大学物理大一总复习(部分)

合集下载

大学物理(1)总复习

大学物理(1)总复习

k a b k(k 1,2,3,...;k只能取整数) a
计算缺级的基本公式。
[B ]
16
补:若用衍射光栅准确测定一单色可见光的波长,在下列各种 光栅常数的光栅中选用哪一种最好?
(A) 5.0×10-1 mm. (B) 1.0×10-1 mm.
(C) 1.0×10-2 mm. (D) 1.0×10-3 mm.
(A) 1.5J (C) 4.5J
(B) 3J (D) -1.5J
F
d
r
1m(v 2
2 2
v12 ),
v
v
2 x
v
2 y
vx
dx dt
5,v y
dy dt
t,
v12
29,v
2 2
41
[B ]
4
4、对质点组有以下几种说法:
(1)质点组总动量的改变与内力无关。
(2)质点组总动能的改变与内力无关。
(3)质点组机械能的改变与保守内力无关。
v 0, t 3
[B ]
r xi yj
v
d
r
d
x
i
d
y
j
dt dt dt
v
v
2 x
v
2 y
d
x
2
d
y
2
dt dt
2
2. 质量为2kg的质点,受力F = t i(SI)的作用,t =0 时刻该质点以v =6i m·s-1的速度通过坐标原点,则该 质点任意时刻的位置矢量为
25
20.一绝热容器被隔板分成两半,一半是真空,另一半是理想 气体。若把隔板抽出,气体将进行自由膨胀,达到平衡后
(A)温度不变,熵增加. (B)温度升高,熵增加. (C)温度降低,熵增加. (D)温度不变,熵不变.

大学物理一综合复习资料

大学物理一综合复习资料

《大学物理(一)》综合复习资料一.选择题1. 某人骑自行车以速率V 向正西方行驶,遇到由北向南刮的风(设风速大小也为V ),则他感到风是从(A )东北方向吹来.(B )东南方向吹来.(C )西北方向吹来.(D )西南方向吹来.[ ]2.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动.[ ]3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为β.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变.(B )变小.(C )变大.(D )无法判断. 4. 质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总动量. 5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A )1/2 .(B )1/4.(C )2/1.(D) 3/4.(E )2/3.[ ]6.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 1变为(A )4/1E .(B ) 2/1E .(C )12E .(D )14E .[ ]7.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4. (B )λ/2.(C ) 3λ/4 . (D )λ.[ ]8.一平面简谐波沿x 轴负方向传播.已知x =b 处质点的振动方程为)cos(0φω+=t y ,波速为u ,则波动方程为:(A ))cos(0ϕω+++=u x b t A y .(B )⎥⎦⎤⎢⎣⎡++-=0)(cos ϕωu x b t A y . (C )⎥⎦⎤⎢⎣⎡+-+=0)(cos ϕωu b x t A y .(D )⎥⎦⎤⎢⎣⎡+-+=0)(cos ϕωu x b t A y . [ ]9.物体在恒力F 作用下作直线运动,在时间1t ∆内速度由0增加到v ,在时间2t ∆内速度由v 增加到2v ,设F 在1t ∆内作的功是W 1,冲量是I l ,F 在2t ∆内作的功是W 2,冲量是I 2,那么(A ) W 2=W 1,I 2 >I 1.(B ) W 2=W 1 , I 2<I 1.(C ) W 2>W 1,I 2= I 1.(D) W 2<W l ,I 2=I 1 .[ ]10.如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉.则物体(A )动能不变,动量改变.(B )动量不变,动能改变.(C )角动量不变,动量不变. (D )角动量改变,动量改变. (E )角动量不变,动能、动量都改变.[ ]二.填空题1.一个质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M= ;在任意时刻t ,质点对原点O 的角动量L= .3.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .4.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .5.一质点作半径为0.l m 的圆周运动,其运动方程为:2214t +=πθ (SI ),则其切向加速度为t a = .6.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L = .7.简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为 .8.一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为)4/cos(05.01πω+=t x (SI ),)12/19cos(05.01πω+=t x (SI ).其合振运动的振动方程为x = .9.一弹簧振子系统具有1.OJ 的振动能量,0.10m 的振幅和1.0m /s 的最大速率,则弹簧的倔强系数为 ,振子的振动频率为 .10.质量为m 的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T .当它作振幅为A 的自由简谐振动时,其振动能量E=. 三.计算题1.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小; (2)子弹在穿透过程中所受的冲量.2.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率. (3)此弹簧的弹力是保守力吗?3.一简谐波沿OX 轴正方向传播,波长λ=4m ,周期T =4s ,已知x =0处质点的振动曲线如图所示,(l )写出x =0处质点的振动方程; (2)写出波的表达式;(3)画出t =1s 时刻的波形曲线.Ml答案一.选择题1.(C )2.(B ) 3.(C ) 4.(C )5.(D ) 6.(D ) 7.(B ) 8.(C ) 9.(C) 10.(E) 二.填空题1. 8m 2分 10m 2分2. k mbg2分 k mbgt2分3. )11(21ba m Gm -- 4. 质点系所受合外力的冲量等于质点系(系统)动量的增量. 1分i i i i t t v m v m dt F 2121∑∑⎰-= 2分系统所受合外力等于零. 1分 5. 0.12m/s6. μ+g m M mv 22)(2)(7. )2/cos(04.0ππ-t(其中振相1分,周期1分,初相2分) 8. )12/23cos(05.0π+ωt (SI ) 或)12/cos(05.0πω-t (SI ) 9. 2×102N /m; 1.6Hz.10. 222/2T mA π.三.计算题1.解:(1)穿透时间极短,故可认为物体未离开平衡位置.因此作用于子弹、物体系统上的外力均在铅直方向,故系统在水平方向上动量守恒.令子弹穿出物体的水平速度为v ',有: v M mv mv '+=0 2分s m M v v m v /3/4/)(0,=-= 1分N l Mv Mg T 1.17/2=+= 2分 (2)方向为正方向)设00(v mv mv t f-=∆ 3分 s N •-=2 2分 负号表示冲量方向与0v方向相反. 2分2.解:(l )外力做的功 ⎰•=r d F W ⎰+=21)4.388.52(2x xdx x x J 31= 4分(2)设弹力为F ', =221mv W x d F x x -=•'⎰21 3m W v /2-= 1分s m v /34.5= l 分(3)此力为保守力,因为其功的值仅与弹簧的始末态有关. 3分3.解:(1))3/21cos(10220π+π⨯=-t y (SI ) 3分(2))3/)4/4/(2cos[1022π+-π⨯=-x t y (SI ) 3分(3) t =1s 时,波形方程: )6/521cos[1022π-π⨯=-x y (SI ) 2分故有如图的曲线. 4分(注:可编辑下载,若有不当之处,请指正,谢谢!)。

大学物理大一期末复习

大学物理大一期末复习

一、选择题2、(本题3分) (0343)图所示,用一斜向上的力F (与水平成30o 角),将一重为G 的木块压靠在竖直壁面上,如果不论用怎么大的力F ,都不能使木块向上滑动,则说明木块与壁面间的静摩擦力系数μ的大小为 (A) μ≥12 (B) μ(C) μ(D) μ≥[ B ]3、(本题3分) (0366)质量为m 的平板A ,用竖直的弹簧支持而处在水平位置,如图。

从平台上投掷一个质量也是m 的球B ,球的初速为v ,沿水平方向。

球由于重力作用下落,与平板发生完全弹性碰撞。

假定平板是光滑的,则与平板碰撞后球的运动方向应为:(A) A 0方向 (B) A 1方向 (C) A 2方向 (D) A 3方向[ C ]5、(本题3分) (4091)如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程,A →D 绝热过程,其中吸热量最多的过程(A) 是A →B . (B) 是A →C . (C) 是A →D .(D) 既是A →B 也是A →C ,两过程吸热一样多。

[ A ]9、(本题3分) (0128)如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O 。

该物体原以角速度ω在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉。

则物体(A) 动能不变,动量改变。

(B) 动量不变,动能改变。

(C) 角动量不变,动量不变。

(D) 角动量改变,动量改变。

(E) 角动量不变,动能、动量都改变。

[ E ]215、(本题3分) 1492如图所示,两个同心的均匀带电球面。

内球面带电量Q 1,外球面带电量Q 2,则在两球面之间、距离球心为r 处的P 点的场强大小E 为:(A)1204Q r πε. (B)12204Q Q r πε+(C) 2204Q r πε (D)21204Q Q rπε-[ A ]17、(本题3分) 1611有三个直径相同的金属小球。

大学物理知识点总结

大学物理知识点总结

T1
600
Q W
Q吸
W Q吸 50% 2000 1000J
上页
下页
8-4一定量的理想气体分别经过等压、等温、绝热过 程,从体积V1膨胀到体积V2,则正确的是 (A) A→C 吸热最多,内能增加 E CV ,mT 0
(B) A→D 内能增加,作功最少 内能减少,作功最少
VC
过程如图所示,VC=2VA。问 VC
B
(1)是正循环还是逆循环?
(2) 若是正循环,求循环效率。VA
A
解 (1) pV 图:正循环
(2)
Q吸 CP,m (TB
W净 PA(VC
TA ) VA )
R52TARlTnAVVCA
RTA RTA ln 2
o
T
例2 如果卡诺热机的循环
曲线所包围面积从图中的
abcda增大为ab’c’da,这两
个循环所作的净功是否一
样?热机效率是否一样?
pa
T2
b b
T1
d
O W净 S面积
1 T2
T1
c c
V
净功增大
效率不变
上页
下页
例3 两个卡诺热机的循环曲线如图,一个工作在 T1、T3 两个热源之间,另一个工作T2 、T3 两个热 源之间。已知,两循环曲线所包围面积相等,问:
相长 相消
s1 s2
同相波源: 2 1
Δ



u
(r2

r1 )
r1 r2 P
5.驻波不考,波的能量只需知道变化特点即可。上页下页(五)热学
1 气体动理论
1) 理想气体状态方程 pV RT

大学物理总复习

大学物理总复习

0 冲击,
角达水平位置。设 m与m1的碰撞为完全非弹 /2
性的,m1=4m,m2=m,L=1m,取,求
? 0
O
L/2 A m1
分析:碰撞过程中系统动量是否守恒, 角动量是否守恒?碰撞之后一起运动 m 的过程,系统机械能是否守恒?
B
L/2 m2
10
解:取杆及 m 组成的系统为研 究对象,碰撞过程中,轴对系统
B 都垂直的直线上的投影以相同速度切 割磁场线运动时产生的电动势,这一投 影长度称之为导线的有效切割长度。

× × × × L × × ×
× × × × × × ×
× × × × × × ×
31
N
B

★ 直线电流的磁场
dB 方向均沿 x 轴的负方向
dB
z
D
2

0 Idl sin
质点组的动能定理
内力的功
dW内 F1 dr12 0
W外 W内 Ek E k0 W外 W内 Ek
功能原理
W外 W非内 Ek Ep Em
9
例3-5 如图,杆OB可绕水平光滑轴O转动,杆长L,质量不计, 杆的中点A和底端B处附有两个质量为m1和m2的小球,最初杆 静止于平衡位置,令一质量为m的粘性球以水平速度 恰能使杆转过
E 的大小都相等,方向沿径向。
取高斯面:作同心高斯球面
+ + +
+
S +1
O
+R+ +
r
+
+ + +
球内区域 r < R ,作高斯球面 S1
E dS 0

大学物理1期末考试复习试卷原题与答案

大学物理1期末考试复习试卷原题与答案

⼤学物理1期末考试复习试卷原题与答案⼤学物理1期末考试复习,试卷原题与答案⼒学8.A质量为m的⼩球,⽤轻绳AB、BC连接,如图,其中AB⽔平.剪断绳AB 前后的瞬间,绳BC中的张⼒⽐T : T′=____________________.9.⼀圆锥摆摆长为l、摆锤质量为m,在⽔平⾯上作匀速圆周运动,摆线与铅直线夹⾓θ,则(1) 摆线的张⼒T=_____________________;(2) 摆锤的速率v=_____________________.12.⼀光滑的内表⾯半径为10 cm的半球形碗,以匀⾓速度ω绕其对称OC 旋转.已知放在碗内表⾯上的⼀个⼩球P相对于碗静⽌,其位置⾼于碗底4cm,则由此可推知碗旋转的⾓速度约为(A) 10 rad/s.(B) 13 rad/s.(C) 17 rad/s (D) 18 rad/s.[]13.质量为m的⼩球,放在光滑的⽊板和光滑的墙壁之间,并保持平衡,如图所⽰.设⽊板和墙壁之间的夹⾓为α,当α逐渐增⼤时,⼩球对⽊板的压⼒将(A) 增加(B) 减少.(C) 不变.(D) 先是增加,后⼜减⼩.压⼒增减的分界⾓为α=45°.[ ]15.m m⼀圆盘正绕垂直于盘⾯的⽔平光滑固定轴O转动,如图射来两个质量相同,速度⼤⼩相同,⽅向相反并在⼀条直线上的⼦弹,⼦弹射⼊圆盘并且留在盘内,则⼦弹射⼊后的瞬间,圆盘的⾓速度ω(A) 增⼤.(B) 不变.(C) 减⼩.(D) 不能确定定.()16.如图所⽰,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂⼀质量为M的物体,B滑轮受拉⼒F,⽽且F=Mg.设A、B两滑轮的⾓加速度分别为βA和βB,不计滑轮轴的摩擦,则有(A) βA=βB.(B) βA>βB.(C) βA<βB.(D) 开始时βA=βB,以后βA<βB.18. 有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A和J B,则(A) J A>J B(B) J A<J B.(C) J A =J B.(D) 不能确定J A、J B哪个⼤.22. ⼀⼈坐在转椅上,双⼿各持⼀哑铃,哑铃与转轴的距离各为0.6 m.先让⼈体以5 rad/s的⾓速度随转椅旋转.此后,⼈将哑铃拉回使与转轴距离为0.2 m.⼈体和转椅对轴的转动惯量为5 kg·m2,并视为不变.每⼀哑铃的质量为5 kg可视为质点.哑铃被拉回后,⼈体的⾓速度ω=__________________________.28.质量m=1.1 kg的匀质圆盘,可以绕通过其中⼼且垂直盘⾯的⽔平光滑固定轴转动,对轴的转动惯量J=221mr(r为盘的半径).圆盘边缘绕有绳⼦,绳⼦下端挂⼀质量m1=1.0 kg的物体,如图所⽰.起初在圆盘上加⼀恒⼒矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加⼒矩,问经历多少时间圆盘开始作反⽅向转动.静电学1. 如图所⽰,两个同⼼球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球⼼为r 的P 点处电场强度的⼤⼩与电势分别为:(A) E =204r Q επ,U =r Q04επ.(B) E =204r Q επ,U =???? ??-πr R Q11410ε.(C) E =204r Qεπ,U =??-π20114R r Q ε.(D) E =0,U =204R Qεπ.[]10.E图中曲线表⽰⼀种轴对称性静电场的场强⼤⼩E 的分布,r 表⽰离对称轴的距离,这是由____________________________________产⽣的电场.14. ⼀半径为R 的均匀带电球⾯,其电荷⾯密度为σ.若规定⽆穷远处为电势零点,则该球⾯上的电势U =____________________.17.Lq如图所⽰,真空中⼀长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的⼀端距离为d 的P 点的电场强度.28. 关于⾼斯定理,下列说法中哪⼀个是正确的? (A) ⾼斯⾯内不包围⾃由电荷,则⾯上各点电位移⽮量D 为零.(B)⾼斯⾯上处处D为零,则⾯内必不存在⾃由电荷.(C)⾼斯⾯的D通量仅与⾯内⾃由电荷有关.(D) 以上说法都不正确. ( )q⼀空⼼导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所⽰.当球壳中⼼处再放⼀电荷为q 的点电荷时,则导体球壳的电势(设⽆穷远处为电势零点)为(A) 104R qεπ. (B) 204R qεπ. (C) 102R q επ . (D)20R q ε2π.[]35.如图所⽰,将⼀负电荷从⽆穷远处移到⼀个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增⼤、不变、减⼩)36. ⼀⾦属球壳的内、外半径分别为R1和R2,带电荷为Q.在球⼼处有⼀电荷为q的点电荷,则球壳内表⾯上的电荷⾯密度σ =______________.38. 地球表⾯附近的电场强度为100 N/C.如果把地球看作半径为6.4×105m的导体球,则地球表⾯的电荷Q=___________________.(2/CmN1094129=πε)40. 地球表⾯附近的电场强度约为100 N /C,⽅向垂直地⾯向下,假设地球上的电荷都均匀分布在地表⾯上,则地⾯带_____电,电荷⾯密度σ=__________.(真空介电常量ε 0 = 8.85×10-12 C2/(N·m2) )41. 12σda厚度为d的“⽆限⼤”均匀带电导体板两表⾯单位⾯积上电荷之和为σ.试求图⽰离左板⾯距离为a的⼀点与离右板⾯距离为b的⼀点之间的电势差.42. 半径分别为 1.0 cm与 2.0 cm的两个球形导体,各带电荷 1.0×10-8 C,两球相距很远.若⽤细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/CmN109419=πε)43.半径分别为R1和R2 (R2 > R1 )的两个同⼼导体薄球壳,分别带有电荷Q1和Q2,今将内球壳⽤细导线与远处半径为r的导体球相联,如图所⽰, 导体球原来不带电,试求相联后导体球所带电荷q.稳恒磁场习题1. 有⼀个圆形回路1及⼀个正⽅形回路2,圆直径和正⽅形的边长相等,⼆者中通有⼤⼩相等的电流,它们在各⾃中⼼产⽣的磁感强度的⼤⼩之⽐B 1 / B 2为(A) 0.90. (B) 1.00. (C)1.11.(D)1.22.[]2.边长为l 的正⽅形线圈中通有电流I ,此线圈在A 点(见图)产⽣的磁感强度B 为 (A) l I π420µ. (B) lI π220µ.(C)lI π02µ. (D) 以上均不对.[]3.通有电流I 的⽆限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的⼤⼩B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P . ( )4.⽆限长载流空⼼圆柱导体的内外半径分别为a、b,电流在导体截⾯上均匀分布,则空间各处的B的⼤⼩与场点到圆柱中⼼轴线的距离r的关系定性地如图所⽰.正确的图是[]11. ⼀质点带有电荷q =8.0×10-10 C,以速度v =3.0×105 m·s-1在半径为R =6.00×10-3 m的圆周上,作匀速圆周运动.该带电质点在轨道中⼼所产⽣的磁感强度B =__________________,该带电质点轨道运动的磁矩p m=___________________.(µ0 =4π×10-7 H·m-1) 12. 载有⼀定电流的圆线圈在周围空间产⽣的磁场与圆线圈半径R有关,当圆线圈半径增⼤时,(1)圆线圈中⼼点(即圆⼼)的磁场__________________________(2.)圆线圈轴线上各点的磁场__________________________________________________________________________________________________.14. ⼀条⽆限长直导线载有10 A的电流.在离它0.5 m远的地⽅它产⽣的磁感强度B为______________________.⼀条长直载流导线,在离它1 cm处产⽣的磁感强度是10-4T,它所载的电流为__________________________.两根长直导线通有电流I,图⽰有三种环路;在每种情况下,??lB等于:____________________________________(对环路a).___________________________________(对环路b).____________________________________(对环路c).16.设氢原⼦基态的电⼦轨道半径为a0,求由于电⼦的轨道运动(如图)在原⼦核处(圆⼼处)产⽣的磁感强度的⼤⼩和⽅向.19.⼀根半径为R的长直导线载有电流I,作⼀宽为R、长为l的假想平⾯S,如图所⽰。

大学物理复习资料1

大学物理复习资料1

2 3
1 2 3 4
Q
A
B
C
.P
E
1 2 Q S 同理可得: 0 2 3
Q Q Q 1 2 3 4 2S 2S 2S 按电场叠加原理可求得: Q Q Q EB EA EC 2 o S 2 o S 2 o S (2)第二板接地 则 4与大地构成一导体 4 0
qQ U2 U3 4 π 0 R3 4 π 0 R3 4 π 0 R3 q q qQ 4 π 0 R3
R2
R3
U1 U 2
q 4 π 0 R1

q 4 π 0 R2
(2)外壳接地, 电荷分布
U1
q 4 π 0 R1

q 4 π 0 R2
复习课
题型: 选择10题共30分, 填空10题共30分, 计算5题共40分 比例:静电场(第11、12章): 31分; 第13章: 19分; 第14章: 19分; 第15章: 11分; 第16章: 17分; 第17章: 3分。。
11章 真空中的静电场
1、利用场强叠加原理求场强:
E
q q 1 1 i r E ri E dE 3 3 40 r 40 ri 40
R
o
练习题:例11-16、17;习题11-6、7、8、14
例11-16
均匀带电圆环半径为R,带电总量为q
求 圆环轴线上一点的电势 解 建立如图坐标系,选取电荷元 dq
dq dl
dq dV 4 0 r
dq r
R

dl
4 0 R x
2 2
O
P
x
Vp
2 R

大学物理复习题(1)

大学物理复习题(1)

a
瞬时加速度 a lim
v t
t 0

dv dt
a xi a y j a zk
第六章热力学基础 二 理解运动方程的物理意义及作用 . 掌握运 用运动方程确定质点的位置、位移、速度和加速 度的方法,以及已知质点运动的加速度和初始条 件求速度、运动方程的方法 .
x A cos( t )
弹簧振子周期
T 2π
m k
第六章热力学基础 对给定振动系统,周期由系统本身性质决定, 振幅和初相由初始条件决定.
初始条件 t 0
A x0
2
x x0
2 2
v v0
v0
v0

tan
x0
谐振动的能量
Ek 1 2 1 mv
能运用以上规律分析和解决包括质点和刚体 的简单系统的力学问题.
第六章热力学基础 四、角动量守恒定律 质点的角动量 L r mv 质点的角动量定理微分形式 dL M M rF dt 系统角动量对时间的变化率等于系统所受 合外力矩。 质点的角动量定理积分形式
A
t t 时
t
o
x A cos( t )
x
原点,旋转 矢量 A 的端 点,在 x 轴 上的投影点 的运动为简 谐运动.
第六章热力学基础 四 理解同方向、同频率简谐运动的合成规律, 了解拍和相互垂直简谐运动合成的特点. 五 了解阻尼振动、受迫振动和共振的发生条 件及规律. x 1 A1 cos( t 1 ) 同方向同频率 x 2 A 2 cos( t 2 )
动量定理
p mv
Fdt

大学物理学复习资料

大学物理学复习资料

大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。

t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。

2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。

大学物理I期末总复习

大学物理I期末总复习


A.A比B的动量增量少
B.A与B的动量增量为零
C.A比B的动量增量大
D.A与B的动量增量相等
冲量等于动量增 量
B
吊车地板给物体的冲量,是支持力,所以加速度 a=10+2=12m/s^2
D
所谓冲量即动量增量,0-2*10=|-20|
A
所谓冲量即动量增量,0-2*5=|-10|
C
0.01*900=9, 240/60=4,4*9=36
dt
4
a d 2x 40 2cos(40 ) 2.79 102 m s2
dt 2
4
例2.简谐振动方程 x Acos(t ) ,求 t T (T为周期)时,物体的速
3.简谐振动的动力学、运动学的表达式。运动方程 x Acos(t )
4.振幅、角频率和初相三个量可以完全确定一个简谐振动,称为简谐振 动的特征量。
5.相位(t )是决定简谐振动的物体任一时刻运动状态的物理量。
6.对于给定的振动系统,周期(频率)由振动系统本身的性质决定,而振幅
和初相则由初始条件决定。
6.作用力和反作用力同时产生,任何一方不能孤立地存在。作用力和 反作用力分别作用在两个物体上,其效果不能相互抵消。 7.牛顿第二定律是牛顿力学的核心,只适用于质点的运动,所表示的 合外力和加速度之间的关系是瞬时对应的关系。 8.冲量是表征力对时间累积效应的物理量,功是表征力对空间累积效 应的物理量。 9.冲量的方向一般并不与动量的方向相同,而与动量增量的方向相同。 10.只有外力才对系统的动量变化有贡献,而系统的内力是不能改变 整个系统的动量的。
二、作业及练习题复习
1. 已知质点运动学方程,求轨迹方程、速度、加速度和判断运动情况等。

大学物理复习资料(超全)(一)

大学物理复习资料(超全)(一)

大学物理复习资料(超全)(一)引言概述:大学物理是大学阶段的一门重要课程,涵盖了广泛的物理知识和原理。

本文档旨在为大学物理的复习提供全面的资料,帮助学生回顾和巩固知识,以便更好地应对考试。

本文档将分为五个大点来详细讲解各个方面的内容。

一、力学1. 牛顿力学的基本原理:包括牛顿三定律和作用力的概念。

2. 运动学的基本概念:包括位移、速度和加速度的定义,以及运动的基本方程。

3. 物体的受力分析:重点介绍平衡、力的合成和分解、摩擦力等。

4. 物体的平衡和动力学:详细解析物体在平衡和运动状态下所受的力和力矩。

5. 力学定律的应用:举例说明力学定律在各种实际问题中的应用,如斜面、弹力等。

二、热学和热力学1. 理想气体的性质:通过理想气体方程和状态方程介绍气体的基本性质。

2. 热量和温度:解释热量和温度的概念,并介绍温标的种类。

3. 热传导和热辐射:详细讲解热传导和热辐射的机制和规律。

4. 热力学定律:介绍热力学第一定律和第二定律,并解析它们的应用。

5. 热力学循环和热效率:介绍热力学循环的种类和热效率的计算方法,以及它们在实际应用中的意义。

三、电学和磁学1. 电荷、电场和电势:介绍电荷的基本性质、电场的概念,以及电势的计算方法。

2. 电场和电势的分析:详细解析电场和电势在不同形状电荷分布下的计算方法。

3. 电流和电路:讲解电流的概念和电路中的串联和并联规律。

4. 磁场和电磁感应:介绍磁场的基本性质和电磁感应的原理。

5. 麦克斯韦方程组:简要介绍麦克斯韦方程组的四个方程,解释它们的意义和应用。

四、光学1. 光的传播和光的性质:解释光的传播方式和光的特性,如反射和折射。

2. 光的干涉和衍射:详细讲解光的干涉和衍射现象的产生机制和规律。

3. 光的色散和偏振:介绍光的色散现象和光的偏振现象的产生原因。

4. 光的透镜和成像:讲解透镜的类型和成像规律,包括凸透镜和凹透镜。

5. 光的波粒二象性和相干性:介绍光的波粒二象性和相干性的基本概念和实验现象。

大学物理1 复习资料

大学物理1 复习资料

大学物理1 复习资料一、选择题1.电量为q 的粒子在均匀磁场中运动,下列说法正确的是( B )。

(A )只要速度大小相同,所受的洛伦兹力就一定相同;(B )速度相同,带电量符号相反的两个粒子,它们受磁场力的方向相反,大小相等;(C )质量为m ,电量为q 的粒子受洛伦兹力作用,其动能和动量都不变;(D )洛伦兹力总与速度方向垂直,所以带电粒子的运动轨迹必定是圆。

2.载电流为I ,磁矩为P m 的线圈,置于磁感应强度为B 的均匀磁场中, 若P m 与B 方向相同则通过线圈的磁通Φ与线圈所受的磁力矩M 的大小为( B )。

(A )0,==ΦM IBP m ; (B );0,==ΦM IBP m (C )m m BP M IBP ==Φ, ; (D )m m BP M IBP ==Φ, 3.已知空间某区域为匀强电场区,下面说法中正确的是( C )。

(A )该区域内,电势差相等的各等势面距离不等。

(B )该区域内,电势差相等的各等势面距离不一定相等。

(C )该区域内,电势差相等的各等势面距离一定相等。

(D )该区域内,电势差相等的各等势面一定相交。

4.关于高斯定律得出的下述结论正确的是( D )。

(A )闭合面内的电荷代数和为零,则闭合面上任意点的电场强度必为零。

(B )闭合面上各点的电场强度为零,则闭合面内一定没有电荷。

(C )闭合面上各点的电场强度仅有闭合面内的电荷决定。

(D )通过闭合曲面的电通量仅有闭合面内的电荷决定。

5.一带有电荷Q 的肥皂泡在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中( B )。

(A )始终在泡内的点的场强变小;(B )始终在泡外的点的场强不变;(C )被泡面掠过的点的场强变大; (D )以上说法都不对。

6.电荷线密度分别为21,λλ 的两条均匀带电的平行长直导线,相距为d ,则每条导线上单位长度所受的静电力大小为 (D )。

大学物理1复习资料(含公式,练习题)

大学物理1复习资料(含公式,练习题)

第一章 质点运动学重点:求导法和积分法,圆周运动切向加速度和法向加速度。

主要公式:1.质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。

t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度3.4.5.线速度与角速度关系6.切向加速度法向加速度 总加速度第二章 质点动力学重点:动量定理、变力做功、动能定理、三大守恒律。

主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。

2.牛顿第二定律3.4.5.6 动能定理7.机械能守恒定律:当只有保守内力做功时,0=∆E8. 力矩:F r M⨯=大小:θsin Fr M=方向:右手螺旋,沿F r⨯的方向。

9.角动量:P r L⨯=大小:θsin mvr L =方向:右手螺旋,沿P r⨯的方向。

※ 质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。

完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。

一般的非弹性碰撞:动量守恒,机械能不守恒。

※行星运动:向心力的力矩为0,角动量守恒。

第三章 刚体重点: 刚体的定轴转动定律、刚体的角动量守恒定律。

主要公式: 1. 转动惯量:⎰=rdm r J2,转动惯性大小的量度。

2. 平行轴定理:2md J Jc +=质点:θsin mvr L =刚体:ωJ L =4.转动定律:βJ M=5.角动量守恒定律:当合外力矩2211:,0,0ωωJ J L M ==∆=即时6. 刚体转动的机械能守恒定律: 转动动能:221ωJ E k =势能:c P mgh E = (c h 为质心的高度。

)※ 质点与刚体间发生碰撞:完全弹性碰撞:角动量守恒,机械能守恒。

完全非弹性碰撞:角动量守恒,机械能不守恒,且具有共同末速度。

一般的非弹性碰撞:角动量守恒,机械能不守恒。

说明:期中考试前的三章力学部分内容,请大家复习期中试卷,这里不再举例题。

大学物理复习提纲

大学物理复习提纲
复习
第一章 运动和力
一、质点运动学
1、
位置矢量
r
xi
yj
zk
运动方程:
r (t) x(t)i y(t) j z(t)k
x x(t)
分量式:
y y(t) z z(t) (消去t得轨道方程)
2、位移 r r2 r1
(x2 x1)i ( y2 y1) j (z2 z1 )k
m1v0l
(1 3
m2l
2
m1l
2
)
l m2
v0
摆动过程:机械能守恒
m1
1 2
(1 3
m2l 2
m1l 2 ) 2
m1gl(1
cos )
m2 g
l 2
(1 cos )
复习
第 4 章 流体力学
一、理想流体的稳定流动
(1)连续性方程: S1V1 S2V2
(2)伯努利方程:
p1
1 2
v12
gh1
p2
五、电势差
Ua
dq
4 π 0r
(电势叠加法)
b
Uab Ua Ub
E dl
a
六、电势力做的功 Aab q(Ua Ub ) q Uab
复习
第 9 章 恒定磁场
一、磁感应强度:
1、毕奥-萨伐尔定律:dB
0
Id
l
r
4r 3
(1) 一段载流直导线的磁场
B
0 I(c
4πa
os1
cos2)
复习
五、熵增加原理:
S 0
孤立系统中的可逆过程,其熵不变;孤立系统中的 不可逆过程,其熵要增加 .(孤立系统的熵永不减少)

大学物理复习题及解答

大学物理复习题及解答

大学物理(一)复习题及解答一、选择题1.某质点的运动方程为)(6532SI t t x +-=,则该质点作( )。

A 、匀加速直线运动,加速度沿x 轴正方向;B 、匀加速直线运动,加速度沿x 轴负方向;C 、变加速直线运动,加速度沿x 轴正方向;D 、变加速直线运动,加速度沿x 轴负方向。

2.下列表述中正确的是( )。

A 、质点沿x 轴运动,若加速度0<a ,则质点必作减速运动;B 、在曲线运动中,质点的加速度必定不为零;C 、若质点的加速度为恒矢量,则其运动轨道必为直线;D 、当质点作抛体运动时,其法向加速度n a 、切向加速度t a 是不断变化的;因此, 22t n a a a +=也是不断变化的。

3.下列表述中正确的是:A 、质点作圆周运动时,加速度方向总是指向圆心;B 、质点作抛体运动时,由于加速度恒定,所以加速度的切向分量和法向分量也是恒定的;C 、质点作曲线运动时,加速度方向总是指向曲线凹的一侧;D 、质点作曲线运动时,速度的法向分量总是零,加速度的法向分量也应是零。

4.某物体的运动规律为t kv dtdv 2-=,式中的k 为大于零的常数;当t =0时,初速为0v ,则速度v 与时间t 的函数关系是( )。

A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v -=。

5.质点在xoy 平面内作曲线运动,则质点速率的正确表达式为( )。

A 、dt dr v =;B 、dt r d v =;C 、dtds v =;D 、22)()(dt dy dt dx v += ;E 、dt r d v =。

6.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,(1)a dt dv =;(2)v dt dr =;(3)v dtds =;(4)t a dt v d = |; A 、只有(1)、(4)是对的; B 、只有(2)、(4)是对的;C 、只有(2)是对的;D 、只有(3)是对的。

《大学物理》综合复习资料

《大学物理》综合复习资料

《大学物理(一)》综合复习资料一.选择题1.某人骑自行车以速率V 向西行驶,今有风以相同速率从北偏东300方向吹来,试问人感到风从哪个方向吹来?(A )北偏东300. (B )南偏东300. (C )北偏西300. (D )西偏南300. [ ]2.质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总角动量. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. C )变大. ( D )无法判断. [ ]4.一质点作匀速率圆周运动时,则(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断不变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的分布和轴的位置无关.(B )取决于刚体的质量和质量分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]6.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是(A )s 4=t .(B )s 2=t .(C )s 8=t .(D )s 5=t . [ ]7.对功的概念有以下几种说法:(l )保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A )(l )、(2)是正确的. (B )(2)、(3)是正确的.(C )只有(2)是正确的. (D )只有(3)是正确的. [ ]8.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小.(B )角速度从小到大,角加速度从小到大.(C )角速度从大到小,角加速度从大到小.(D )角速度从大到小,角加速度从小到大.[ ]9.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量1E 变为(A )4/1E . (B)2/1E . (C)12E . (D)14E . [ ]10.下列说法哪一条正确?(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )不管加速度如何,平均速率表达式总可以写成:2/)(21v v v +=.(D )运动物体速率不变时,速度可以变化. [ ]11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过固定在电梯内顶棚上得的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A )大小为1g ,方向向上. (B )大小为1g ,方向向下.(C )大小为g 21,方向向上. (D )大小为g 21,方向向下. [ ] 12.质量为M 光滑的圆弧形槽于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的:(A )由m 和M 组成的系统动量守恒. (B )由m 和M 组成的系统机械能守恒.(C )由m 、M 和地球组成的系统机械能守恒.(D )M 对m 的正压力恒不作功.[ ]13. 一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. (C )变大. (D )无法判断. [ ]14.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A -.(B )φωsin A .(C )φωcos A -.(D )φωcos A . [ ]15.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动. (B )变速直线运动.(C )抛物线运动. (D )一般曲线运动. [ ]16.在高台上分别沿45º仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时速度(A )大小不同,方向不同.(B )大小相同,方向不同.(C )大小相同,方向相同.(D )大小不同,方向相同. [ ]17.质量为m 的木块沿与水平面成θ角的固定光滑斜面下滑,当木块下降高度为h 时,重力的瞬时功率是(A )2/1)2(gh mg . (B )2/1)2(cos gh mg θ. (C )2/1)21(sin gh mg θ. (D)2/1)2(sin gh mg θ. [ ]18.一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度0v 落下,撞击弹簧后跳回到高为h 处时速度仍为0v ,以小球为系统,则在这一整个过程中小球的(A )动能不守恒,动量不守恒. (B )动能守恒,动量不守恒.(C )机械能不守恒,动量守恒. (D )机械能守恒,动量守恒.[ ]二.填空题1.一质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2.一质点作半径为0.1m 圆周运动,其运动方程为:2/4/2t +π=θ,则其切向加速度为t a = .3.一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为 ,方向为 .4.若作用于一力学系统上外力的合力为零,则外力的合力矩.(填一定或不一定) 为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是_ .5.动量矩定理的内容是 .其数学表达式可写成 .动量矩守恒的条件是 .6.一质点沿半径为0.10m 的圆周运动,其角位移θ可用下式表示)(423SI t +=θ.(1)当t=2s 时,切向加速度t a = ;(2)当t a 的大小恰为总加速度a 大小的一半时,=θ .7.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后物体A 在水平方向滑过的距离L = .8.图中所示的装置中,略去一切摩擦力以及滑轮和绳的质量,且绳不可伸长,则质量为1m 的物体的加速度=1a .9.绕定轴转动的飞轮均匀地减速,0=t 时角速度s rad /5=ω,s t 20=时角速度08.0ωω=,则飞轮的角加速度β= ,从0=t 到s t 100=时间内飞轮所转过的角度θ= .10. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M = ;在任意时刻t ,质点对原点O 的角动量L = .11.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .12.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .13.已知质点运动方程为j t t i t t r )314()2125(32++-+=(SI ),当t =2s 时,a = .14.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ωl =20πrad /s ,再转60转后角速度为ω2=30πrad /s ,则角加速度β= ,转过上述60转所需的时间是t = .15.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l 31,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 .16.质量为m 的质点以速度v 沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 .17.若作用于一力学系统上外力的合力为零,则外力的合力矩 (填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是 .三.计算题1.顶角为2θ的直圆锥体,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计,圆锥面是光滑的.今使小球在圆锥面上以角速度ω绕OH 轴匀速转动,求(1)锥面对小球的支持力N 和细绳的张力T ;(2)当ω增大到某一值c ω时小球将离开锥面,这时c ω及T 又各是多少?2.一弹簧振子沿x 轴作简谐振动.已知振动物体最大位移为m x =0.4m 最大恢复力为N 8.0=m F ,最大速度为m/s 8.0π=m v ,又知t =0的初位移为+0.2m ,且初速度与所选x 轴方向相反.(1)求振动能量;(2)求此振动的表达式.3.一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角45=αº.现给予物体以初速率m /s 100=v ,使它沿斜面向上滑,如图所示.求:(l )物体能够上升的最大高度h ;(2)该物体达到最高点后,沿斜面返回到原出发点时的速率v .4.一质量为A m =0.1kg 的物体A 与一轻弹簧相连放在光滑水平桌面上,弹簧的另一端固定在墙上,弹簧的倔强系数k =90N /m .现在用力推A ,从而弹簧被压缩了0x =0.1m .在弹簧的原长处放有质量B m =0.2kg 的物体B ,如图所示,由静止释放物体A 后,A 将与静止的物体B发生弹性碰撞.求碰撞后A 物体还能把弹簧压缩多大距离.5.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量.6.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m ,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率.(3)此弹簧的弹力是保守力吗?7.三个物体A 、B 、C 每个质量都是M . B 、C 靠在一起,放在光滑水平桌面上,两者间连有一段长为0.4m 的细绳,原先放松着.B 的另一侧用一跨过桌边的定滑轮的细绳与A 相连(如图).滑轮和绳子的质量及轮轴上的摩擦不计,绳子不可伸长.问:(l ) A 、 B 起动后,经多长时间C 也开始运动?(2)C 开始运动时速度的大小是多少?(取g =10m/s 2)8.有一轻弹簧,当下端挂一个质量1m =10g 的物体而平衡时,伸长量为4.9cm .用这个弹簧和质量2m =16g 的物体连成一弹簧振子.若取平衡位置为原点,向上为x 轴的正方向.将2m 从平衡位置向下拉 2cm 后,给予向上的初速度0v =5c m/s 并开始计时,试求2m 的振动周期和振动的数值表达式.参考答案一.选择题1.(C ) 2.(C ) 4.(C ) 4.(C ) 5.(C )6.(B ) 7.(C ) 8.(A ) 9.(D )10.(D )11.(B ) 12.(C ) 13.(C )14.(B )15.(B )16.(B )17.(D ) 18.(A )二.填空题l . 8m 10m2. 0.1m/s 23. mv 2 指向正西南或南偏西4504. 不一定 动量5.转动物体所受合外力矩的冲量矩等于在合外力矩作用时间内转动物体动量矩的增量. 112221ω-ω=⎰ J J dt M t t物体所受合外力矩等于零.6. 48m/s 23.15 r a d7. 22)(2)(m M g mv +μ 8. 21242m m g m + 9. -0.05rad/s 250rad10. k mbg k mbgt11. )11(21ba m Gm -- 12. 质点系所受合外力的冲量等于质点系(系统)动量的增量.i i i i t t v m v m dt F 2121 ∑∑⎰-=系统所受合外力等于零.13.)/(4s m j i +-14. 6.54 rad/s 2s 8.4 15. mvl16. mvd17. 不一定; 动量三.计算题1. 解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为r m ma N T 2cos sin ω==θ-θ0cos cos =-θ+θmg N T其中:θ=sin l r联立求解得:(1)θθω-θ=cos sin sin 2l m mg Nθω+θ=22sin cos l m mg T(2)0,=ω=ωN c θ=ωcos /l g cθ=cos /mg T2.解;(l )由题意./,,m m m m x F k x A kA F ===J x F kx E m m m 16.021212=== (2)m m m m x v A v A v //,==ωω=Hz s rad 22/,/2=πω=νπ=ω2.0cos ,00=φ==A x tπ=φ<φω-=31,0sin 0A v 振动方程为)3/2cos(4.0π+π=t y (SI )3.解:(l )根据功能原理,有 mgh mv fs -=2021 mgh mv mghctg mgh Nh fs -=αμ=ααμ=αμ=2021sin cos sin m ctg g v h 25.4)1(220=αμ+=(2)根据功能原理有221mv mgh fs -= αμ-=mghctg mgh mv 221s m ctg gh v /16.8)1(2[2/1=αμ-=4.解:释放物体A 到A 与B 碰撞前,以A 与弹簧为系统,机械能守恒: 2202121v m kx A = A 与B 碰撞过程中以A 、B 为系统,动量守恒,机械能守恒。

大学物理上复习资料(1)(1)

大学物理上复习资料(1)(1)
加速度. 解:将运动方程写成分量式
x 3t , y 4t 2
消去参变量 t,得轨道方程:4x2 9 y 0 ,这是顶点在原点的抛物线,见图 1.15
由速度定义得
v d r 3i 8t j dt
其模为 v 32 (8t)2 ,与 x 轴的夹角 arctan 8t 3
由加速度的定义得
[答案: (E)] 10、容器中贮有一定量的理想气体,气体分子的质量为 m,当温度为 T 时,根据理想气 体的分子模型和统计假设,分子速度在 x 方向的分量平方的平均值是:
(A)
x2
1 3
3kT . m
(C)
2 x
3kT m

[答案:D]
(B) x2
3kT . m
(D)
2 x
kT m

[]
2
11、一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,
(B) 1 / 2.
(C) 5 / 6.
(D) 5 / 3.
[答案:C]
13、一定质量的理想气体的内能 E 随体积 V 的变化关系为一直线,其延长线过 E~V 图
的原点,题 7.1 图所示,则此直线表示的过程为: (A) 等温过程. (B) 等压过程. (C) 等体过程.
[] (D) 绝热过程.
E
O
(2) 物体的内部结构;
(3) 所研究问题的性质。
[答案:所研究问题的性质]
5、某质点在力 F (4 5x)i(SI)的作用下沿 x 轴作直线运动。在从 x=0 移动到 x=10m
的过程中,力 F 所做功为

[答案:290J]
6、质量为 m 的物体在水平面上作直线运动,当速度为 v 时仅在摩擦力作用下开始作匀

大学物理学A1总复习

大学物理学A1总复习

大学物理A1总复习1.质点的运动方程为28,2t y t x -== (y x ,的单位为m ),1=t 秒时质点的速率为( ) (A )2 s m ; (B ) 0 ; (C ) 4 s m ;*(D ) 22s m2.质点在变力i kx F ˆ2= (N )的作用下作直线运动,从0=x 移动到2=x 处,变力所作的功为( )J 。

(A ) 8k ;*(B )38k ;(C )2k ;(D )4k3.一质量为M 的平板车静止在光滑的水平轨道上,车上有一质量为m 的人,此人以相对平板车速度u 向后跳离平板车,则人跳离后平板车的速度大小为( )。

(A )u M m ;(B )u M M m +;*(C )u m M m +;(D )u mM。

1. 质点作平面曲线运动,运动方程的为(),()x x t y y t ==,位置矢量的大小r =则 ( )A .质点的运动速度是dr v dt=; B . 质点的运动速率是d rv dt =;*C . 质点的运动速率是dr v dt=; D . dr dt 可大于也可小于v2. 一弹簧原长为m 50.,劲度系数为k 。

当弹簧上端固定在天花板上,下端悬挂一盘子时,其长度变为m 60.,然后在盘中放一物体,弹簧长度变为m 80.,则盘中放入物体后,在弹簧伸长过程中弹性力作的功为 ( ) A .0.80.6kxdx ⎰; B . -0.80.6kxdx ⎰; C .0.30.1kxdx ⎰; *D . -0.30.1kxdx ⎰1.某物体的运动规律为t kv t v 2d /d -=,式中k 为常数。

当t=0时,初速为0v ,则速度v 与时间t 的函数关系是 ( )A. 022v kt v +=; B. 0221v kt v +-=; C. 02121v kt v +-=; *D. 02121v kt v +=2. 如图1所示,均匀细杆长为l ,质量为m 。

A 端与倔强系数为k 的弹图1簧相连,壁与水平地面都是光滑的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大一物理总复习
第一章
质点运动学
1、 掌握位置矢量、位移、速度、加速度等物理量概念 以及各量间的关系。 2 、 掌握两类问题的求解:用运动方程确定质点的位 置、位移、速度和加速度的方法;用微分的方法。以 及已知质点运动的加速度和初始条件求速度、运动方 程的方法,用积分的方法。 3 、 计算质点作圆周运动时的角速度、角加速度、切 向加速度和法向加速度等量,以及角量与线量的关系 。
2 j
J
r
2
dm
转动定律
M J
刚体定轴转动的角加速度与它所受的合外力矩成
正比 ,与刚体的转动惯量成反比 .
3、理解和掌握刚体转动时力矩的空间累积作用
----动能定理
W
2
1
1 1 2 2 Md J 2 J1 2 2
4、力矩的时间累积作用----角动量定理。

0
kdt / m

mg kv F
mg — F
d(m g kv F) (m g kv F )
kt m

t
0
kdt / m
v (mg F )(1 e
)/k
第三章 机械运动的守恒定律
1、 掌握功的概念, 能计算变力的功, 多力的功。
变力的功:
B
W
2m g T1 2m a T2 m g m a 1 m r2 2 1 Tr T2 r m r2 2 a r T1r Tr
☻ 刚体、转动定律 联立求解:T 11m g / 8
第九章 振动
1 、掌握描述简谐运动的各个物理量(特别是相位) 的物理意义及各量间的关系。
x A cos(t ) v A sin(t )
初始条件
t 0 x x0 v v0
x0 A cos
2 A x0
2
2 v0
v0 A sin
v0 t an x0
对于给定的振动系统,周期由系统本身性质决定, 振幅和初相由初始条件决定.
动量随时间的变化率.
角动量守恒:
M 0,
L 恒矢量
质点所受对参考点 O 的合力矩为零时,质点对该 参考点 O 的角动量为一恒矢量.
例3: 一链条总长为L,质量为m。放在桌面上并使
其下垂,下垂的长度为a,设链条与桌面的滑动摩擦系 数为,令链条从静止开始运动,则:(1)到链条离 开桌面的过程中,摩擦力对链条做了多少功?(2)链 条离开桌面时的速率是多少?
t t 2 t1

2)对于两个同频率的简谐运动,相位差表示它们间步调上
的差异.(解决振动合成问题)
x1 A1 cos(t 1 )
x2 A2 cos(t 2 )
2 1
(t 2 ) (t 1 )
3.初始条件(常数 A 和 的确定)
例4、一轻绳跨过两个质量均为 m、半 径均为r的均匀圆盘状定滑轮,绳的两 端分别挂着质量为m和2m的重物,如 图所示。绳与滑轮间无相对滑动,滑 轮光滑。两个定滑轮的转动惯量均为 0.5mr2。将由两个定滑轮以及质量为 m和2m的重物组成的系统从静止释放 ,求两滑轮之间绳内的张力。 解:受力分析如图所示。
2 、掌握描述简谐运动的旋转矢量法和曲线表示法。 能根据给定的初始条件写出一维简谐运动的运动方程, 并理解其物理意义. 3、掌握同方向、同频率简谐运动的合成规律.
1.简谐运动的表达式:
x A cos(t )
振动曲线
旋转矢量描述
t
A
t A

t 0
A
o
A
x
x t 图
T
o

t
x
x
质点在x轴上的投影式
(a) x0 = A v 0 0 o
m A
A
x
= 0 T t
x
(b) x0= 0 v 0 0
o -A
A
o
x
= /2 T
m
o
t
= T t
x
-A
(c) x0 = -A
v0 0
o
x A
o -A
m
-A
x
(d) x0 = 0 v 0 0
m
x A
= 3/2(或-/2)
质点运动学的问题可以分为两类:
一 由质点的运动方程可以求得质点在任一时刻的 位矢、速度和加速度;
二 已知质点的加速度以及初始速度和初始位置, 可求质点速度及其运动方程 .
r (t )
求导
积分
v(t )
求导
积分
a (t )
dv 若a a ( t ) 则dv a ( t )dt积分 dt 在积分时 dv dv 常用到的 若a a(v) 则 dt积分 dt a ( v) 方法: dv dv dx dv dx vdv 若a a ( x ) 则vdv a(x)dx积分 dt dt dx dx dt dx
A
B F dr F cosdr
A
力对质点所作的功为力在质点位移方向的分量与位移大小的乘积 . 多个力对物体作功等于各力对物体作功的代数和。
W
b
aL
b F dr ( F1 F2 Fn ) dr
aL

b aL
n
n
n
n
W W (Ek Ep ) (Ek 0 Ep0 )
ex in nc
机械能守恒定律
能保持不变 .
只有保守内力作功的情况下,质点系的机械

W
ex
W
in nc
4、冲量、动量定理和动量守恒:
动量定理: I
0 时,有 E E0

t
t0
ex Fi dt
i

l-a
O
解:(1)建坐标系如图
f m g(l x) / l
l l
a
Wf f d r
a a
mg
l
l
(l x)dx
x
1 2 m g m g 2 (lx x ) (l a) 2 a 2l l
注意:摩擦 力作负功!
(2)对链条应用动能定理:
相位差:
2 1
表示两个相位之差。用来比较简谐运动的步调。
相位差:表示两个相位之差。用来比较简谐运动的步调。 1)对同一简谐运动,相位差给出两运动状态间变化所需的时间.
x A cos(t1 ) x A cos(t2 )
1 1 2 2 W = W + W mv mv P f 0 2 2 1 v0 0 WP +W f mv 2 2 l l mg m g(l 2 a 2 ) WP P d r xdx a a l 2l m g(l a) 2 前已得出: W f 2l
dL d ( J ) M dt dt
5、正确掌握角动量守恒条件,并能运用角动量

恒定律。 若 M 0 ,则
L J 常量
质点运动与刚体定轴转动对照表
质点运动
r d r v dt dv 加速度 a dt
刚体定轴转动
位移 角速度
位移 速度
角加速度 质量(惯性) m 转动惯量 J r 2dm F M r F 力 力矩 牛顿第二定律 F ma 转动定律 M J 动量 P mv 角动量 L r mv J t t t Mdt 冲量 I t 0 Fdt 冲量矩 0 t t Fdt mv mv 2 1 动量定理 t 0 角动量定理 L t 0 Mdt J2 J1 2 1 J 2 mv 动能 1 动能 2 2 B B B W A F d r 功 功 W A M d A Md 2 1 2 B F d B Md 1 J 2 1 J 2 mv mv 动能定理 A r 1 动能定理 2 1 2 1 A 2 2 2 2 t Fdt mv t m v 2 1 0 角动量守恒 t 0 Mdt J2 J1 0 动量守恒 t 0
M 1M 2 G r
弹性势能: E p 重力势能:
1 kx 2 2
E p mgh
3、掌握质点和质点系的动能定理以及机械能守恒定律。
动能定理: W 1 mv 2 1 mv 2 0
2
2
功能原理:
i 1
Wi外 Wi内 Eki Eki 0
i 1 i 1 i 1
v0 时关闭发动机,其 例1. 一艘快艇在速率为 2 k 为常数,试证明关闭 加速度 a kv ,式中 发动机后又行驶 x 距离时,快艇速率为: v v0ekx
dv dv dx vdv 证明: a kv 2 dt dx dt dx dv kdx v v dv x v0 v 0 kdx v ln kx v v 0 e kx v0
T t
o
x
o -A
4. 简谐运动的动能和势能曲线
Ep
C
E
A
O
B
Ek
Ep
x
A
x
5、利用旋转矢量法(向量图法)求合振动
A
2 A12 A2 2 A1 A2 cos( 2 1 )
A1 sin 1 A2 sin 2 tg A1 cos 1 A2 cos 2
两个同方向同频率简 谐运动合成后仍为简谐运 动,角频率不变。
ω
A
A2
o
x A cos(t )
相关文档
最新文档