六自由度液压运动平台的自动控制论文
《2024年六自由度机械臂控制系统设计与运动学仿真》范文
《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言六自由度机械臂,以其出色的灵活性、灵活的运动空间以及复杂的运动能力,在现代自动化工业和高端科技领域有着广泛的应用。
本篇论文旨在介绍一种六自由度机械臂控制系统的设计与运动学仿真。
通过详细阐述系统设计、控制策略以及运动学仿真结果,为六自由度机械臂的研发与应用提供理论依据和实验支持。
二、系统设计1. 硬件设计六自由度机械臂控制系统硬件主要包括机械臂本体、驱动器、传感器和控制单元等部分。
其中,机械臂本体采用串联式结构设计,通过六个关节的协调运动实现六自由度。
驱动器选用高性能直流无刷电机,并配备高精度减速器以提高控制精度。
传感器包括位置传感器、力传感器等,用于实时监测机械臂的状态和外部环境信息。
控制单元采用高性能微处理器,负责接收传感器信息、处理控制指令并输出控制信号。
2. 软件设计软件设计主要包括控制系统算法设计和人机交互界面设计。
控制系统算法包括运动规划、轨迹跟踪、姿态调整等模块,通过优化算法提高机械臂的运动性能和控制精度。
人机交互界面采用图形化界面设计,方便用户进行操作和监控。
三、控制策略1. 运动规划运动规划是六自由度机械臂控制系统的重要组成部分,主要任务是根据任务需求规划出合理的运动轨迹。
本系统采用基于规划的方法,通过预设的运动路径和速度参数,使机械臂按照规划的轨迹进行运动。
同时,采用动态规划算法对机械臂的运动进行实时调整,以适应外部环境的变化。
2. 轨迹跟踪轨迹跟踪是六自由度机械臂控制系统的核心部分,主要任务是使机械臂在运动过程中始终保持正确的姿态和位置。
本系统采用基于PID控制算法的轨迹跟踪策略,通过实时调整控制信号,使机械臂能够准确、快速地跟踪预设的轨迹。
同时,针对机械臂在运动过程中可能出现的扰动和误差,采用鲁棒性较强的控制策略进行优化。
四、运动学仿真为验证六自由度机械臂控制系统的设计效果和运动性能,我们进行了运动学仿真实验。
通过建立三维模型,模拟机械臂在不同任务下的运动过程,并分析其运动轨迹、姿态调整和速度变化等关键参数。
6-UCU并联六自由度平台运动及其控制系统的研究
6-UCU并联六自由度平台运动及其控制系统的研究侯骏飞;曾亿山;鲁军【摘要】以6-UCU并联六自由度平台为研究对象,介绍了六自由度平台的结构及工作原理.利用Solidworks和Ad-ams对六自由度平台进行运动学仿真和分析,得出伺服液压缸的运动特性曲线,验证6-UCU型并联六自由度平台的设计是否合理、准确,对整个六自由度平台的液压系统的安全性及可靠性具有指导作用.通过PID控制器的设计和Simulink仿真,研究了参数变化对系统性能的影响,找出了影响系统性能的关键参数,从而为改进和优化系统方案提供了合理的参考.%As the research object, the structure and the working principle of 6- UCU six degreeoffreedom parallel platform are introduced in this paper. Using Solidworks and Adams for kinematics simulation and analysis of 6-DOF platform, the motion curves of the servo cylinders are gotten to validate the accuracy of the 6-DOF aircraft platform. It plays an important role for the security and reliability of the hydraulic six degrees of freedom system. PID control-ler and simulink simulation are done to study the effect of the change of parameters on system performance. The key parameters are found out, which will affect the system performance. Thus it will provide reasonable references when the system is optimized.【期刊名称】《流体传动与控制》【年(卷),期】2015(000)005【总页数】5页(P11-15)【关键词】6-UCU;并联;六自由度;运动学仿真【作者】侯骏飞;曾亿山;鲁军【作者单位】合肥工业大学机械与汽车工程学院安徽合肥 230009;合肥工业大学机械与汽车工程学院安徽合肥 230009;合肥工业大学机械与汽车工程学院安徽合肥 230009【正文语种】中文【中图分类】TH137.9目前多数的六自由度运动平台都是双端球铰型六自由度平台,而球铰存在着承载能力差,运动间隙大等缺点。
关于六自由度液压伺服运动系统研究论文
关于六自由度液压伺服运动系统研究论文关于六自由度液压伺服运动系统研究论文飞行模拟机是一个复杂的实时仿真系统,它能够模拟飞机的各种飞行状态,给飞行员提供逼真的视觉、听觉、动感和力感。
飞行模拟器液压伺服运动系统是一个六自由度运动平台,它能够作绕空间坐标3 个轴的俯仰、横滚、偏航角运动和沿3 轴的升降、横移、纵移直线运动。
平台有6 套独立的液压伺服系统,计算机通过控制6个作动筒的伸缩,来实现运动平台在6 个自由度上的运动。
1 六自由度运动系统结构六自由度运动系统主要包括以下部分: 万向铰链下支座、液压作动筒、储能器、万向铰链上支座、油源、控制电缆以及运动控制计算机。
1. 1 万向铰链支座组件每一个万向铰链上、下支座组件包括两个接头,它与运动平台的底部或地面相连,平台可以在最大偏移包线内自由运动,而没有任何机械阻碍。
万向铰链上支座接头的主轴和辅助轴上装有楔形的滚珠轴承,万向铰链下支座接头的主轴和辅助轴上装有滚柱轴承,所有的轴承都被调整到在指定负载情况下可无间隙地转动。
1. 2 伺服作动筒组件运动伺服作动筒是一个活塞杆以及活塞上带有静压轴承的不对称液缸,6 个作动筒控制整个运动平台6 个自由度的运行。
其中液压作动筒的设计比较特别,它包括液压缸、液压管、电液伺服阀、溢流阀、单向阀、节流阀以及位移传感器。
1. 3 油源油源被设计为一个完整独立的.分系统,包括运动及油冷却所需的泵、驱动电机、控制装置、油箱、相关设备以及阀门。
运动泵由一台110 kW 的电机驱动,泵容量可变并进行压力补偿。
在系统压力为19MPa 时,系统最大流量可调节到将近422 L /min,连续流量为292 L /min。
泵的最小额定工作压力为25MPa。
运动泵从油箱中吸油。
油箱的入口和出口被隔开,以更好地散热。
高压储能器直接安装在油源上。
正常工作时,泵、控制阀或者其他的液压系统组成部分不会发生气穴现象,阀门也不会震颤。
在具体工程中,油源的流量和压力根据需要发生改变。
六自由度液压平台控制
六自由度液压平台控制摘要:根据六自由度运动平台性能特点,对平台进行了基于位置反解的轨迹规划,并对平台控制系统硬件和软件模块进行了分析,以B&R 可编程控制器为结构设计了六自由度平台运动控制系统。
采用该控制系统,对平台进行了位置跟踪和轨迹跟踪性能测试试验,试验结果证明了模型的正确性及基于模糊神经网络整定的PID控制的工程可行性和有效性,为今后对液压六自由度运动平台的进一步深入研究提供一个便捷高效的平台。
关键词:六自由度;控制系统;运动平台随着自动化技术的发展和自动化程度的不断提高,对液压运动平台系统的稳定性、快速性、准确性、自适应性和鲁棒性等控制品质提出了更高的要求。
一般情况下,传统型控制器如PID控制器、最优化控制器和自适应控制器等就难以得到满意的控制效果;而人工智能型控制器能实现满意的控制效果,这类控制器不依赖于被控系统的精确数学模型,而依赖于人的经验知识,或者依赖于系统的输入与输出之间的非线性映射模型。
迭代学习控制(ILC)就具有人工智能特性,是处理不确定量的一种有效途径,它需要信息少,通用性好,计算方便快速。
1.轨迹规划六自由度平台机构由6个并联设置的伺服液压缸驱动,动感平台的任何一个自由度的运动均会造成6个液压缸的不同运动,所以六自由度平台机构是一个多变量、强耦合的液压伺服系统,各伺服液压缸需要协调一致地动作,机构在运动过程中才不至于产生不稳定和破坏现象。
对于六自由度平台来说,保持某种姿态或实现某种运动实际上是使六自由度平台的六根伺服液压缸跟踪期望轨迹的控制问题。
平台要保持某种姿态或达到什么位置,就必须对其运动轨迹进行规划,因此平台的运动轨迹的规划尤为重要。
并联机构的位姿控制和运动轨迹规划问题实质上都是机构的反解问题,即如何控制驱动杆来实现期望的运动轨迹。
而并联机构的位置反解简单且唯一,把参数化后的位姿曲线方程代入到位置反解中,得到并联机构驱动杆的运动规律,以此来控制各驱动杆就可以使动平台按照期望轨迹运动,因此利用并联机构的运动位置反解方程来规划上平台所期望的复杂的运动位姿是可行的。
六自由度液压伺服平台实验报告
六自由度液压伺服平台实验报告一、实验目的。
1、掌握电液位置伺服控制系统的基本原理;2、掌握六自由度平台的结构解算的概念及其软件实现;3、掌握VB6.0软件与下位机PAC通过以太网通信的方法;4、掌握6SPT-1六自由度液压伺服平台复现指令信号的实施方法。
二、实验方式:演示实验。
三、实验内容。
1、根据六自由度平台系统原理图和相关电气元器件接线说明设计电控系统,演示模拟地震实验;2、了解影片动作文件的编辑,熟练操作六自由度影片播放软件;3、熟练操作六自由度平台调试软件;四、实验原理。
1、电液位置伺服控制系统的基本原理电液位置伺服控制系统以液体作为动力传输和控制介质,利用电信号进行控制输入和反馈。
只要输入某一规律的输入信号,执行元件就能启动、快速并准确地复现输入量的变化规律。
控制系统结构图如图3.1所示:图3.1电液位置伺服控制系统结构图2.六自由度平台逆解算法图3.2 空间机构位置关系示意图六自由度平台又称为Stewart平台,其结构如图3.2所示,Stewart 平台由上、下两个平台、六个驱动关节和连接球铰组成,上平台为运动平台,下平台为基座,上、下平台的六个铰点分别组成一个六边形,连接6个液压缸作为驱动关节,每个液压缸两端各连接一个球铰。
六个驱动关节的伸缩运动是独立的,由液压比例压力阀控制各液压缸作伸缩运动,从而改变各个驱动缸的长度,使动平台在空间的位置和姿态发生变化。
因此该平台是通过六个驱动杆的协调动作来实现三个线性移动及三个转动共六个自由度的运动。
Stewart平台机构的空间位置关系是指运动平台的六个自由度与六个驱动杆长度的关系,是研究该并联机构最基本的任务,也是机构速度、加速度、误差分析、工作空间分析、动力分析等的基础。
对于6-SPS平台机构,其特点是动静平台铰点共面,考虑到工作空间的对称性要求,将平台的6个铰点分成3组,三组铰点沿圆周120°均布,动、静平台的相邻两边到中心的夹角分别为30°和90°。
“六自由度”资料汇整
“六自由度”资料汇整目录一、六自由度机器人结构设计、运动学分析及仿真二、基于Stewart结构的六自由度并联稳定平台技术研究三、模拟器中车辆动力学与六自由度平台联合仿真技术研究四、六自由度破碎机运动特性分析及控制研究五、六自由度并联机器人工作空间分析六、基于液压六自由度平台的空间对接半物理仿真系统研究六自由度机器人结构设计、运动学分析及仿真随着科技的不断发展,机器人已经广泛应用于工业、医疗、军事等领域。
其中,六自由度机器人作为最具灵活性的机器人之一,备受研究者的。
本文将围绕六自由度机器人结构设计、运动学分析及仿真展开讨论,旨在深入探讨六自由度机器人的性能和特点。
关键词:六自由度机器人、结构设计、运动学分析、仿真六自由度机器人具有六个独立的运动自由度,可以在空间中实现精确的位置和姿态控制。
因其具有高灵活性、高精度和高效率等优点,六自由度机器人在自动化生产线、航空航天、医疗等领域具有广泛的应用前景。
目前,国内外研究者已对六自由度机器人的设计、制造、控制等方面进行了深入研究,并取得了一系列重要成果。
六自由度机器人的结构设计主要包括关节结构设计、连杆结构设计及控制模块设计。
关节结构是机器人的重要组成部分,用于实现机器人的转动和移动。
连杆结构通过关节连接,构成机器人的整体构型,实现机器人的各种动作。
控制模块用于实现机器人的任意角度运动,包括运动学控制和动力学控制等。
在结构设计过程中,应考虑关节的负载能力、运动速度和精度等因素,同时需注重连杆结构的设计,以实现机器人的整体协调性和稳定性。
控制模块的设计也是关键之一,需结合运动学和动力学理论,实现机器人的精确控制。
运动学是研究物体运动规律的一门学科,对于六自由度机器人的运动学分析主要包括正向运动学和逆向运动学。
正向运动学是根据已知的关节角度求解机器人末端执行器的位置和姿态,而逆向运动学则是根据末端执行器的位置和姿态求解关节角度。
对六自由度机器人进行运动学仿真,有助于深入了解机器人的运动性能。
《2024年六自由度机械臂控制系统设计与运动学仿真》范文
《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言随着现代工业的快速发展,机械臂已成为自动化生产线上不可或缺的一部分。
六自由度机械臂因其高度的灵活性和适应性,在工业、医疗、军事等领域得到了广泛应用。
本文将详细介绍六自由度机械臂控制系统的设计与运动学仿真,旨在为相关领域的研究和应用提供参考。
二、六自由度机械臂结构及特点六自由度机械臂主要由关节、驱动器、控制系统等部分组成。
其结构包括六个可独立运动的关节,通过控制每个关节的旋转角度,实现空间中任意位置的到达。
六自由度机械臂具有较高的灵活性和工作空间,适用于复杂环境下的作业。
三、控制系统设计(一)硬件设计控制系统硬件主要包括微处理器、传感器、执行器等部分。
微处理器负责接收上位机指令,解析后发送给各个执行器;传感器用于检测机械臂的位置、速度、加速度等信息,反馈给微处理器;执行器则根据微处理器的指令,驱动机械臂进行运动。
(二)软件设计软件设计包括控制系统算法和程序设计。
控制系统算法包括运动规划、轨迹跟踪、姿态控制等,通过算法实现对机械臂的精确控制。
程序设计则包括上位机程序和下位机程序,上位机程序负责发送指令,下位机程序负责接收指令并执行。
四、运动学仿真运动学仿真是指通过数学模型对机械臂的运动过程进行模拟,以验证控制系统的正确性和可靠性。
运动学仿真主要包括正运动学和逆运动学两部分。
(一)正运动学正运动学是指通过关节角度计算机械臂末端的位置和姿态。
通过建立机械臂的数学模型,利用关节角度计算末端执行器的位置和姿态,为后续的轨迹规划和姿态控制提供依据。
(二)逆运动学逆运动学是指根据机械臂末端的位置和姿态,计算关节角度。
通过建立逆运动学方程,将末端执行器的目标位置和姿态转化为关节角度,实现对机械臂的精确控制。
五、实验与分析通过实验验证了六自由度机械臂控制系统的设计和运动学仿真的正确性。
实验结果表明,控制系统能够实现对机械臂的精确控制,运动学仿真结果与实际运动过程相符。
基于NI实时控制器的六自由度平台测控系统设计与实现
基于NI实时控制器的六自由度平台测控系统设计与实现王效亮;张芳;曾宪科;栾婷;陈成峰【摘要】六自由度平台测控系统是六自由度平台的电气控制部分,它通过对六路液压缸的实时闭环控制,实现对平台位姿的控制;该测控系统采用NI的计算机,配置多种类型的PXI板卡,实现了对平台的电压、电流、数字IO、CAN总线等多种接口类型的测量和控制,满足了可靠性需求;采用了典型的上下位机控制,分别进行实时计算与任务管理,解决了实时性的控制需求;采用NI的虚拟仪器Labview开发测控软件,完成实时计算平台的正解与反解模块,作动器闭环控制等功能,增强系统的功能和灵活性;目前六自由度平台测控系统的硬件部分和软件部分都已经通过了调试,对系统进行了正弦运动和暂态特性测试,实验结果表明,运行速度快,满足了平台的控制要求.【期刊名称】《计算机测量与控制》【年(卷),期】2019(027)002【总页数】6页(P24-28,33)【关键词】六自由度平台;软件;SIT仿真模型【作者】王效亮;张芳;曾宪科;栾婷;陈成峰【作者单位】北京精密机电控制设备研究所,北京 100081;北京精密机电控制设备研究所,北京 100081;北京精密机电控制设备研究所,北京 100081;北京精密机电控制设备研究所,北京 100081;北京精密机电控制设备研究所,北京 100081【正文语种】中文【中图分类】TP273+.50 引言六自由度平台是一种模拟航天器空间运动姿态的模拟器,在其行程范围内可以模拟任意空间运动。
六自由度是平台具有六个自由运动的维度,即纵向、升降、横向、俯仰、横滚、偏航[1]。
通过对6个液压作动器的精确控制和解藕算法,实现对平台的6个自由度的位姿控制。
其系统示意图如图1所示。
图1 六自由度平台示意图六自由度运动平台可以实现对既定的轨迹的跟踪,作为运动仿真平台有着广泛的应用:1)可以作为航空飞行模拟器;2)可以作为机器人的模拟运动机构;3)在娱乐界可以作为体感模拟娱乐机;4)用作飞机、船舶、潜艇、航天器等运动载体中相关仪器设备的试验。
基于ADAMS的六自由度运动平台运动学分析
: a11 a 12 a 22 a 32 a 13 a 23 a 33 a21 a31
RPY ( C , B , A) = Ro t( z, C ) Ro t( y, B) R ot(x, A) =
式中: a 11 = cos( C) cos( B); a12 = cos( C ) sin ( B) sin ( A) - sin ( C ) cos( A); a13 = cos( C) sin ( B) cos ( A) + sin (C ) sin ( A); a 21 = sin( C) cos( B); a 22 = sin ( C) sin ( B) sin ( A) + cos( C ) cos( A); a23 = sin ( C ) sin ( B) cos( A) - cos( C) sin ( A); a 31 = - sin ( B); a 32 = cos( B) sin( A); a33 = cos( B) cos( A). 可以求出 a 1, a 2, a3 三点在定系中的坐标分别为 A 1 ( x 1, y 1, z1 ), A 2 ( x 2, y 2, z2 ), A 3 ( x 3, y 3, z 3 ). 进而得出液压缸的长度分别为 : Li = 式中: n 11 = a 12 r + p x + py + ni 1 + n i2 + n i3
+ px + r; n62 = -
① 液压缸位移 ( 伸长量 ):
# 72# vi = si = ③ 液压缸加速度:
福州大学学报 ( 自然科学版 ) 1 ( ni 1 n i1 + n i2 n i2 + n i3 n i3 ) Li ai = & si = vi (i= 1 , 2 , 3 , 4 , 5 , 6)
《2024年六自由度机械臂控制系统设计与运动学仿真》范文
《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言随着科技的飞速发展,自动化与机器人技术已广泛应用于各种领域,六自由度机械臂是其中一种重要而常见的自动化工具。
它具备灵活的运动能力与复杂操作功能,能够在高精度的环境中完成一系列作业。
本篇论文旨在介绍六自由度机械臂控制系统的设计与运动学仿真,旨在提升机械臂的性能和可靠性。
二、六自由度机械臂控制系统设计1. 硬件设计六自由度机械臂控制系统主要由机械臂主体、驱动器、传感器和控制单元等部分组成。
其中,机械臂主体由多个关节组成,每个关节由一个驱动器驱动。
传感器用于检测机械臂的位置、速度和加速度等信息,控制单元则负责处理这些信息并发出控制指令。
2. 软件设计软件设计部分主要包括控制算法的设计和实现。
我们采用了基于PID(比例-积分-微分)的控制算法,以实现对机械臂的精确控制。
此外,我们还采用了路径规划算法,使机械臂能够按照预定的路径进行运动。
3. 控制系统架构控制系统采用分层架构,分为感知层、决策层和执行层。
感知层通过传感器获取机械臂的状态信息;决策层根据这些信息计算控制指令;执行层则根据控制指令驱动机械臂进行运动。
三、运动学仿真运动学仿真主要用于模拟机械臂的运动过程,验证控制系统的性能。
我们采用了MATLAB/Simulink软件进行仿真。
1. 模型建立首先,我们需要建立机械臂的数学模型。
根据机械臂的结构和运动规律,我们可以建立其运动学方程。
然后,将这些方程导入到MATLAB/Simulink中,建立仿真模型。
2. 仿真过程在仿真过程中,我们设定了不同的工况和任务,如抓取、搬运、装配等。
通过改变控制参数和路径规划算法,观察机械臂的运动过程和性能表现。
我们还对仿真结果进行了分析,以评估控制系统的性能和可靠性。
四、实验结果与分析我们通过实验验证了六自由度机械臂控制系统的性能。
实验结果表明,该系统能够实现对机械臂的精确控制和灵活操作。
在各种工况和任务下,机械臂都能以较高的速度和精度完成任务。
六自由度液压平台系统的设计与有限元分析
摘要六自由度运动平台是一种空间运动的模拟器,在其允许的工作范围内可完成任意空间运动的模拟,目前已广泛运用于军事、航天航空、游戏娱乐、汽车制造等领域。
其工作原理:下平台固定,借助六支油缸的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。
六自由度运动平台系统是由液压站、工作平台、伺服系统和电气控制系统组成。
液压站包括泵组、蓄能器组、阀组、滤油器组、油箱、冷却器组及附件等。
工作平台是由上平台、下平台、6个虎克铰链、6个球铰链及其他附件等组成。
伺服系统包括伺服放大器、比例伺服阀、伺服油缸、位置传感器、伺服电机等。
电气控制系统包括继电器、按钮、限位开关、熔断器等电气元件。
在本次设计中,首先确定六自由度运动平台系统的工作方式:由液压站提供动力,使液压缸运动,6个液压缸并联运动带动工作平台在空间6自由度的运动;位移传感器将位移信号传送给伺服控制系统,并转换信号控制伺服阀的阀芯运动从而控制液压油的流量,进而控制液压缸的进给量与进给速度;设计电气原理图,控制整个系统的开关、报警、紧急制动等。
本次设计完成内容有:1、工作平台的总设计:确定工作平台的结构并计算自由度确定结构的合理性,再根据参数设计上平台与下平台的大小与结构。
2、根据计算,选定液压缸的型号为:CK F/20-80/56*0400-C406-A-B1E3X1Z3。
3、确定液压原理图,设计液压站,计算相关参数并对相关零件进行选型,以及油箱、油箱盖、阀块的设计。
4、确定伺服系统,根据计算,对相关零件进行选型。
5、设计电气原理图,控制整个系统的开关、报警、紧急制动等。
6、对油箱体理想化后进行有限元分析并得出结论。
关键词:六自由度,液压,六自由度液压平台,有限元分析,液压站目录1 绪论 (1)1.1 课题背景及意义 (1)1.2六自由度平台国内外研究状况 (2)1.3 课题研究方案 (3)2 总方案设计 (5)2.1设计思路 (5)2.2液压站组成设计 (5)2.3工作台组成设计 (8)2.4液压油走向设计 (8)2.5 控制系统设计 (10)3 六自由度工作台结构设计 (11)3.1工作台的总体设计 (11)3.2六自由度平台的合理性分析 (13)3.3上平台与下平台的设计 (13)4 液压缸的选型 (17)4.1确定油缸的最大推力 (18)4.2确定油缸的基本尺寸 (19)4.3确定油缸的工作压力 (20)4.4确定所用位移传感器的类型 (20)4.5确定安装方式 (20)4.6行程的确定 (21)4.7缓冲器的选择 (21)4.8支撑环的选择 (22)4.9密封形式的选择 (22)4.10油口和缓冲调节器的组合位置 (23)4.11阀安装底板 (24)4.12确定液压缸型号 (24)5 液压站的设计 (26)5.1确定液压系统原理图 (26)5.2液压泵的选型 (27)5.3电机的选型 (29)5.4蓄能器的选型 (30)5.5过滤器的选型 (30)5.6冷却器的选型 (31)5.7温度表选型 (31)5.8压力表的选型 (32)5.9液位计的选型 (32)5.10阀块的设计 (32)5.11 油箱的设计 (33)5.12 油箱盖的设计 (35)6 伺服系统的设计 (36)6.1 比例伺服阀的选型 (36)6.2 先导式溢流阀的选型 (37)6.3 伺服放大器的选型 (39)6.4 位移传感器的选型 (39)7 电气原理图的设计 (40)7.1 主电路的设计 (40)7.2 控制电路的设计 (41)8 有限元分析 (43)致谢 (47)参考文献 (48)1 绪论1.1 课题背景及意义六自由度运动平台是一种空间运动的模拟器,在其允许的工作范围内可完成任意空间运动的模拟,目前已广泛运用于军事、航天航空、游戏娱乐、汽车制造等领域。
《2024年六自由度机械臂控制系统设计与运动学仿真》范文
《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言六自由度机械臂,以其出色的灵活性和高精度的运动控制能力,在工业自动化、医疗、军事等领域有着广泛的应用。
本文旨在设计一个六自由度机械臂控制系统,并对其运动学进行仿真分析。
首先,我们将对系统进行总体设计,然后详细介绍控制系统的硬件设计、软件设计以及运动学仿真分析。
二、系统总体设计六自由度机械臂系统主要由机械结构、驱动系统、控制系统和传感器系统四部分组成。
其中,控制系统是整个系统的核心,负责协调各部分的工作,实现机械臂的精确运动。
三、硬件设计1. 控制器选择:选用高性能的工业控制计算机作为主控制器,具有强大的计算能力和良好的稳定性。
2. 驱动系统:采用伺服电机驱动,通过控制器对伺服电机的控制,实现机械臂的精确运动。
3. 传感器系统:包括位置传感器、力传感器等,用于获取机械臂的实时状态信息。
四、软件设计1. 操作系统:采用实时操作系统,保证系统的高效性和实时性。
2. 控制算法:采用基于PID控制的运动控制算法,实现对机械臂的精确控制。
同时,采用路径规划算法,实现机械臂的自主运动。
3. 人机交互界面:设计友好的人机交互界面,方便操作人员对机械臂进行控制。
五、运动学仿真分析1. 建立机械臂运动学模型:根据机械臂的几何参数和关节参数,建立其运动学模型。
2. 仿真环境搭建:在仿真软件中搭建机械臂的虚拟环境,包括工作空间、障碍物等。
3. 仿真实验:在仿真环境中进行机械臂的运动学仿真实验,验证控制系统的性能和机械臂的运动学特性。
通过仿真实验,我们可以得到以下结论:1. 控制系统性能良好,能够实现对机械臂的精确控制。
2. 机械臂的运动学特性符合预期,具有较高的灵活性和运动精度。
3. 人机交互界面友好,操作简便,方便操作人员对机械臂进行控制。
六、结论本文设计了一种六自由度机械臂控制系统,并通过运动学仿真分析了其性能和特点。
实验结果表明,该控制系统具有良好的性能和较高的运动精度,能够满足工业自动化、医疗、军事等领域的需求。
飞行模拟机液压型运动系统研究
飞行模拟机液压型运动系统研究摘要:本文对全飞行模拟机液压运动系统进行了详细的分析和阐述,主要介绍了模拟机六自由度运动系统的工作原理和飞行方程;以及模拟机液压系统的能量流向原理和主要部件。
针对液压系统的运行特点着重提出了相应的维护措施。
关键词:飞行模拟机六自由度运动系统液压系统1 全飞行模拟机简介全飞行模拟机是一个典型的人在回路的仿真系统。
它能够复现真飞机在空中的各类复杂的飞行环境,用于飞行员进行起飞、爬升、巡航、着陆以及各种复杂飞机故障处理的训练;同时也可以对飞行员在飞机的飞行性能、操纵品质及飞机的系统性能方面进行全面评估和分析。
全飞行模拟机由模拟机座舱系统、运动系统、视景系统、音响系统、操纵系统及仿真计算机组成。
各种飞行系统的数学模型通过运动系统、视景系统、音响系统给飞行员提供真实的多维的的仿真环境,使得飞行员获得如同真实飞机飞行中完全相同的飞行感知,从而达到训练的目的。
2 六自由度运动系统目前国际上通常采用的运动系统是六自由度(6DOF-Degree OfFreedom)的运动系统。
采用六个相同的伺服作动筒,通过运动计算机及相关的接口进行实时控制,从而让模拟机座舱平台按飞行方程的计算结果进行俯仰、倾斜、偏航三个姿态角运动以及升降、纵向、侧向三个线性运动。
根据国家标准建立的飞行运动方程可以计算着六个自由度的各自运行量飞行运动方程可以完成飞机六自由度非线性全量运动的解算,获取飞机的姿态和位置,同时计算其它的飞行参数,如高度、速度等。
其中,起落架的力和力矩模块的计算会受到前轮操纵角、刹车已经其它轮子的速度的影响。
而该运动方程的模块就是根据飞行系统提供的飞机速度、加速度、高度、飞机质量等变量的数值来进行计算,得到运动平台各个作动筒的运动行程,指挥作动筒按不同的运动距离来伸缩,从而使得模拟机可以真实地模拟飞机的飞行姿态。
3 液压系统简介目前国际上最常见的运动系统包括液压和电动两种。
而液压型的运动系统以其工作的超大功率和超长的稳定获得了广泛的使用。
基于六自由度模拟平台液压控制系统的设计
在子系统内修正液压作动筒活塞行程与指令 的偏差 ,
按 给定 台体质 心 的空 间 姿态 计 算 目标 控制 参 量 ; 动力 泵 站是整 个系 统 的动力 源 , 在控 制 及 监 控 系 统 的控 制 下为模拟 驱动 系统 提供 动力 ; 架 主 要 用 于试 验 设 备 机 的安 装 , 受 6套液压 作动 筒控 制 , 液压 作动 筒 的驱 它 在 动下 实现 六 自由度运 动 。
道 , 可联 动又 可成对 或单 独动作 , 既 以便 使该 平 台模 拟
缸体在 空 间的运 动状 态 ; 制及 监 控 系统 主 要 功 能是 控
个 自由度 ( 种 运 动类 型 ) 一 的运 动 。每 个 液 压 缸 的运 动各 由一 电液伺 服 阀控 制 。当 6组 缸各 自取一 定 伸缩
、
闭环控 制 , 液压 伺 服 系 统 同时 推 动模 拟平 台做 各 6组
种摇摆 , 模拟 实 际环 境 。该 系 统 采用 分 布 式计 算 机 控
y 轴 的旋 转运 动 以及 这 6个 自由度 的复合运 动 , 、 其
灵 活性相 当大 。与 常见 的 串联 运 动机 构 不 同 , 由于该
作 用下 的状况 , 为装备 布 放 回收 获取 可 靠 的试 验数 据
及理论 依据 。 目前 六 自由度 运动 平 台通常 采用 机械 控
图 1 系 统 组 成 结 构
2 液压 控制 系统 的设 计
制 和 电液 控 制 两 种 方 式 , 械 控 制 装 机 功 率 大 、 本 机 成
高, 适用 于小 功率 的 系统 ; 电液 控 制 能 量 密度 大 , 有 具 输 出力 大 、 够集 中控制 等优 点 , 能 故该六 自由度平 台控 制 系统采 用 电液伺 服系 统 。
六自由度机械臂控制系统设计与运动学仿真
六自由度机械臂控制系统设计与运动学仿真一、本文概述随着机器人技术的快速发展,六自由度机械臂作为一种重要的机器人执行机构,在工业自动化、航空航天、医疗手术等领域得到了广泛应用。
六自由度机械臂控制系统设计与运动学仿真研究对于提高机械臂的运动性能、优化控制策略以及实现高精度操作具有重要意义。
本文旨在深入探讨六自由度机械臂控制系统的设计原理与实现方法,并通过运动学仿真验证控制系统的有效性和可靠性。
本文将首先介绍六自由度机械臂的基本结构和运动学原理,包括机械臂的正运动学和逆运动学分析。
在此基础上,详细阐述六自由度机械臂控制系统的总体设计方案,包括硬件平台的选择、控制算法的设计以及传感器的配置等。
接着,本文将重点介绍控制系统的核心算法,如路径规划、轨迹跟踪、力控制等,并分析这些算法在六自由度机械臂运动控制中的应用。
为了验证控制系统的性能,本文将进行运动学仿真实验。
通过构建六自由度机械臂的运动学模型,模拟机械臂在不同工作环境下的运动过程,并分析控制系统的实时响应、运动精度以及稳定性等指标。
本文将总结六自由度机械臂控制系统设计与运动学仿真的研究成果,并展望未来的研究方向和应用前景。
通过本文的研究,旨在为六自由度机械臂控制系统的设计与优化提供理论支持和实践指导,推动机器人技术在各领域的广泛应用和发展。
二、六自由度机械臂基本理论六自由度机械臂,又称6DOF机械臂,是现代机器人技术中的重要组成部分。
其理论基础涉及机构学、运动学、动力学以及控制理论等多个领域。
六自由度机械臂之所以得名,是因为其末端执行器(如手爪、工具等)可以在三维空间中实现六个方向上的独立运动,包括三个平移运动(沿、Y、Z轴的移动)和三个旋转运动(绕、Y、Z轴的转动)。
机构学基础:六自由度机械臂的机构设计是其功能实现的前提。
通常,它由多个连杆和关节组成,每个关节都有一个或多个自由度。
通过合理设计连杆的长度和关节的配置,可以实现末端执行器在所需空间内的灵活运动。
解析六自由度运动平台控制系统
解析六自由度运动平台控制系统摘要:经过多年深入的研究,现在的Stewart平台与最初设计的结构稍微有些差别。
目前常见的六自由度运动平台主要利用六个驱动杆作为支撑和驱动机构,每个驱动杆两端分别用球铰和虎克铰连接在动平台和静平台上,通过六个分支的伸缩实现动平台任意位置与姿态的运动。
本文就六自由度运动平台控制系统展开分析。
关键词:六自由度;运动平台;控制系统1.六自由度运动平台结构特点及应用六自由度运动平台是模拟器的关键部件之一,它是一个空间并联运动机构。
理论上说,六自由度并联平台的驱动方式可以有多种,但最佳选择当属液压驱动。
电液伺服驱动的平台有结构简单、空间占用体积小、施力大等优点。
六自由度电液伺服运动平台是一个集多领域技术于一体的运动控制机构,它与空间几何学、运动学、动力学、液压传动、控制理论及应用、计算机软硬件设计与实现等学科都有关联。
这种并联结构在性能上独具特色,它的刚度好,其多支撑结构抗外负载干扰能力强;承载能力强且无误差积累,运行精度高;就实现多自由度运动而言,它的运动复杂性只影响系统的控制软件,各作动器之间的运动耦合小,占地面积小,制造成本低。
当然,六自由度并联运动平台也有不足之处,目前对平台运动位姿进行直接测量仍然比较困难,一般采用由各作动器活塞杆伸缩量进行位姿正解求得,另外平台的工作空间范围较小,姿态变化幅度有限。
除了应用在飞行模拟器上以外,这种平台还广泛应用于其他的军用和民用模拟器领域,如各种潜艇驾驶模拟器和汽车驾驶模拟器。
1994年,华中理工大学和青岛潜艇学院合作研制了一台六自由度潜艇操纵训练模拟器,2000年又为中船总707研究所研制出研发型六自由度潜艇模拟器。
Thomson-CSF仿真与训练公司也分别为军方和民用部门设计了各种卡车驾驶模拟器,其系统模拟的环境是高度逼真的模拟器上一小时的训练效果相当于在真实卡车上受训两小时以上。
在国内,吉林工业大学国家汽车动态模拟实验室(ADSL)较早便从事汽车体感模拟训练研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要六自由度运动平台,由于有极为广阔的应用前景,可以完成在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态,可广泛应用到各种训练模拟器上。
由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。
通过六自由度运动平台的机构特点及应用,可以在平台控制总体设计的基础上完成液压伺服系统的建模工作,在Matlab软件中对系统进行了仿真分析,将常规PID控制和基于神经网络算法的先进PID控制方法进行对比,仿真结果表明基于神经网络的PID控制方法对伺服系统具有良好的控制效果,同时也证明了电液伺服控制系统设计的合理性,将控制策略应用于样机平台,平台运行稳定,流畅。
为平台控制的进一步改进和完善奠定了基础。
关键词:六自由度平台;液压;PID控制AbstractSix degree of freedom motion platform, because there is a very broad application prospects, can be completed in the space of six degrees of freedom (X, Y, Z, alpha, beta, gamma) movement, which can simulate various spatial motion, can be widely applied to various training simulator. As the development of six degree of freedom motion platform, relates to the mechanical, hydraulic, electrical, control, computer, sensor, the spatial movement mathematical model, real-time signal transmission and processing, graphic display, dynamic simulation and so on a series of high-tech fields, so the development of six degree of freedom motion platform into colleges and universities, research institutes to hydraulic and control field level symbol.Through the mechanism, characteristics and application of six degree of freedom motion platform, can complete the modeling of hydraulic servo system based on the general control platform design, in the Matlab software to simulate the system analysis, the conventional PID control and PID neural network algorithm based on advanced control methods were compared, the simulation results show that the PID neural network the control method has good control effect of the servo system based on, it also proved that the design of electro-hydraulic servo control system is reasonable, the control strategy is applied in the prototype platform, platform stable operation, smooth. As a platform to control the further improvement and laid the foundation for the perfection of.Key words:6-DOF platform;hydraulic;PID control目录摘要 (III)ABSTRACT .................................................................................................................................. I V 目录 (V)1绪论........................................................................................................... 错误!未定义书签。
1.1课题背景及意义................................................................................. 错误!未定义书签。
1.2六自由度平台发展及应用................................................................. 错误!未定义书签。
1.3六自由度平台国内外研究状况 (3)1.3.1 国外研究现状 (3)1.3.2 国内研究现状.............................................................................. 错误!未定义书签。
1.4课题主要研究内容 (4)2 六自由度运动平台本体结构设计 (5)2.1平台主要性能指标 (5)2.2平台结构 (5)2.3平台驱动方式 (6)3 液压缸设计 (7)3.1简介 (7)3.2液压缸的设计 (7)3.3液压缸的密封设计 (10)3.4支承导向的设计 (10)3.5防尘圈的设计 (11)3.6液压缸材料的选用 (11)3.7液压泵的选择 (12)3.8电机的选择 (14)4 液压油路设计 (15)4.1液压设备外接线路 (15)4.2操作板 (15)4.3程序地址分配 (16)4.4芯片接线图 (17)4.5PLC程序指令 (20)5 液压伺服系统的建模与仿真 (25)5.1六自由度运动平台系统的总体设计 (25)5.2数学模型的建立 (25)5.2.1 单个作动器的数学模型 (26)5.3系统的控制及仿真 (26)5.3.1 基于常规PID的控制系统仿真研究 (26)5.3.2 基于BP神经网络的控制算法 (27)5.3.3 仿真实现 (28)6 液压运动平台的运动仿真 (30)6.1液压平台的基本结构设计 (30)6.2虚拟样机的建立与仿真 (31)6.2.1 零件建模 (31)6.2.2 装配设计 (32)6.2.3 运动分析 (33)6.3结束语 (36)7 结论与展望 (37)致谢 (38)参考文献 (39)1绪论1.1课题背景及意义六自由度平台的研制对舰船运动规律的研究起着重要的作用平台可以在实验室中模拟舰船在海上航行时摇摆的情况将舰船在海洋中摇摆的姿态和运动真实地再现出来并能检测舰载直升机系统和各分系统在各种摇摆和位置姿态下的动态和静态技术性能。
该专用设备主要由机械运动系统、液压伺服控制系统、传感检测系统、信号采集处理系统、计算机控制系统和各种安全保护装置等组成可按试验要求实现六个自由度的旋转运动以及这些自由度的复合运动以达到模拟舰船在海上的垂荡、纵荡、横荡、纵摇、横摇和艏摇各种摇摆状况的目的。
六自由度平台可以进行船舶运动和结构动力学研究同时也是驾驶员航海训练的一种良好设备可以将舰载武器和设备仪器放在平台上进行陆地实验减少海上实验次数这样就降低了实验成本和研究周期。
可见用平台在实验室作运动模拟试验具有明显的节能性、安全性、可控性、无破坏性、经济性、可操作性和训练效率高等优点对进行舰船运动模拟技术研究具有重要意义。
目前运动模拟技术己成为多快好省达到研究舰船运动和训练飞行目的的最佳途径六自由度平台是一种发展快、应用广的典型运动模拟器是一具有重大经济价值和国防战略意义的高精尖试验设备而我国在这一领域的设计和制造水平与西方发达国家相比还有相当大的差距。
因此深入研究六自由度平台运动系统的基础理论对其关键技术进行理论分析和实验研制出性能优良能满足各方面需求的平台对提高我国的仿真技术水平增强国防实力具有重大的理论意义和实际应用价值。
1.2六自由度平台发展及应用上世纪年代末特别是年代以来并联式机构被广为关注成为新的热点由于六自由度平台具有结构刚度大、承载能力强、位置精度高、哈尔滨工程大学硕十学位论文响应快的优点而且可以灵活地实现六个自由度的三维空间运动。
1965年六自由度平台是英国工程师Stewart于1965年在他的论文《A Platform with 6 degrees freedom》中作为一种六轴并联式空间机构的设计提出的,称为Stewart机构[1]。
在制作飞行模拟器后,Stewart机构逐渐成为飞行摸拟器的标准机构。
到70年代初,美国NASA等研究中心公布了6-DOF并联式平台的研究成果,相继出现了6-DOF并联机构运动平台的飞行模拟器。
1974年美国制定了空勤人员训练模拟器6-DOF并联式运动平台系统军用标准MIL-STD-1588。
此后6-DOF并联式运动平台己趋向标准化、系列化生产阶段。
1978年澳大利亚著名的机构学专家Hunt.KH教授指出Stewart机构更接近于人体的结构,提出可将Stewart 平台机构用作并联机器人的主要机构,至此并联机器人的研究受到许多学者的关注。
MacCallion和Pham在1979年首次利用这种机构设计出了用于装配的机器人,从此拉开了并联机器人研究的序幕,此后Stewart机构又被称为并联机器人。
Stewart机构在大功率装配机器人、步行机器人、机器人手腕等方面得到进步的发展。
Stewart机构进一步的应用范围逐渐扩展到机床方面,即所谓的并联机床,但不论是并联机器人还是并联机床,要实现运动精确伺服控制是非常困难的,主要难点在于Stewart机构在运动学、动力学极其控制方面蕴涵的复杂性和大量的计算。