xy a b y x x +=++,a,b 是方程中的系数;G 为基点;n 为大素数并且等于点G 的阶,h 是小整数称为余因子且#()/q h E n F =。
实现椭圆曲线密码算法
![实现椭圆曲线密码算法](https://img.taocdn.com/s3/m/6a0e8575effdc8d376eeaeaad1f34693daef103d.png)
实现椭圆曲线密码算法(Elliptic Curve Cryptography, ECC)涉及到椭圆曲线数学理论以及相关的加密技术。
这是一种公钥加密系统,与传统的 RSA 算法相比,它具有更高的安全性和更小的密钥尺寸,因此在安全通信和数据保护领域得到了广泛应用。
下面是一个简单的示例,展示了如何使用 Python 实现椭圆曲线密码算法:from cryptography.hazmat.backends import default_backendfrom cryptography.hazmat.primitives import serializationfrom cryptography.hazmat.primitives.asymmetric import ec# 生成椭圆曲线密钥对private_key = ec.generate_private_key(ec.SECP256R1(), default_backend()) public_key = private_key.public_key()# 将密钥序列化为字节串private_key_bytes = private_key.private_bytes(encoding=serialization.Encoding.PEM,format=serialization.PrivateFormat.TraditionalOpenSSL,encryption_algorithm=serialization.NoEncryption())public_key_bytes = public_key.public_bytes(encoding=serialization.Encoding.PEM,format=serialization.PublicFormat.SubjectPublicKeyInfo)# 打印密钥print("Private key:")print(private_key_bytes.decode('utf-8'))print("\nPublic key:")print(public_key_bytes.decode('utf-8'))在这个示例中,我们使用 Python 的cryptography库生成椭圆曲线密钥对,并将密钥序列化为字节串。
ecc签名验签例题
![ecc签名验签例题](https://img.taocdn.com/s3/m/c9b7d3a29a89680203d8ce2f0066f5335a816722.png)
ecc签名验签例题
ECC(椭圆曲线加密)是一种公钥加密算法,它使用椭圆曲线上
的点来进行加密和签名。
在ECC中,签名和验签是非常重要的操作,下面我将从多个角度讨论ECC签名和验签的例题。
假设我们有一个椭圆曲线上的公钥和私钥对,私钥用于签名,
公钥用于验签。
我们首先需要选择一个椭圆曲线和基点,然后生成
私钥和公钥。
假设我们选择的椭圆曲线是secp256k1,私钥是一个
随机数k,公钥是k乘以基点的结果。
现在,我们来看一个ECC签名的例题。
假设我们有一条消息m,我们想要对这条消息进行签名。
首先,我们需要计算消息的哈希值,通常使用SHA-256等哈希算法。
然后,我们使用私钥对哈希值进行
签名,得到签名s。
接下来是ECC验签的例题。
假设我们收到了一条带有消息m和
签名s的消息,我们想要验证这个签名是否有效。
首先,我们需要
获取发送者的公钥。
然后,我们使用公钥、消息m和签名s进行验
签操作。
如果验签成功,说明这个签名是有效的;如果验签失败,
说明这个签名是无效的。
除了上述基本操作外,ECC签名和验签还涉及到一些细节和安全性考量,比如随机数的选择、签名格式等。
在实际应用中,我们还需要考虑到侧信道攻击、长度延展攻击等安全性问题。
总的来说,ECC签名和验签是ECC算法中非常重要的操作,它们在保障通信安全和数字身份认证方面发挥着重要作用。
希望以上讨论能够全面回答你关于ECC签名验签例题的问题。
ecc椭圆曲线加密算法原理
![ecc椭圆曲线加密算法原理](https://img.taocdn.com/s3/m/6aff399bf605cc1755270722192e453610665bc3.png)
ecc椭圆曲线加密算法原理宝子们!今天咱们来唠唠一个超酷的加密算法——ECC椭圆曲线加密算法。
这玩意儿听起来就很神秘,对不对?咱先从基础概念说起哈。
椭圆曲线呢,可不是咱平常看到的椭圆哦。
在数学的奇妙世界里,它是由一个方程定义的曲线。
这个方程大概是这个样子的:y² = x³ + ax + b(这里的a和b是一些常数啦)。
不过呢,这个曲线不是随便画在平面上就行的,还有一些特殊的规则。
比如说,这个曲线得是光滑的,不能有尖尖的角或者奇怪的断点。
那这个椭圆曲线和加密有啥关系呢?这就很有趣啦。
想象一下,在这个椭圆曲线上有好多好多的点。
这些点就像是一个个小秘密的藏身之处。
我们在这个曲线上定义一种特殊的运算,叫做“点加”运算。
这个“点加”可不是简单的把两个点加起来哦。
它有一套自己独特的计算方法。
比如说,我们有两个点P和Q在椭圆曲线上。
要计算P + Q呢,我们得先画一条直线穿过P和Q(如果P和Q是同一个点的话,那这条直线就是曲线在这个点的切线哦,是不是很神奇?)。
这条直线会和椭圆曲线相交于另一个点,我们把这个点叫做R'。
然后呢,我们把R'关于x轴对称的点就是P + Q啦。
这个运算规则虽然有点复杂,但是很有规律呢。
好啦,现在我们来看看怎么用这个椭圆曲线来加密。
我们有一个发送者,比如说小明,和一个接收者,比如说小红。
首先呢,小红要在椭圆曲线上选一个秘密的点,这个点就像是她的小钥匙,只有她自己知道。
然后呢,她把椭圆曲线的一些公开信息,比如曲线的方程、一个公开的基点(这个基点就是曲线上一个大家都知道的点啦)发给小明。
小明要发送一个消息给小红。
他把这个消息变成一个椭圆曲线上的点M(这个转换过程也有一些小技巧哦)。
然后呢,小明随便选一个整数k,这个k就像是他临时想出来的一个小密码。
他计算C1 = k * 基点(这里的*就是我们前面说的点加运算,不过是重复k次啦),C2 = M + k * 小红的秘密点。
openssl ec 公钥长度
![openssl ec 公钥长度](https://img.taocdn.com/s3/m/f4baac4fbb1aa8114431b90d6c85ec3a87c28be2.png)
openssl ec 公钥长度在加密通讯中,密钥的生成和管理是至关重要的。
而现在越来越多的加密方式开始采用椭圆曲线加密(Elliptic Curve Cryptography,ECC),openssl作为一个常用的加密工具,也提供了对应的支持。
在使用openssl生成椭圆曲线密钥时,公钥长度是一个重要的参数。
本文将对openssl中ec公钥长度进行深入探讨,并从简到繁,由浅入深地介绍这个主题。
1. openssl和椭圆曲线加密让我们简单了解一下openssl和椭圆曲线加密。
openssl是一个开源的加密工具包,涵盖了各种加密算法,包括对称加密、非对称加密、哈希函数等。
而椭圆曲线加密是一种基于数论的加密方法,它利用椭圆曲线上的点来进行密钥交换和数字签名等操作,相对于传统的RSA 加密,椭圆曲线加密在安全性和效率上都有一定的优势。
在openssl 中,我们可以使用命令行工具或者编程接口来生成和管理椭圆曲线密钥对,其中就包括指定公钥长度。
2. 公钥长度的选择在openssl中生成ec密钥对时,可以指定生成的公钥长度。
公钥长度是指在椭圆曲线上选择的点的位数,一般情况下,长度越长,安全性越高,但对应的计算和存储成本也会增加。
在实际应用中,公钥长度的选择需要根据具体的安全需求和性能要求来进行权衡。
openssl为了满足不同的需求,提供了一系列可选的公钥长度,比如192比特、256比特、384比特等。
3. 公钥长度的影响选择不同长度的公钥会对加密和签名的安全性和性能产生影响。
较短的公钥长度可能会带来安全隐患,容易受到攻击;而较长的公钥长度则可能增加计算和通讯的负担。
在实际应用中,需要根据具体场景来选择合适的公钥长度。
对于对安全性要求很高的金融交易系统,可以选择更长的公钥长度;而对于移动设备或者物联网设备,可能需要考虑性能和存储的因素,选择合适的公钥长度。
4. openssl中指定公钥长度在使用openssl生成ec密钥对时,可以通过命令行参数指定公钥长度。
secp256k1椭圆曲线算法
![secp256k1椭圆曲线算法](https://img.taocdn.com/s3/m/d8dc3504777f5acfa1c7aa00b52acfc788eb9f44.png)
secp256k1椭圆曲线算法【1】椭圆曲线算法简介椭圆曲线算法(Elliptic Curve Cryptography,简称ECC)是一种公钥加密算法,基于椭圆曲线上的数学问题。
这种算法在1985年由W.Duever和V.Shamir提出。
与RSA、DSA等公钥加密算法相比,椭圆曲线算法具有相同的安全级别,但所需的密钥长度较短,因此在实际应用中具有更高的效率。
【2】SECP256k1椭圆曲线参数SECP256k1(Secure Curve 256-bit Key Length 1)是一种常见的椭圆曲线算法,其参数如下:- 曲线方程:y^2 = x^3 + ax + b- 生成元:G = (x, y)- 椭圆曲线阶:n = 2^256 - 1- 素数p:p = 2^256 - 1- 系数a、b:a = 0,b = 7【3】SECP256k1算法应用SECP256k1算法广泛应用于加密货币、网络通信等领域。
以下是SECP256k1算法在比特币(Bitcoin)中的应用示例:1.密钥生成:用户生成一个私钥,对其进行椭圆曲线运算,得到一个对应的公钥。
2.数字签名:用户用自己的私钥对交易信息进行签名,生成数字签名。
3.验证签名:交易接收方使用发送方的公钥验证数字签名,确保交易的真实性和完整性。
【4】安全性与性能分析SECP256k1算法的安全性依赖于椭圆曲线上的数学难题,目前尚未找到高效的破解方法。
然而,随着计算能力的提升,未来可能会出现针对SECP256k1的攻击手段。
因此,研究人员正在寻求更高安全性的椭圆曲线算法,如SECG 曲线。
在性能方面,SECP256k1算法相较于其他公钥加密算法具有较高的运算速度。
但这仍取决于具体的实现和硬件条件。
在实际应用中,可以采用优化算法和硬件加速手段进一步提高性能。
【5】总结SECP256k1椭圆曲线算法作为一种高效、安全的公钥加密算法,在现代密码学和加密货币领域具有重要地位。
椭圆曲线加密算法java实现
![椭圆曲线加密算法java实现](https://img.taocdn.com/s3/m/51681d795627a5e9856a561252d380eb6294233b.png)
椭圆曲线加密算法Java实现椭圆曲线加密算法(Elliptic Curve Cryptography,ECC)是一种公钥加密算法,基于椭圆曲线的数学性质。
ECC的安全性基于解决椭圆曲线离散对数问题(ECDLP)的难度,该问题被认为是难以解决的。
ECC具有密钥长度短、计算效率高、安全性强等优点,因此被广泛应用于各种密码学应用中,如电子商务、数字签名、密钥交换等。
Java实现Java中有多种ECC库可供使用,其中最受欢迎的库之一是Bouncy Castle。
Bouncy Castle是一个开源的密码学库,提供了各种加密算法的实现,包括ECC。
要使用Bouncy Castle实现ECC,首先需要将Bouncy Castle库添加到项目的依赖项中。
可以在项目的pom.xml文件中添加如下依赖项:xml<dependency><groupId>org.bouncycastle</groupId><artifactId>bcprov-jdk15on</artifactId><version>1.70</version></dependency>添加依赖项后,就可以在Java代码中使用Bouncy Castle库实现ECC了。
下面是一个简单的Java程序,演示如何使用Bouncy Castle库生成ECC密钥对:javaimport org.bouncycastle.jce.provider.BouncyCastleProvider;import org.bouncycastle.math.ec.ECCurve;import org.bouncycastle.math.ec.ECPoint;import java.security.;public class EccKeyGeneration {public static void main(String[] args) throws Exception {// 添加Bouncy Castle提供者Security.addProvider(new BouncyCastleProvider());// 创建椭圆曲线ECCurve curve = ECCurve.Fp.getByName("secp256k1");// 生成密钥对KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("EC", "BC");keyPairGenerator.initialize(curve, new SecureRandom());KeyPair keyPair = keyPairGenerator.generateKeyPair();// 获取公钥PublicKey publicKey = keyPair.getPublic();// 获取私钥PrivateKey privateKey = keyPair.getPrivate();// 打印公钥和私钥System.out.println("Public Key: " + publicKey);System.out.println("Private Key: " + privateKey);}}运行该程序,将会输出生成的ECC密钥对。
ecc 密钥协商算法
![ecc 密钥协商算法](https://img.taocdn.com/s3/m/f9a73a02a9956bec0975f46527d3240c8447a1ce.png)
ecc 密钥协商算法ECC密钥协商算法ECC(Elliptic Curve Cryptography)是一种基于椭圆曲线数学原理的公钥密码算法,广泛应用于安全通信中的密钥协商过程。
本文将介绍ECC密钥协商算法的原理、优势和应用场景。
一、ECC密钥协商算法的原理ECC密钥协商算法基于椭圆曲线离散对数问题,通过利用椭圆曲线上的一些特殊性质,实现了与其他公钥密码算法相比更高的安全性和更小的计算量。
其基本原理如下:1. 椭圆曲线的选择:在密钥协商过程中,首先需要选择一个合适的椭圆曲线。
常用的椭圆曲线有NIST推荐的P-256、P-384和P-521等。
选择合适的椭圆曲线对于安全性和性能都非常重要。
2. 密钥生成:Alice和Bob分别选择自己的私钥和公钥。
私钥是一个随机数,公钥是私钥通过椭圆曲线上的点乘运算得到的。
3. 密钥协商:Alice和Bob交换各自的公钥,并利用对方的公钥和自己的私钥计算出共享密钥。
这个计算过程是基于椭圆曲线上的点乘和点加运算实现的。
二、ECC密钥协商算法的优势相比传统的RSA和Diffie-Hellman等公钥密码算法,ECC密钥协商算法具有以下优势:1. 安全性高:ECC密钥协商算法基于椭圆曲线离散对数问题,该问题的求解难度与传统的大整数分解问题相比更高。
因此,ECC密钥协商算法具有更高的安全性。
2. 计算量小:椭圆曲线上的点乘运算比大整数的乘法运算更快速,因此ECC密钥协商算法在相同的安全性要求下,需要更小的计算量。
这使得ECC在资源受限的环境下具有更好的性能。
3. 存储空间小:由于椭圆曲线上的点可以用更小的数据表示,ECC 密钥协商算法所需的存储空间也更小。
这对于存储密钥信息的设备来说是非常有利的。
三、ECC密钥协商算法的应用场景ECC密钥协商算法在各种安全通信场景中得到了广泛的应用,特别是在移动设备和物联网领域。
以下是几个常见的应用场景:1. 移动通信安全:ECC密钥协商算法可以用于手机通信中的加密和解密过程,保护用户的隐私和数据安全。
ECC椭圆曲线加密算法—加解密(SageMath实现)
![ECC椭圆曲线加密算法—加解密(SageMath实现)](https://img.taocdn.com/s3/m/0a5009c9d05abe23482fb4daa58da0116c171fb3.png)
ECC椭圆曲线加密算法—加解密(SageMath实现)简介ECC椭圆曲线加密,它的安全性基于椭圆曲线上的离散对数问题。
⽐特币和⽬前的⼆代居民⾝份证都采⽤了ECC作为加密算法。
ECC椭圆曲线函数为:y2=x3+ax+b (mod p)ECC算法如下:椭圆曲线Ep(a,b)(p为模数),基点(⽣成元)G(x,y),G点的阶数n,私钥k,公钥K(x,y),随机整数r,明⽂为⼀点m(x,y),密⽂为两点c1(x,y)和c2(x,y)(其中基点G,明⽂m,密⽂c1、c2都是椭圆曲线E上的点)选择私钥k(k<n)得到公钥K = k*G选择随机整数r(r<n)加密:c1 = m+r*Kc2 = r*G解密:m = c1-k*c2(= c1-r*K)SageMath可以直接计算椭圆曲线加法和椭圆曲线乘法。
椭圆曲线运算(SageMath):点u(x,y),整数a,点v(x,y),点w(x,y)a_inv = inverse_mod(a,p) #a_inv是a关于模p的乘法逆元a_invv = a*uu = v*a_invw = u+v加解密脚本SageMath加密脚本:'''加密椭圆曲线选取时,模数p应是⼀个⼤质数常⽤的有⼏个公开的椭圆曲线,如Secp256k1、Secp256r1等'''p = 115792089210356248762697446949407573530086143415290314195533631308867097853951a = 115792089210356248762697446949407573530086143415290314195533631308867097853948b = 41058363725152142129326129780047268409114441015993725554835256314039467401291E = EllipticCurve(GF(p),[a,b]) #建⽴椭圆曲线EG = E(101981543389703054444906888236965100227902100585263327233246492901054535785571,105947302391877180514060433855403037184838385483621546199124860815209826713886) #选择⼀点作为⽣成元n = G.order() #G的阶数k = 78772200542717449282831156601030024198219944170436309154595818823706214492400K = k*Gr = 3546765m = E(80764032034929976879602863302323059647882062252124869895215418422992624743795,4964654783828069942602279691168356721024126126864424301508238062949726916347) #取E上⼀点m作为明⽂c1 = m+r*Kc2 = r*Gprint(c1)print(c2)SageMath解密脚本:'''解密'''p = 115792089210356248762697446949407573530086143415290314195533631308867097853951a = 115792089210356248762697446949407573530086143415290314195533631308867097853948b = 41058363725152142129326129780047268409114441015993725554835256314039467401291k = 78772200542717449282831156601030024198219944170436309154595818823706214492400E = EllipticCurve(GF(p),[a,b]) #建⽴椭圆曲线Ec1 = E(55527726590533087179712343802771216661752045890626636388680526348340802301667,99976146729305231192119179111453136971828647307627310904093286590128902629941)c2 = E(85460365972589567444123006081329559170090723413178386022601904195400422637884,58249081362527056631776731740177334121295518073095154119886890634279528757192)m = c1-k*c2print(m)其他使⽤Crypto.PublicKey.ECC⽣成ECC密钥:from Crypto.PublicKey import ECC#⽣成ECC密钥key = ECC.generate(curve='NIST P-256') #使⽤椭圆曲线NIST P-256#输出密钥(包括私钥k,基点G)print(key)#公钥(point_x,point_y是基点G的坐标)print(key.public_key())#椭圆曲线print(key.curve)#私钥kprint(key.d)#导出为pem密钥⽂件print(key.export_key(format='PEM'))#导⼊密钥⽂件key = ECC.import_key(f.read())通过fastecdsa.Curve可以查到公开椭圆曲线的参数import fastecdsa.curve as curve#P-384的acurve.P384.a#P-384的bcurve.P384.bProcessing math: 100%#P-384的pcurve.P384.p⼏种公开椭圆曲线参数:#NIST P-256(Secp256r1)#p = 2^224(2^32 − 1) + 2^192 + 2^96 − 1p = 115792089210356248762697446949407573530086143415290314195533631308867097853951a = 115792089210356248762697446949407573530086143415290314195533631308867097853948b = 41058363725152142129326129780047268409114441015993725554835256314039467401291#Secp256k1(⽐特币使⽤)#p = 2^256 − 2^32 − 2^9 − 2^8 − 2^7 − 2^6 − 2^4 − 1 = 2^256 – 2^32 – 977p = 115792089237316195423570985008687907853269984665640564039457584007908834671663a = 0b = 7#NIST P-384#p = 2^384 – 2^128 – 2^96 + 2^32 – 1p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319a = -3b = 27580193559959705877849011840389048093056905856361568521428707301988689241309860865136260764883745107765439761230575#NIST P-521p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151a = -3b = 1093849038073734274511112390766805569936207598951683748994586394495953116150735016013708737573759623248592132296706313309438452531591012912142327488478985984 SageMath取椭圆曲线上随机⼀点:E = EllipticCurve(GF(p),[a,b])E.random_point() #取椭圆曲线E上随机⼀点sagemath计算椭圆曲线上的离散对数问题(数据量不能太⼤)a = 1234577b = 3213242p = 7654319E = EllipticCurve(GF(p),[a,b])G = E(5234568, 2287747) #⽣成元#k = 1584718K = E(2366653, 1424308) #公钥#求解私钥,⾃动选择bsgs或Pohlig Hellman算法discrete_log(K,G,operation='+')#求解私钥,Pollard rho算法discrete_log_rho(K,G,operation='+')#求解私钥,Pollard Lambda算法,能够确定所求值在某⼀⼩范围时效率较⾼discrete_log_lambda(K,G,(1500000,2000000),operation='+')使⽤openssl查看ECC的pem密钥⽂件信息#查看ECC私钥信息openssl ec -in p384-key.pem -text -noout#查看ECC公钥信息openssl ec -pubin -in public.pem -text -noout。
pythonsecp256r1 签名
![pythonsecp256r1 签名](https://img.taocdn.com/s3/m/6952a064abea998fcc22bcd126fff705cc175c85.png)
一、介绍Python是一种强大的编程语言,广泛应用于各个领域。
而secp256r1是一种椭圆曲线加密算法,常用于数字签名和密钥交换等领域。
本文将介绍如何在Python中使用secp256r1进行签名操作,并通过具体示例来演示。
二、secp256r1椭圆曲线算法简介secp256r1椭圆曲线算法是一种非对称加密算法,其基于一个椭圆曲线方程来进行运算。
secp256r1算法使用256位的素数来构建椭圆曲线,具有较高的安全性和效率。
在数字签名中,secp256r1算法可以用来生成公钥和私钥,并通过私钥进行签名,再通过公钥进行验证,实现数字签名的安全性和可靠性。
三、Python中的secp256r1签名操作在Python中,我们可以使用第三方库来实现secp256r1的签名操作,其中最常用的是pycryptodome库。
下面将以pycryptodome库为例,介绍如何在Python中进行secp256r1签名操作。
1. 安装pycryptodome库首先需要安装pycryptodome库,可以通过pip命令来进行安装: ```pip install pycryptodome```2. 生成公钥和私钥在使用secp256r1算法进行签名之前,首先需要生成公钥和私钥。
使用pycryptodome库提供的模块,可以轻松地生成公钥和私钥: ```pythonfrom Crypto.PublicKey import ECCprivate_key = ECC.generate(curve='P-256')public_key = private_key.public_key()```3. 进行签名生成公钥和私钥之后,就可以使用私钥对数据进行签名操作。
下面是一个示例代码:```pythondata = b"example data to be signed"signature = private_key.sign(data, hashfunc='sha256')```4. 验证签名对于已签名的数据,可以使用公钥进行验证操作,确保签名的可靠性:```pythonif public_key.verify(data, signature, hashfunc='sha256'):print("Signature is valid")else:print("Signature is invalid")```四、示例演示为了更好地理解Python中secp256r1签名操作,这里给出一个完整的示例代码,演示整个签名过程的流程:```pythonfrom Crypto.PublicKey import ECCprivate_key = ECC.generate(curve='P-256')public_key = private_key.public_key()data = b"example data to be signed"signature = private_key.sign(data, hashfunc='sha256')if public_key.verify(data, signature, hashfunc='sha256'):print("Signature is valid")else:print("Signature is invalid")```五、总结通过本文的介绍和示例演示,我们了解了如何在Python中使用secp256r1算法进行签名操作。
椭圆曲线加密算法(ECC)原理和C++实现源码(摘录)
![椭圆曲线加密算法(ECC)原理和C++实现源码(摘录)](https://img.taocdn.com/s3/m/8e2095df85254b35eefdc8d376eeaeaad1f3166c.png)
椭圆曲线加密算法(ECC)原理和C++实现源码(摘录)/* 1、⽤户A选定⼀条适合加密的椭圆曲线Ep(a,b)(如:y2=x3+ax+b),并取椭圆曲线上⼀点,作为基点G。
2、⽤户A选择⼀个私有密钥k,并⽣成公开密钥K=kG。
3、⽤户A将Ep(a,b)和点K,G传给⽤户B。
4、⽤户B接到信息后,将待传输的明⽂编码到Ep(a,b)上⼀点M,并产⽣⼀个随机整数r(r<n)。
5、⽤户B计算点C1=M+rK;C2=rG。
6、⽤户B将C1、C2传给⽤户A。
7、⽤户A接到信息后,计算C1-kC2,结果就是点M。
因为C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M 再对点M进⾏解码就可以得到明⽂。
密码学中,描述⼀条Fp上的椭圆曲线,常⽤到六个参量:T=(p,a,b,G,n,h)。
(p 、a 、b ⽤来确定⼀条椭圆曲线,G为基点,n为点G的阶,h 是椭圆曲线上所有点的个数m与n相除的整数部分) 这⼏个参量取值的选择,直接影响了加密的安全性。
参量值⼀般要求满⾜以下⼏个条件: 1、p 当然越⼤越安全,但越⼤,计算速度会变慢,200位左右可以满⾜⼀般安全要求; 2、p≠n×h; 3、pt≠1 (mod n),1≤t<20; 4、4a3+27b2≠0 (mod p); 5、n 为素数; 6、h≤4。
*/#include <stdio.h>#include <string.h>#include <stdlib.h>#include <iostream.h>#include "tommath.h"#include <time.h>#define BIT_LEN 800#define KEY_LONG 128 //私钥⽐特长#define P_LONG 200 //有限域P⽐特长#define EN_LONG 40 //⼀次取明⽂字节数(x,20)(y,20)//得到lon⽐特长素数int GetPrime(mp_int *m,int lon);//得到B和G点X坐标G点Y坐标void Get_B_X_Y(mp_int *x1,mp_int *y1,mp_int *b, mp_int *a, mp_int *p);//点乘bool Ecc_points_mul(mp_int *qx,mp_int *qy, mp_int *px, mp_int *py,mp_int *d,mp_int *a,mp_int *p);//点加int Two_points_add(mp_int *x1,mp_int *y1,mp_int *x2,mp_int *y2,mp_int *x3,mp_int *y3,mp_int *a,bool zero,mp_int *p);//⼆进制存储密⽂int chmistore(mp_int *a,FILE *fp);//把读取的字符存⼊mp_int型数int putin(mp_int *a,char *ch,int chlong);//ECC加密void Ecc_encipher(mp_int *qx,mp_int *qy, mp_int *px, mp_int *py,mp_int *a,mp_int *p);//ECC解密void Ecc_decipher(mp_int *k, mp_int *a,mp_int *p);//实现将mp_int数a中的⽐特串还原为字符串并赋给字符串ch:int chdraw(mp_int *a,char *ch);//取密⽂int miwendraw(mp_int *a,char *ch,int chlong);int myrng(unsigned char *dst, int len, void *dat){int x;for (x = 0; x < len; x++) dst[x] = rand() & 0xFF;return len;}void main(){cout<<"\n 本程序实现椭圆曲线的加密解密"<<endl;cout<<"\n------------------------------------------------------------------------\n"<<endl;mp_int GX;mp_int GY;mp_int K;//私有密钥mp_int A;mp_int QX;mp_int QY;mp_int P;//Fp中的p(有限域P)mp_init(&GX);mp_init(&GY);mp_init(&K);mp_init(&A);mp_init(&B);mp_init(&QX);mp_init(&QY);mp_init(&P);time_t t;srand( (unsigned) time( &t ) );printf("椭圆曲线的参数如下(以⼗进制显⽰):\n");GetPrime(&P,P_LONG);printf("有限域 P 是:\n");char temp[800]={0};mp_toradix(&P,temp,10);printf("%s\n",temp);GetPrime(&A,30);char tempA[800]={0};printf("曲线参数 A 是:\n");mp_toradix(&A,tempA,10);printf("%s\n",tempA);Get_B_X_Y(&GX,&GY,&B,&A,&P);char tempB[800]={0};printf("曲线参数 B 是:\n");mp_toradix(&B,tempB,10);printf("%s\n",tempB);char tempGX[800]={0};printf("曲线G点X坐标是:\n");mp_toradix(&GX,tempGX,10);printf("%s\n",tempGX);char tempGY[800]={0};printf("曲线G点Y坐标是:\n");mp_toradix(&GY,tempGY,10);printf("%s\n",tempGY);//------------------------------------------------------------------GetPrime(&K,KEY_LONG);char tempK[800]={0};printf("私钥 K 是:\n");mp_toradix(&K,tempK,10);printf("%s\n",tempK);Ecc_points_mul(&QX,&QY,&GX,&GY,&K,&A,&P);char tempQX[800]={0};printf("公钥X坐标是:\n");mp_toradix(&QX,tempQX,10);printf("%s\n",tempQX);char tempQY[800]={0};printf("公钥Y坐标是:\n");mp_toradix(&QY,tempQY,10);printf("%s\n",tempQY);printf("\n------------------------------------------------------------------------\n"); Ecc_encipher(&QX,&QY,&GX,&GY,&A,&P);//加密printf("\n------------------------------------------------------------------------\n"); Ecc_decipher(&K,&A,&P);//解密printf("\n------------------------------------------------------------------------\n"); char cc;cout<<"\n\n请击⼀键退出!\n";mp_clear(&GX);mp_clear(&GY);mp_clear(&K);//私有密钥mp_clear(&A);mp_clear(&B);mp_clear(&QX);mp_clear(&QY);mp_clear(&P);//Fp中的p(有限域P)}int GetPrime(mp_int *m,int lon){mp_prime_random_ex(m, 10, lon,(rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL); return MP_OKAY;}void Get_B_X_Y(mp_int *x1,mp_int *y1,mp_int *b, mp_int *a, mp_int *p){mp_int tempx,tempy;mp_int temp;mp_int compare;mp_int temp1;mp_int temp2;mp_int temp3;mp_int temp4;mp_int temp5;mp_int temp6;mp_int temp7;mp_int temp8;mp_init_set_int (&compare, 0);mp_init(&tempx);mp_init(&tempy);mp_init(&temp);mp_init(&temp1);mp_init(&temp2);mp_init(&temp3);mp_init(&temp4);mp_init(&temp5);mp_init(&temp6);mp_init(&temp7);mp_init(&temp8);while(1){//4a3+27b2≠0 (mod p)GetPrime(b,40);mp_expt_d(a, 3, &temp1);mp_sqr(b, &temp2);mp_mul_d(&temp1, 4, &temp3);mp_mul_d(&temp2, 27, &temp4);mp_add(&temp3, &temp4, &temp5);mp_mod(&temp5,p,&temp);if(mp_cmp(&temp, &compare)!=0 ){break;}}//y2=x3+ax+b,随机产⽣X坐标,根据X坐标计算Y坐标GetPrime(x1,30);mp_expt_d(x1, 3, &temp6);mp_mul(a, x1, &temp7);mp_add(&temp6, &temp7, &temp8);mp_add(&temp8, b, &tempx);mp_sqrt(&tempx, y1);mp_clear(&tempx);mp_clear(&tempy);mp_clear(&temp);mp_clear(&temp1);mp_clear(&temp2);mp_clear(&temp3);mp_clear(&temp4);mp_clear(&temp5);mp_clear(&temp8);}bool Ecc_points_mul(mp_int *qx,mp_int *qy, mp_int *px, mp_int *py,mp_int *d,mp_int *a,mp_int *p){mp_int X1, Y1;mp_int X2, Y2;mp_int X3, Y3;mp_int XX1, YY1;mp_int A,P;int i;bool zero=false;char Bt_array[800]={0};char cm='1';mp_toradix(d,Bt_array,2);mp_init_set_int(&X3, 0);mp_init_set_int(&Y3, 0);mp_init_copy(&X1, px);mp_init_copy(&X2, px);mp_init_copy(&XX1, px);mp_init_copy(&Y1, py);mp_init_copy(&Y2, py);mp_init_copy(&YY1, py);mp_init_copy(&A, a);mp_init_copy(&P, p);for(i=1;i<=KEY_LONG-1;i++){mp_copy(&X2, &X1);mp_copy(&Y2, &Y1);Two_points_add(&X1,&Y1,&X2,&Y2,&X3,&Y3,&A,zero,&P);mp_copy(&X3, &X2);mp_copy(&Y3, &Y2);if(Bt_array[i]==cm){mp_copy(&XX1, &X1);mp_copy(&YY1, &Y1);Two_points_add(&X1,&Y1,&X2,&Y2,&X3,&Y3,&A,zero,&P);mp_copy(&X3, &X2);mp_copy(&Y3, &Y2);}}if(zero){cout<<"It is Zero_Unit!";return false;//如果Q为零从新产⽣D}mp_copy(&X3, qx);mp_copy(&Y3, qy);mp_clear(&X1);mp_clear(&Y1);mp_clear(&X2);mp_clear(&Y2);mp_clear(&X3);mp_clear(&Y3);mp_clear(&XX1);mp_clear(&YY1);mp_clear(&A);mp_clear(&P);return true;}//两点加int Two_points_add(mp_int *x1,mp_int *y1,mp_int *x2,mp_int *y2,mp_int *x3,mp_int *y3,mp_int *a,bool zero,mp_int *p) {mp_int x2x1;mp_int y2y1;mp_int tempk;mp_int tempy;mp_int temp1;mp_int temp2;mp_int temp3;mp_int temp4;mp_int temp5;mp_int temp6;mp_int temp7;mp_int temp8;mp_int temp9;mp_int temp10;mp_init(&x2x1);mp_init(&y2y1);mp_init(&tempk);mp_init(&tempy);mp_init(&tempzero);mp_init(&k);mp_init(&temp1);mp_init(&temp2);mp_init_set(&temp3,2);mp_init(&temp4);mp_init(&temp5);mp_init(&temp6);mp_init(&temp7);mp_init(&temp8);mp_init(&temp9);mp_init(&temp10);if(zero){mp_copy(x1, x3);mp_copy(y1, y3);zero=false;goto L;}mp_zero(&tempzero);mp_sub(x2, x1, &x2x1);if(mp_cmp(&x2x1,&tempzero)==-1){mp_add(&x2x1, p, &temp1);mp_zero(&x2x1);mp_copy(&temp1, &x2x1);}mp_sub(y2, y1, &y2y1);if(mp_cmp(&y2y1,&tempzero)==-1){mp_add(&y2y1, p, &temp2);mp_zero(&y2y1);mp_copy(&temp2, &y2y1);}if(mp_cmp(&x2x1, &tempzero)!=0){mp_invmod(&x2x1,p,&tempk);mp_mulmod(&y2y1, &tempk, p, &k);}else{if(mp_cmp(&y2y1, &tempzero)==0){mp_mulmod(&temp3,y1,p,&tempy); mp_invmod(&tempy,p,&tempk);mp_sqr(x1, &temp4);mp_mul_d(&temp4, 3, &temp5);mp_add(&temp5, a, &temp6);mp_mulmod(&temp6, &tempk, p, &k); }else{zero=true;goto L;}}mp_sqr(&k, &temp7);mp_sub(x1, x3, &temp9);mp_mul(&temp9, &k, &temp10);mp_submod(&temp10, y1, p, y3);L:mp_clear(&x2x1);mp_clear(&y2y1);mp_clear(&tempk);mp_clear(&tempy);mp_clear(&tempzero);mp_clear(&k);mp_clear(&temp1);mp_clear(&temp2);mp_clear(&temp3);mp_clear(&temp4);mp_clear(&temp5);mp_clear(&temp6);mp_clear(&temp7);mp_clear(&temp8);mp_clear(&temp9);mp_clear(&temp10);return1;}//⼆进制存储密⽂int chmistore(mp_int *a,FILE *fp){int i,j;char ch;char chtem[4];mp_digit yy=(mp_digit)255;for (i=0; i <= a->used - 1; i++) {chtem[3]=(char)(a->dp[i] & yy);chtem[2]=(char)((a->dp[i] >> (mp_digit)8) & yy); chtem[1]=(char)((a->dp[i] >> (mp_digit)16) & yy); chtem[0]=(char)((a->dp[i] >> (mp_digit)24) & yy);for(j=0;j<4;j++){fprintf(fp,"%c",chtem[j]);}}ch=char(255);fprintf(fp, "%c", ch);return MP_OKAY;}//把读取的字符存⼊mp_int型数int putin(mp_int *a,char *ch,int chlong){mp_digit *temp,yy;int i,j,res;if(a->alloc<chlong*2/7+2){if((res=mp_grow(a,chlong*2/7+2))!=MP_OKAY)return res;}a->sign=0;mp_zero(a);temp=a->dp;i=0;yy=(mp_digit)15;if(chlong<4){for(j=chlong-1;j>=0;j--){*temp |= (mp_digit)(ch[j] & 255);*temp <<= (mp_digit)CHAR_BIT;}return MP_OKAY;}if(chlong<7){i+=4;*++temp |= (mp_digit)(ch[i-1] & yy);*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-2] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-3] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp-- |= (mp_digit)(ch[i-4] & 255); //存放被切分的字符的低四位for(j=chlong-1;j>=i;j--){*temp |= (mp_digit)(ch[j] & 255);*temp <<= (mp_digit)CHAR_BIT;}*temp >>= (mp_digit)4;*temp |= (mp_digit)((ch[i-1] & 255) >> 4); //存放被切分的字符的⾼四位 a->used=2;return MP_OKAY;}//以7个字符为单元循环,把七个字符放⼊的mp_int 的两个单元中for(j=0;j<chlong/7;j++){i+=7;*++temp |= (mp_digit)(ch[i-1] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-2] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-3] & 255);*temp <<= (mp_digit)4;*temp-- |= (mp_digit)((ch[i-4] & 255) >> 4); //存放被切分的字符的⾼四位 *temp |= (mp_digit)(ch[i-4] & yy); //存放被切分的字符的低四位*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-5] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-6] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp++ |= (mp_digit)(ch[i-7] & 255);temp++;}if((chlong>=7)&&(chlong%7!=0)) //剩余字符的存放{if(chlong%7 < 4) //剩余字符少余4个时,只需⼀个mp_digit单元存放 {for(j=chlong-1;j>=i;j--){*temp |= (mp_digit)(ch[j] & 255);*temp <<= (mp_digit)CHAR_BIT;}*temp >>= (mp_digit)8;a->used=chlong*2/7+1;}else{ //剩余字符不⼩于4个时,需两个mp_digit单元存放i+=4;*temp |= (mp_digit)(ch[i-1] & yy);*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-2] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-3] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp++ |= (mp_digit)(ch[i-4] & 255); //存放被切分的字符的低四位for(j=chlong-1;j>=i;j--){*temp |= (mp_digit)(ch[j] & 255);*temp <<= (mp_digit)CHAR_BIT;}*temp >>= (mp_digit)4;*temp |= (mp_digit)((ch[i-1] & 255) >> 4); //存放被切分的字符的⾼四位}}else{a->used=chlong*2/7;}return MP_OKAY;}void Ecc_encipher(mp_int *qx,mp_int *qy, mp_int *px, mp_int *py,mp_int *a,mp_int *p){ //公钥X、Y坐标,曲线G点X、Y坐标,曲线参数A,有限域P mp_int mx, my;mp_int c1x, c1y;mp_int c2x, c2y;mp_int r;mp_int tempx, tempy;bool zero=false;FILE *fp,*fq;int i;char miwenx[280]={0};char miweny[280]={0};char stemp[650]={0};mp_init(&mx);mp_init(&my);mp_init(&c1x);mp_init(&c1y);mp_init(&c2x);mp_init(&c2y);mp_init(&r);mp_init(&tempx);mp_init(&tempy);GetPrime(&r, 100);char filehead[60],filefoot[20],filename[85]={0};cout<<"请输⼊您要加密⽂件的存放路径和⽂件名(如: c:\\000\\⼤整数运算 ):"<<endl;cin>>filehead;cout<<"请输⼊您要加密⽂件的扩展名(如: .doc ):"<<endl;cin>>filefoot;strcpy(filename,filehead);strcat(filename,filefoot);//打开要加密⽂件if((fp=fopen(filename,"rb"))==NULL){printf("can not open the file!");exit(1);}unsigned int FileLong=0;//⽂件字符长度char ChTem;//临时字符变int Frequency=0;int Residue=0;while( !feof(fp) )//找⽂件字符长度{ChTem = fgetc( fp );FileLong++;}--FileLong;Frequency = FileLong/EN_LONG;Residue = FileLong%EN_LONG;int enlongtemp=EN_LONG/2;//printf("%d\n",Frequency);//printf("%d\n",Residue);char filemi[85];strcpy(filemi,filehead);strcat(filemi,"密⽂");strcat(filemi,filefoot);//打开保存密⽂⽂件if((fq=fopen(filemi,"wb"))==NULL)exit(1);}printf("\n开始加密...\n");rewind(fp);for(i=0; i<Frequency; i++){fread(miwenx,1,enlongtemp,fp);//读⼊字符串miwenx[enlongtemp]=char(255);fread(miweny,1,enlongtemp,fp);//读⼊字符串miweny[enlongtemp]=char(255);putin(&mx, miwenx,enlongtemp+1);//⽂件存⼊putin(&my, miweny,enlongtemp+1);//⽂件存⼊Ecc_points_mul(&c2x,&c2y,px,py,&r,a,p);//加密Ecc_points_mul(&tempx,&tempy,qx,qy,&r,a,p);Two_points_add(&mx,&my,&tempx,&tempy,&c1x,&c1y,a,zero,p);//保存密⽂chmistore(&c1x,fq);chmistore(&c1y,fq);chmistore(&c2x,fq);chmistore(&c2y,fq);}//剩余字符处理if ( Residue > 0){if (Residue <= enlongtemp ){fread(miwenx,1,Residue,fp);//读⼊字符串miwenx[Residue]=char(255);putin(&mx, miwenx,Residue+1);//⽂件存⼊mp_zero(&my);}else{fread(miwenx,1,enlongtemp,fp);//读⼊字符串miwenx[enlongtemp]=char(255);fread(miweny,1,Residue-enlongtemp,fp);//读⼊字符串miweny[Residue-enlongtemp]=char(255);putin(&mx, miwenx,enlongtemp+1);//⽂件存⼊putin(&my, miweny,Residue-enlongtemp+1);//⽂件存⼊}Ecc_points_mul(&c2x,&c2y,px,py,&r,a,p);//加密Ecc_points_mul(&tempx,&tempy,qx,qy,&r,a,p);Two_points_add(&mx,&my,&tempx,&tempy,&c1x,&c1y,a,zero,p);//保存密⽂chmistore(&c1x,fq);chmistore(&c1y,fq);chmistore(&c2x,fq);chmistore(&c2y,fq);}cout<<"\nok!加密完毕!"<<endl;cout<<"密⽂以⼆进制保存"<<endl;cout<<"密⽂存放路径为 "<<filemi<<endl ;mp_clear(&mx);mp_clear(&my);mp_clear(&c1x);mp_clear(&c1y);mp_clear(&c2x);mp_clear(&c2y);mp_clear(&r);mp_clear(&tempx);mp_clear(&tempy);}//取密⽂int miwendraw(mp_int *a,char *ch,int chlong){mp_digit *temp;int i,j,res;if(a->alloc<chlong/4){if((res=mp_grow(a,chlong/4))!=MP_OKAY)return res;}a->alloc=chlong/4;a->sign=0;mp_zero(a);temp=a->dp;i=0;for(j=0;j<chlong/4;j++){i+=4;*temp |= (mp_digit)(ch[i-4] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-3] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp |= (mp_digit)(ch[i-2] & 255);*temp <<= (mp_digit)CHAR_BIT;*temp++ |= (mp_digit)(ch[i-1] & 255);}a->used=chlong/4;return MP_OKAY;}//实现将mp_int数a中的⽐特串还原为字符串并赋给字符串ch:int chdraw(mp_int *a,char *ch){int i,j;mp_digit *temp,xx,yy;temp=a->dp;i=0;yy=(mp_digit)255; //⽤于位与运算,取⼋位⽐特串xx=(mp_digit)15; //⽤于位与运算,取四位⽐特串for(j=0;j<a->used/2;j++) //以两个单元为循环,把两个单元的⽐特串赋给7个字符 {i+=7;ch[i-4]=(char)(*++temp & xx);ch[i-3]=(char)((*temp >> (mp_digit)4) & yy);ch[i-2]=(char)((*temp >> (mp_digit)12) & yy);ch[i-1]=(char)((*temp-- >> (mp_digit)20) & yy);ch[i-7]=(char)(*temp & yy);ch[i-6]=(char)((*temp >> (mp_digit)8) & yy);ch[i-5]=(char)((*temp >> (mp_digit)16) & yy);ch[i-4] <<= 4;ch[i-4]+=(char)((*temp++ >> (mp_digit)24) & xx);temp++;}if(a->used%2!=0) //剩于⼀个单元的处理{ch[i++] = (char)(*temp & yy);ch[i++] = (char)((*temp >> (mp_digit)8) & yy);ch[i++] = (char)((*temp >> (mp_digit)16) & yy);}--i;while(int(ch[i]&0xFF) != 255 && i>0) i--;return i;void Ecc_decipher(mp_int *k, mp_int *a,mp_int *p){mp_int c1x, c1y;mp_int c2x, c2y;mp_int tempx, tempy;mp_int mx, my;mp_int temp;mp_init(&temp);mp_init(&c1x);mp_init(&c1y);mp_init(&c2x);mp_init(&c2y);mp_init(&tempx);mp_init(&tempy);mp_init(&mx);mp_init(&my);mp_int tempzero;mp_init(&tempzero);int i;char stemp[700]={0};FILE *fp,*fq;bool zero=false;char filehead[60],filefoot[20],filename[85]={0};cout<<"请输⼊您要解密的⽂件的存放路径和⽂件名(如: c:\\000\\⼤整数运算 ):"<<endl; cin>>filehead;cout<<"请输⼊您要解密的⽂件的扩展名(如: .doc ):"<<endl;cin>>filefoot;strcpy(filename,filehead);strcat(filename,filefoot);printf("\n开始解密\n");if((fp=fopen(filename,"rb"))==NULL){printf("can not open the file!");exit(1);}//打开保存解密结果⽂件char filemi[80];strcpy(filemi, filehead);strcat(filemi, "解密");strcat(filemi, filefoot);if((fq=fopen(filemi,"wb"))==NULL){printf("can not open the file!");exit(1);}rewind(fp);while(!feof(fp)){i=0;while(1){stemp[i]=fgetc(fp);if(i%4==0){if(int(stemp[i]&0xFF) == 255 ) goto L1;}i++;}L1: miwendraw(&c1x, stemp, i);i=0;while(1){stemp[i]=fgetc(fp);if(i%4==0){if(int(stemp[i]&0xFF) == 255 ) goto L2;}i++;}L2: miwendraw(&c1y, stemp, i);i=0;while(1){stemp[i]=fgetc(fp);if(i%4==0){if(int(stemp[i]&0xFF) == 255 ) goto L3;}i++;}L3: miwendraw(&c2x, stemp, i);i=0;while(1){stemp[i]=fgetc(fp);if(i%4==0){if(int(stemp[i]&0xFF) == 255 ) goto L4;}i++;}L4: miwendraw(&c2y, stemp, i);mp_zero(&tempzero);if(mp_cmp(&c1x, &tempzero)==0) break;Ecc_points_mul(&tempx, &tempy, &c2x, &c2y, k, a, p);mp_neg(&tempy, &temp);Two_points_add(&c1x,&c1y,&tempx,&temp,&mx,&my,a,zero,p);int chtem;chtem=chdraw(&mx,stemp);//从ming中取出字符串//保存解密结果for(int kk=0;kk<chtem;kk++){fprintf(fq,"%c",stemp[kk]);}chtem=chdraw(&my,stemp);//从ming中取出字符串//保存解密结果for(kk=0;kk<chtem;kk++){fprintf(fq,"%c",stemp[kk]);}}cout<<"\nok!解密完毕!"<<endl;cout<<"解密后的⽂字存放路径为 "<<filemi<<endl;fclose(fq);fclose(fp);mp_clear(&c1x);mp_clear(&c1y);mp_clear(&c2x);mp_clear(&c2y);mp_clear(&tempx);mp_clear(&tempy);mp_clear(&mx);mp_clear(&my);mp_clear(&temp);}。
secp256k1 原理 -回复
![secp256k1 原理 -回复](https://img.taocdn.com/s3/m/e7cc8ee7294ac850ad02de80d4d8d15abe230000.png)
secp256k1 原理-回复“secp256k1原理”是指secp256k1椭圆曲线加密算法的基本原理和运作机制。
该算法常用于比特币和以太坊等加密货币的数字签名和密钥生成。
本文将以secp256k1原理为主题,逐步回答相关问题,深入剖析该加密算法的工作原理。
1. 什么是secp256k1椭圆曲线加密算法?secp256k1是一种基于椭圆曲线的加密算法,其中"k1"表示椭圆曲线的一个参数。
该加密算法在比特币和以太坊等加密货币系统中广泛应用。
它能够生成一个256位的私钥(私钥由随机数生成),并通过对应的公钥派生出一个唯一且不可逆的地址。
私钥用于签名交易,而公钥和地址用于验证和接收加密货币。
2. 为什么选择secp256k1椭圆曲线?(1)安全性:secp256k1椭圆曲线具有足够高的安全性,被广泛认可为安全性能较强的加密算法。
(2)效率:secp256k1椭圆曲线的运算速度相对较快,适合在资源有限的设备上使用,如移动设备和区块链节点。
3. secp256k1椭圆曲线的数学原理是什么?secp256k1椭圆曲线的数学原理基于有限域。
它使用以下的椭圆曲线方程:y^2 = x^3 + 7这个方程定义了一个曲线上的所有点,以及一个特殊的无穷远点。
在有限域上进行的操作将椭圆曲线限制在一个特定的范围内,从而保证了加密算法的有效性和安全性。
4. secp256k1椭圆曲线加密算法的私钥生成过程是怎样的?(1)选择一个随机数k作为私钥。
(2)计算公钥Q,通过椭圆曲线的点乘运算:Q = k * G。
其中G是secp256k1椭圆曲线上的一个特定基点。
(3)将私钥k保密,且不可泄露给他人。
公钥Q可以公开。
5. secp256k1椭圆曲线加密算法的签名过程是怎样的?(1)选择一个随机数r作为签名的一部分。
(2)计算点R,通过椭圆曲线的点乘运算:R = r * G。
(3)将消息m和点R进行哈希运算,得到哈希值h。
secp256k1椭圆曲线算法
![secp256k1椭圆曲线算法](https://img.taocdn.com/s3/m/d099f7ac5ff7ba0d4a7302768e9951e79b89691c.png)
secp256k1椭圆曲线算法
secp256k1椭圆曲线算法是一种用于加密和数字签名的高效算法,它基于椭圆曲线上的数学问题。
在这种算法中,椭圆曲线上的点具有一个特殊的性质,即给定两个点P和Q,可以找到一个唯一的第三个点R,使得P、Q、R共线。
这个性质被称为椭圆曲线群的加法。
secp256k1是一种特定的椭圆曲线,其参数满足某种特性。
在这个曲线上,点的表示采用x和y坐标,且满足以下方程:
y^2 = x^3 + ax + b
其中,a、b为常数,x为实数。
secp256k1椭圆曲线算法的主要步骤如下:
1. 生成私钥:随机选择一个点P作为私钥。
由于椭圆曲线上的点具有唯一的加法性质,可以通过计算两个已知点的和来得到新的私钥。
2. 生成公钥:将私钥P与其他已知点进行加法运算,得到一个新点。
这个新点就是公钥。
3. 数字签名:要为一段消息生成数字签名,首先需要对消息进行哈希运算,得到一个固定长度的哈希值。
然后,使用私钥对哈希值进行加密,得到签名。
4. 验证签名:接收方收到签名后,使用公钥对签名进行解密。
解密后的哈希值与原始消息的哈希值进行比较,如果相等,则签名有效。
secp256k1椭圆曲线算法的安全性依赖于椭圆曲线上的数学难题,即给定一个点,找到一个有效的算法来计算其逆元。
目前,尚未找到有效的方法在合理的时间内解决这个问题。
因此,secp256k1椭圆曲线算法被广泛应用于加密货币、数字签名等安全领域。
python3 pycryptodomex ecc 项目实践
![python3 pycryptodomex ecc 项目实践](https://img.taocdn.com/s3/m/90bbddbe760bf78a6529647d27284b73f24236b5.png)
python3 pycryptodomex ecc 项目实践Python3 Pycryptodomex ECC 项目实践区块链、加密货币以及安全通信等领域中,使用椭圆曲线密码学(Elliptic Curve Cryptography,ECC)来确保数据的机密性和完整性已经成为一种常见的方法。
Pycryptodomex ECC 是一个强大的Python3 库,它提供了一套丰富的API 来处理ECC 相关操作。
本文将一步一步地介绍如何使用Pycryptodomex ECC 来实践一个基本的ECC 加密应用。
1. 安装Pycryptodomex首先,在终端或命令提示符下输入以下命令来安装Pycryptodomex:pip install pycryptodomex2. 导入所需库在代码开始之前,需要导入Pycryptodomex 中的ECC 模块。
可以使用以下代码来实现:pythonfrom Cryptodome.PublicKey import ECC3. 生成ECC 密钥对使用ECC 模块中的generate() 方法可以轻松生成ECC 密钥对。
以下代码生成一个256 位的ECC 密钥对:pythonprivate_key = ECC.generate(curve='P-256')public_key = private_key.public_key()在生成密钥对之后,我们可以分别访问私钥和公钥。
4. 存储和加载密钥为了方便使用和存储,我们可以将生成的密钥保存为文件。
以下代码演示了如何将私钥和公钥保存为PEM 格式的文件:pythonwith open('private.pem', 'wb') as f:f.write(private_key.export_key(format='PEM'))with open('public.pem', 'wb') as f:f.write(public_key.export_key(format='PEM'))我们还可以使用以下代码来加载PEM 文件中的密钥:pythonwith open('private.pem', 'rb') as f:private_key = ECC.import_key(f.read())with open('public.pem', 'rb') as f:public_key = ECC.import_key(f.read())5. 加密和解密数据Pycryptodomex ECC 提供了加密和解密数据的功能,以下代码演示了如何使用ECC 密钥来进行加密和解密:pythonmessage = "Hello, World!"ciphertext = public_key.encrypt(message.encode(), None) plaintext = private_key.decrypt(ciphertext)在这个例子中,我们使用公钥对消息进行加密,然后使用私钥对密文进行解密。
ecc签名验签算法计算举例
![ecc签名验签算法计算举例](https://img.taocdn.com/s3/m/0b2531745b8102d276a20029bd64783e09127ddb.png)
ecc签名验签算法计算举例ECC签名验签算法计算举例如下:1. 生成密钥对椭圆曲线密码(ECC)算法中的密钥对生成是第一步。
这个过程通常包括选择一条安全的椭圆曲线,并在其上生成一对私钥和公钥。
私钥是保密的,而公钥则是公开的。
在我们的示例中,我们选择一个名为"secp256r1"的常用椭圆曲线。
然后,我们使用随机数生成器生成一个随机的私钥。
私钥通常是一个整数,范围在[0, n-1],其中n是椭圆曲线上的点数量。
公钥可以通过椭圆曲线的数学性质从私钥中计算得出。
```pythonimport randomfrom ecc import EccKey# 选择椭圆曲线curve = 'secp256r1'# 生成私钥private_key = random.randint(0, 2**256)# 生成公钥public_key = EccKey.from_private_key_and_curve(private_key, curve)```2. 生成随机数在签名过程中,我们需要生成一个随机的随机数k,这个数将在签名过程中使用。
k的选择也是安全的,即它不应该与椭圆曲线上的其他点冲突。
```python# 生成随机数kk = random.randint(0, 2**256)```3. 计算签名值使用私钥、随机数k和要签名的数据来计算签名值。
这个过程涉及到椭圆曲线上的点运算和哈希函数。
```pythonfrom ecc import EccKey, Signatureimport hashlib# 要签名的数据,通常是一个哈希值或一段文本的哈希值data = b'example data'data_hash = hashlib.sha256(data).digest()# 使用私钥、随机数k和数据哈希来计算签名值signature = private_key.sign(data_hash, k)```4. 验证签名值验证签名值的过程是使用公钥、相同的随机数k(如果可获取)和要验证的数据来验证签名是否有效。
secp256k1 标准参数
![secp256k1 标准参数](https://img.taocdn.com/s3/m/0b1d3f34f342336c1eb91a37f111f18583d00c2d.png)
secp256k1 标准参数
secp256k1是一种椭圆曲线密码学(ECC)算法中的参数标准,它被广泛应用于加密货币领域,特别是比特币。
secp256k1的参数如下:
1. 椭圆曲线方程,y^2 = x^3 + 7。
这是secp256k1曲线的标准方程形式,其中7是比特币使用的一个常数。
2. 素数p:
p = 2^256 2^32 977。
这个素数p定义了在有限域上的椭圆曲线运算。
3. 基点G的坐标:
G =
(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B
16F81798,。
0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FF
B10D4B8)。
这个基点G是椭圆曲线上的一个固定点,用于生成公钥和进
行密钥交换。
4. 群的阶n:
n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6
AF48A03B BFD25E8C D0364141。
这个参数定义了椭圆曲线上点的数量,也是用于加密货币签
名算法中的一个重要参数。
这些参数共同定义了secp256k1椭圆曲线,它们在比特币的加
密算法中起着重要作用,包括生成公钥、私钥,进行签名和验证等
操作。
这些参数在密码学和加密货币领域具有重要意义,对于确保
加密货币交易的安全性至关重要。
希望这些信息能够满足你的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆曲线密码算法(ECC)是一种非对称加密算法,它通过椭圆曲线
上的点来实现密钥的生成与交换。
ECC的安全性与RSA等传统非对称加密算法相当,但它所需的密钥长度较短,使得它在移动设备等资源
受限环境下具有明显的优势。
而椭圆曲线密钥生成算法就是ECC中用来生成密钥对的重要算法之一。
椭圆曲线密码算法的安全性建立在椭圆曲线离散对数问题的困难性上。
也就是说,在已知一个点P和整数kP的情况下,要很难计算出整数k。
这一性质使得椭圆曲线密码算法成为一种非常有前景的加密算法,因
为相较于RSA等算法,可以用更短的密钥长度实现同等级的安全性。
椭圆曲线密钥生成算法的过程可以分为如下几个步骤:
1. 选择椭圆曲线参数
首先需要选择一个合适的椭圆曲线来作为公开参数。
这个椭圆曲线的
选择直接影响到了密钥对的生成过程以及算法的安全性。
一般来说,
椭圆曲线的安全性和性能是一对矛盾体,需要在其中寻找一个平衡点。
2. 生成私钥
选择一个随机数作为私钥,私钥的大小通常是根据椭圆曲线的位数来
确定的。
在ECC中,私钥通常是一个整数,它是生成公钥的重要参数。
3. 计算公钥
利用椭圆曲线参数和私钥,可以通过一系列计算得到对应的公钥。
公
钥通常是一个椭圆曲线上的点,它将被用于加密和数字签名等操作中。
4. 密钥对生成完成
私钥和公钥组成了一个完整的密钥对,可以用于加密通信和身份认证
等操作。
椭圆曲线密钥生成算法的实现涉及到大量数论和代数运算,其中包括
模运算、点乘、椭圆曲线点加等复杂运算。
如何高效地实现这些运算
对于算法的性能和安全性都有很大的影响。
椭圆曲线密钥生成算法是一种重要的非对称加密算法,它在移动设备、物联网设备等资源受限环境下具有明显的优势。
加之它在相同安全级
别下所需的密钥长度较短,因此在当前信息安全领域有着广泛的应用
前景。
椭圆曲线密钥生成算法(ECC)是当今信息安全领域中备受瞩
目的一种加密算法。
其独特的数学原理和高效的计算性能使得它成为
了许多安全通信协议和应用中不可或缺的一部分。
椭圆曲线密码算法
的安全性建立在椭圆曲线上的离散对数问题的困难性上,也就是说在
已知一个点P和整数kP的情况下,要很难计算出整数k,这一性质使得椭圆曲线密码算法成为了当前密码学中备受推崇的加密算法。
在选择椭圆曲线参数时,需要注意椭圆曲线的安全性和性能之间的平衡。
安全性和性能是一个矛盾体,为了提高安全性所以椭圆曲线的位
数较大,但位数增加了计算量,会影响算法的运行速度。
需要合理选
择椭圆曲线参数,以满足安全性要求的同时保证算法的执行效率。
私钥的生成是密钥对生成的第一步,私钥的大小通常是根据椭圆曲线
的位数来确定。
选择一个足够大的随机数作为私钥是十分重要的,过
小的私钥容易受到暴力破解攻击。
私钥的安全性直接影响了整个加密
体系的安全性。
生成私钥后,接下来的关键步骤是计算公钥。
利用椭圆曲线参数和私钥,可以通过一系列计算得到对应的公钥。
公钥通常是一个椭圆曲线
上的点,它将被用于加密和数字签名等操作中。
公钥的计算需要进行
大量的数论和代数运算,包括模运算、点乘、椭圆曲线点加等复杂运算。
这些运算都需要高效地实现,这不仅对于算法的性能和安全性具
有很大的影响,也对实际应用带来了挑战。
密钥对生成完成后,这对密钥可以用于加密通信和身份认证等操作。
在实际应用中,椭圆曲线密码算法被广泛应用于数字签名、密钥交换、身份认证等领域。
它在移动设备、物联网设备等资源受限环境下具有
明显的优势,因为相较于RSA等算法,可以用更短的密钥长度实现同等级的安全性,而且在移动设备等环境下占用的资源也更少。
除了在安全通信领域得到广泛应用外,椭圆曲线密码算法还在数字货币、区块链等领域有着重要的应用。
比特币等加密数字货币的安全性
就依赖于椭圆曲线密码算法。
椭圆曲线密码算法在这些领域的应用充分展示了其安全性和性能的优势。
实际上,椭圆曲线密码算法已被广泛纳入到许多安全通信协议和标准中,例如TLS/SSL、IPsec、SSH等。
在这些协议中,ECC的加密和签名机制被广泛使用,为安全通信提供了重要的保障。
然而,尽管椭圆曲线密码算法具有诸多优点,但是它也面临一些挑战和问题。
由于椭圆曲线密码算法的数学基础较为复杂,实现和验证算法的正确性需要投入大量的时间和资源。
在一些特定场景下,椭圆曲线密码算法可能面临着量子计算等新型计算机技术的威胁,这对其安全性提出了新的挑战。
对于椭圆曲线密码算法的研究和发展仍然具有重要意义,有待进一步深入的研究和探讨。
总结而言,椭圆曲线密钥生成算法作为一种重要的非对称加密算法,在当今信息安全领域具有着广泛的应用前景。
它以其高效的计算性能和良好的安全性在网络安全、数字货币、区块链等领域发挥着重要作用,并且成为了许多安全通信协议和标准的重要组成部分。
尽管椭圆曲线密码算法也面临着一些挑战,但是随着信息技术的发展和加密技术的进步,相信椭圆曲线密码算法会继续发挥其重要作用,并且在未来的信息安全领域中发挥越来越重要的作用。