并联六自由度运动平台
并联六自由度运动平台
并联六自由度运动平台1.概述并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。
并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。
图0-1:六自由度及其坐标系定义图我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。
六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。
2.系统组成2.1液压伺服类典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。
机械系统主要包括:承载平台、上下连接铰链、固定座。
液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。
控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。
控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。
2.2 电动伺服类电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增加运动控制单元。
具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。
3.主要技术参数以下参数为液压类平台典型值,具体可按用户要求设计制造。
3.1平台主要参数平台最大负载:静态≥2000KG,动态≥3000KG。
六自由度运动平台并联机器人运动学分析
六自由度运动平台并联机器人运动学分析六度自由的并联机器人运动学是根据一定的系统结构参数和结构完成的,根据并联机器人的机构构成原理,以及系统的物理模型和数学模型,运用相应的运算分析方法,可以比较详细的论述运动学的分析以及计算方式没同时获取不同的姿态变幻规律。
文章主要分析六自由度运动平台的并联机器人运动学,就其系统组成以及运算方法进行详细的分析。
标签:六自由度;运动平台;并联机器人;运动学在我国现代科学技术中,六自由度的并联机器人对我国的飞机、车载以及宇航等系统都具有一定的动态可靠性研究,其运动学分析模式对我国的飞行员以及驾驶员等模拟训练都具有重要的作用。
通过对平台的速度以及位移的分析,在同时达到最大的数据的时候,作动器的行程可以选取有效的净行程和总行程。
通过比较不同运动情况下的伸缩量,可以看出,在運动幅一致的情况下,横向和总向的运动行程比较大,在平动的时候,则是升沉运动数据最大,所以其作动器的行程与五个结构参数紧密相关。
对各种运动情况进行考虑,平台位移及速度同时达到最大值的时候,平台的速度和加速度也达到最大,所以其所需的系统流量以及伺服阀流量也可以通过数据分析出来。
在对比不同的运动情况下,运动幅相同的情况下,三个方向的转动中,横向和纵向的运动中加速度数据最大,而在方向平动过程中,则是升沉运动的加速度值最大,所以作动器的速度与其系统质心的位置也关系不大。
同时,在速度和加速度的数据分析中,可以有效的选择伺服阀规格,根据作动器的速度曲线来进行负载轨迹的绘制,对系统的误差范围进行精确的分析,同时保障其作动器的位移和加速度稳定。
3 六自由度运动平台并联机器人的运动学特点通过对六自由度运动平台并联机器人的运动学分析,实时对卡紧鼓掌的振动,通过获取滑阀卡紧信息。
主要是对运动平台的液压系统压力、位移和流量等因素进行检测和控制,通过简介测量诊断的方式,更为直接的检测滑阀机构的争产工作,保障电路中的颤振回路,阀芯在工作点附近进行小频率的振动浮动。
6-UCU并联六自由度平台运动及其控制系统的研究
6-UCU并联六自由度平台运动及其控制系统的研究侯骏飞;曾亿山;鲁军【摘要】以6-UCU并联六自由度平台为研究对象,介绍了六自由度平台的结构及工作原理.利用Solidworks和Ad-ams对六自由度平台进行运动学仿真和分析,得出伺服液压缸的运动特性曲线,验证6-UCU型并联六自由度平台的设计是否合理、准确,对整个六自由度平台的液压系统的安全性及可靠性具有指导作用.通过PID控制器的设计和Simulink仿真,研究了参数变化对系统性能的影响,找出了影响系统性能的关键参数,从而为改进和优化系统方案提供了合理的参考.%As the research object, the structure and the working principle of 6- UCU six degreeoffreedom parallel platform are introduced in this paper. Using Solidworks and Adams for kinematics simulation and analysis of 6-DOF platform, the motion curves of the servo cylinders are gotten to validate the accuracy of the 6-DOF aircraft platform. It plays an important role for the security and reliability of the hydraulic six degrees of freedom system. PID control-ler and simulink simulation are done to study the effect of the change of parameters on system performance. The key parameters are found out, which will affect the system performance. Thus it will provide reasonable references when the system is optimized.【期刊名称】《流体传动与控制》【年(卷),期】2015(000)005【总页数】5页(P11-15)【关键词】6-UCU;并联;六自由度;运动学仿真【作者】侯骏飞;曾亿山;鲁军【作者单位】合肥工业大学机械与汽车工程学院安徽合肥 230009;合肥工业大学机械与汽车工程学院安徽合肥 230009;合肥工业大学机械与汽车工程学院安徽合肥 230009【正文语种】中文【中图分类】TH137.9目前多数的六自由度运动平台都是双端球铰型六自由度平台,而球铰存在着承载能力差,运动间隙大等缺点。
六自由度运动平台设计方案
六自由度运动平台设计方案1概述YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。
2 原理样机技术状态2.1 原理样机方案2.1.1 组成原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。
具体产品组成表见表2.1。
6 直流电源 12.1.2 结构方案六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X ,Y ,Z ,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。
图1 六自由度平台外形图a )球笼联轴器(如图2所示)采用球笼铰链与上平面连接。
球笼铰链结构简单、体积小、运转灵活、易于维护。
初选球笼铰链型号BJB (JB/T6139-1992),公称转矩Tn=2000N/m ,工作角度40度,外径D=68mm ,轴孔选用圆柱孔d=24mm ,总长度L1=148mm ,转动惯量为0.00008kg.m ²,重量5kg 。
球笼联轴器电动缸虎克铰链上动平台下静平台图2 球笼联轴器b)虎克铰链(如图3所示)采用虎克铰链与下平面连接。
万向节铰链传动效率高,允许两轴间的角位移大,适用于有大角位移的两轴之间的连接,一般两轴的轴间角最大可达35º~45º,噪音小,对润滑要求不高,传递转矩大,而且使用可靠,因此获得广泛的应用。
六自由度并联机器人简介
六自由度并联简介六自由度并联简介1. 引言本文旨在介绍六自由度并联的基本概念、结构设计、运动学和动力学分析等内容。
六自由度并联是一种能够实现六个自由度运动的系统,具有广泛的应用领域,包括工业制造、医疗手术、半导体加工等。
2. 结构设计2.1 结构概述六自由度并联由基座、运动平台和连杆组成。
基座固定在地面上,运动平台通过多个连杆与基座相连,形成六个自由度。
运动平台上还装配有执行器和传感器等设备,用于控制和监测的运动状态。
2.2 连杆设计连杆是连接基座和运动平台的关键部件,其长度和形状对的运动性能有重要影响。
连杆的设计需要考虑运动范围、负载能力和结构强度等因素。
2.3执行器和传感器执行器用于驱动的运动,常见的执行器包括电机和液压缸等。
传感器用于监测的位置、力量和反馈信息,以实现自适应控制和安全保护。
3. 运动学分析3.1 坐标系建立建立的基座坐标系和运动平台坐标系,用于描述的位置和姿态。
3.2 正运动学通过正运动学方程,计算出给定关节变量下的末端位置和姿态。
正运动学方程是解决逆运动学问题的基础。
3.3 逆运动学逆运动学问题是指已知的末端位置和姿态,求解对应的关节变量。
采用数值方法或解析法求解逆运动学问题,以实现精确控制。
4. 动力学分析4.1 质心和惯性参数确定各部件的质量分布和惯性参数,建立动力学模型。
4.2 动力学方程建立的动力学方程,描述在给定控制力和力矩下的运动规律。
动力学方程求解可以实现的动态控制和冲击响应分析。
5. 应用领域6自由度并联在工业制造、医疗手术、半导体加工等领域具有广泛的应用。
通过灵活的运动和高精度的控制,该能够完成复杂的工作任务,并提高生产效率和产品质量。
6. 结束语本文对六自由度并联的结构设计、运动学和动力学分析进行了详细介绍。
希望通过本文的阅读,读者能够对该系统有更深入的了解。
1.本文档涉及附件:本文档附有六自由度并联的结构图、运动学和动力学分析的数学模型和各部件的技术参数表格等。
六自由度微动平台机构设计
摘要摘要本文对一种新型的6-(P-2P-S)并联机器人的精度进行了分析,这种机器人是由Stewart平台经过变异得到的。
介绍了该并联机器人的特点,利用空间机构学理论分析了机构的位置正反解,并分析了该机构在正交位姿的运动解耦性能。
基于该并联机器人的结构约束,研究了该机构的工作空间,并定量分析了该机构参数对工作空间体积大小的影响。
定义了线速度各向同性性能评价指标,并给出各向同性性能指标在工作空间内的分布情况。
采用对并联机构运动学方程取微分的方法求得各主要误差源和末端误差的映射关系,使用叠加原理获得了在综合多种误差影响因素作用下并联机构的几何误差模型,利用蒙特卡洛技术对终端平台误差进行了分析。
采用绝对误差敏感度和误差方向敏感度这两个误差评价指标,将主要误差影响因素对机构终端误差的影响进行了分析。
以该并联机构的全域各向同性性能指标和全域综合误差指标为依据对该机构进行了参数设计。
关键词并联机器人;正交结构;性能指标;几何误差;蒙特卡洛方法燕山大学工学硕士学位论文AbstractThe thesis focuses on the accuracy research on a novel 6-(P-2P-S) orthogonal parallel robot, the robot is developed based on the Stewart platform mechanism.Its layout feature is presented according to the previous research results. The forward and reverse position are established by using spatial mechanisms. The paper also shows that the novel parallel robot is characterized by decoupling at its orthogonal position.Base on the architecture constraints, its workspace is investigated. The effects of the design parameters to the workspace volume are studied quantitatively.Kinematics transmission isotropy evaluation criteria is defined. The distribution of the defined evaluation criteria are presented on the workspace.To get the mapping relationship between the influencing factors and the end error of the 6-(P-2P-S) parallel robot, the kinematics equation are differentiated. The analytic expression of the geometric error of the 6-(P-2P-S) parallel robot is obtained by using the superposition theorem and comprehensively considering the influencing factor. The distribution on terminal platform errors is discussed using Monte-Carlo method. By comprehensively considering the two evaluation indicators: absolute error sensitivity and error isotropy sensitivity, the influence of the influencing factor effecting on the end effector is analyzed.Based on the workspace of a novel 6-(P-2P-S) parallel robot, geometry parameter of the parallel mechanism is optimized which depend on the glob kinematics and the glob equal errors.Keywords Parallel robot; Orthogonal structure; Performance evaluation criteria;Geometric error; Monte-Carlo method目录目录摘要 (Ⅰ)Abstract (Ⅱ)第 1 章绪论 (1)1.1并联机器人概述 (1)1.2并联机器人发展状况 (2)1.3本论文的选题意义及主要研究内容 (8)第2章新型6-(P-2P-S)并联机器人的位置分析 (10)2.1概述 (10)2.2 6-(P-2P-S)并联机器人的机构描述 (10)2.2.1结构布局 (10)2.2.2机构特点 (11)2.3 6-(P-2P-S)并联机器人的位置分析 (12)2.3.1动平台姿态描述 (13)2.3.2位置分析 (14)2.3.3正交位姿解耦分析 (17)2.4本章小结 (18)第3章新型6-(P-2P-S)并联机器人工作空间分析 (20)3.1概述 (20)3.2工作空间定义 (20)3.3工作空间分析 (22)3.3.1 约束分析 (22)3.3.2 工作空间的搜索方法 (23)3.3.3 工作空间形状分析 (26)3.4 结构尺寸对工作空间的影响 (28)燕山大学工学硕士学位论文3.5 本章小结 (30)第4章新型6-(P-2P-S)并联机器人的运动学传递性能分析 (31)4.1概述 (31)4.2运动学传递性能分析 (31)4.2.1 雅可比矩阵的求解 (31)4.2.2 运动学传递各向同性性能评价指标 (33)4.2.3正交位姿时运动学传递各向同性性能分析 (39)4.3本章小结 (40)第5章新型6-(P-2P-S)并联机器人的精度分析 (41)5.1 概述 (41)5.2 误差模型的建立 (41)5.2.1建模方法综述 (41)5.2.2模型建立 (42)5.2.3考虑间隙误差和垂直度误差的误差模型 (45)5.3 基于蒙特卡洛方法的误差分析 (46)5.3.1 制造误差随机量抽样 (46)5.3.2 球铰间隙误差随机量抽样 (46)5.3.3 误差的蒙特卡洛模拟 (47)5.4 误差的评价指标 (52)5.5 本章小结 (55)第6章6-(P-2P-S)并联机器人的结构参数设计 (56)6.1概述 (56)6.2并联机器人的结构参数设计 (56)6.2.1结构参数对工作空间大小的影响 (57)6.2.2结构参数对运动学性能的影响 (58)6.2.3结构参数对全域综合误差的影响 (59)6.3本章小结 (62)结论 (63)参考文献 (64)目录攻读硕士学位期间承担的科研任务与主要成果 (69)致谢 (70)作者简介 (71)燕山大学工学硕士学位论文第1章绪论第 1 章绪论1.1 并联机器人概述机器人的出现充分体现人类的创造力,是人类智慧的结晶。
六自由度运动平台的仿真研究说课讲解
六自由度运动平台的仿真研究六自由度运动平台的仿真研究天津工程机械研究院杨永立摘要:本文分析了六自由度运动平台分别采用球铰链和万向节铰链进行连接时的自由度,运用欧拉角、旋转变换的方法推导出位置反解方程,介绍了数值迭代法进行位置正解的过程。
关键词:并联,局部自由度,位置反解,位置正解。
1. 简介运动平台按结构形式可分为串联和并联两大类。
与串联形式相比,并联形式具有刚度大、承载能力强、结构简单、运动负荷小、能实现包括横移、纵移、升沉等多个自由度运动等特点。
同时,串联形式的优点也很明显,其具有运动空间大,测量精度高,运动、受力分析相对简单、控制、测量的实现相对容易,且每个自由度都能独立运动等特点。
六自由度运动平台(如图1所示)是由六条油缸通过万向节铰链(或球铰链)将上、下两个平台连接而成,下平台固定在基础上,借助六条油缸的伸缩运动,完成上平台在三维空间六个自由度(X ,Y ,Z ,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。
2. 自由度的确定若在三维空间有n 个完全不受约束的物体,任选其中一个作为固定参照物,因每个物体相对参照物都有6个运动自由度,则n 个物体相对参照物共有6(n-1)个运动自由度。
若在所有物体之间用运动副联接起来组成机构,设第i 个运动副的约束为u i (1到5之间的整数),如果运动副的总数为g ,则机构的自由度M 为:∑=--=gi i u n M 1)1(6利用上述公式计算一下如图1所示运动平台(采用球铰链)的自由度数。
将油缸分解为缸筒和活塞杆,则总的构件数n=14,油缸与上下平台之间的连接为12个球铰链(约束为3),缸筒和活塞杆构成6个既可以相对移动,又可以相对转动的运动副(约束为4),则平台的自由度M 为:∑=--=g i iu n M 1)1(6=6 (14-1)-(3×12+4×6)=18计算结果出人意料,平台似乎无法只通过六条油缸进行驱动。
但是,如果保持上平台和缸筒固定不动,由球铰链的特性可知,活塞杆仍然可以相对其轴线转动;同理,缸筒也具有同样的效应。
六自由度摇摆台的动力参数计算方法
六自由度摇摆台的动力参数计算方法1.概述电动六自由度摇摆台是由六根电动缸驱动的并联运动机构,上平台可实现沿X、Y、Z三个坐标轴的平移和旋转共六个自由度的运动。
能够模拟车辆、舰船、飞机等载体运动姿态。
本电动六自由度摇摆台具有体积小巧、控制精度高、操作简便、可靠性高等优势,可应用于光电火控与导航制导装置的试验研究、车辆驾驶训练和动感游戏等方面。
2.技术特点特点一:体积小巧美观、重量轻、便携性好。
电动摇摆台采用进口电动缸,其电机和行星滚柱丝杠一体化,外壳为铝材,上平台和关节轴承座也采用超硬铝合金材料,底座采用空心方钢的框架结构,电脑控制箱位于底座中央。
这些独特的设计,使摇摆台结构紧凑,外形美观,体积小巧,重量轻,整个重量40kg,具有很好的便携性,非常适合在野外或者移动性要求较高的场合下使用。
特点二:控制精度高,承载能力强,运动方式灵活。
电动六自由度摇摆台采用6缸并联支撑的Stewart结构形式,具有很好的负载能力。
摇摆台运动形式灵活多样,能够实现空间6个自由度的姿态变化,电动缸采用了最先进的行星滚柱丝杠传动方式,其控制单元采用了智能控制策略和高精度位置解算,单缸位置控制精度可达0.1mm,系统整体控制精度完全达到了框架式转台的技术指标。
因此,非常适用于高精度测试场合,例如光电火控系统、稳瞄系统、导航制导系统的高精度校正、标定和检测。
特点三:使用操作简便,可靠性高。
电动六自由度摇摆台控制箱采用220V/50Hz单相工频供电,满负荷运行时总功率不超过4KW。
三个底层控制器采用DSP实现位置控制,中层解算计算机采用PC104,通过冗余的双CAN总线实现通讯。
上位监控计算机可以采用台式机、笔记本电脑等多种终端设备,通过一根网线与控制箱相连,就可以实现摇摆台的运行。
控制系统软件、硬件、通讯等多个层次设置了多重安全保护措施,确保摇摆台能够长期稳定运行。
3.基本功能3.1运动姿态模拟电动六自由度摇摆台具有六个自由度的运动,可以完成其可达运动空间内的任意运动姿态模拟。
解析六自由度运动平台控制系统
解析六自由度运动平台控制系统摘要:经过多年深入的研究,现在的Stewart平台与最初设计的结构稍微有些差别。
目前常见的六自由度运动平台主要利用六个驱动杆作为支撑和驱动机构,每个驱动杆两端分别用球铰和虎克铰连接在动平台和静平台上,通过六个分支的伸缩实现动平台任意位置与姿态的运动。
本文就六自由度运动平台控制系统展开分析。
关键词:六自由度;运动平台;控制系统1.六自由度运动平台结构特点及应用六自由度运动平台是模拟器的关键部件之一,它是一个空间并联运动机构。
理论上说,六自由度并联平台的驱动方式可以有多种,但最佳选择当属液压驱动。
电液伺服驱动的平台有结构简单、空间占用体积小、施力大等优点。
六自由度电液伺服运动平台是一个集多领域技术于一体的运动控制机构,它与空间几何学、运动学、动力学、液压传动、控制理论及应用、计算机软硬件设计与实现等学科都有关联。
这种并联结构在性能上独具特色,它的刚度好,其多支撑结构抗外负载干扰能力强;承载能力强且无误差积累,运行精度高;就实现多自由度运动而言,它的运动复杂性只影响系统的控制软件,各作动器之间的运动耦合小,占地面积小,制造成本低。
当然,六自由度并联运动平台也有不足之处,目前对平台运动位姿进行直接测量仍然比较困难,一般采用由各作动器活塞杆伸缩量进行位姿正解求得,另外平台的工作空间范围较小,姿态变化幅度有限。
除了应用在飞行模拟器上以外,这种平台还广泛应用于其他的军用和民用模拟器领域,如各种潜艇驾驶模拟器和汽车驾驶模拟器。
1994年,华中理工大学和青岛潜艇学院合作研制了一台六自由度潜艇操纵训练模拟器,2000年又为中船总707研究所研制出研发型六自由度潜艇模拟器。
Thomson-CSF仿真与训练公司也分别为军方和民用部门设计了各种卡车驾驶模拟器,其系统模拟的环境是高度逼真的模拟器上一小时的训练效果相当于在真实卡车上受训两小时以上。
在国内,吉林工业大学国家汽车动态模拟实验室(ADSL)较早便从事汽车体感模拟训练研究。
步进电机驱动六自由度并联运动平台设计
步进电机驱动六自由度并联运动平台设计潘光绪;贾光政;边颖聪;刘旭;陈佳丽【期刊名称】《机电工程》【年(卷),期】2017(034)010【摘要】为了能够在实验室内进行小型仪器元件的六自由度运动模拟和演示,设计了以步进电机驱动滚珠丝杠传动的小型六自由度并联运动平台.通过运动学反解建立了算法公式,应用Matlab仿真,得出了平台运动时各支路长度的变化曲线,验证了求解算法的正确性;运用Kutzbach-Grubler公式分析了电驱动UPU结构形式并联运动平台自由度的计算方法.根据给定参数建立了平台的三维模型,进行了结构协调性检测,并完成了步进电机驱动的六自由度平台的实体结构研制.将LabVIEW组态软件与Matlab脚本解算程序结合,用于对平台的运动控制.测试结果表明:平台完全可以按照预定轨迹进行空间6个自由度的运动,实现对小型仪器元件的运动模拟.【总页数】5页(P1117-1121)【作者】潘光绪;贾光政;边颖聪;刘旭;陈佳丽【作者单位】东北石油大学机械科学与工程学院,黑龙江大庆 163318;东北石油大学机械科学与工程学院,黑龙江大庆 163318;东北石油大学机械科学与工程学院,黑龙江大庆 163318;东北石油大学机械科学与工程学院,黑龙江大庆 163318;东北石油大学机械科学与工程学院,黑龙江大庆 163318【正文语种】中文【中图分类】TH122;TP242【相关文献】1.并联六自由度运动平台铰点工作空间的仿真实验 [J], 袁立鹏;赵克定;许宏光2.六自由度运动平台并联机器人运动学分析 [J], 陈钢;蔺静茹;穆卫锋;谭嘉文3.六自由度并联运动平台动力学建模及分析 [J], 黄其涛;韩俊伟;何景峰4.基于 Matlab/SimMechanics 的六自由度并联运动平台建模与分析 [J], 李沛;杨小强;李焕良;韩金华;潘军军5.并联六自由度运动平台控制系统研究 [J], 刘胜;宋佳;李晚龙;杜延春因版权原因,仅展示原文概要,查看原文内容请购买。
一种六自由度平台创新设计
六自由度平台
设计内容
设计建模
一种六自由度平台
机构现状
六自由度平台现状
现在的六自由度运动平台多数是六自由度并 联平台。它对平台进行操控,需要六个液压 杆相互配合,复杂的运动控制让它实现高精 度运动控制算法的编写十分困难。运动平台 的各个零部件需要高精度的加工和装配,但 是基于目前的制造工艺技术,六自由度定位 系统通常需要手动组装。
上平台机构简图
设计内容
下平台设计
如图所示,下平台由机架,四根液压杆以及 上平面组成,四根液压杆成正方形垂直固定 在机架上,液压杆与上平面用球铰链连接。
下平台机构简图
设计内容
下平台自由度验算
活动构件:n=5 球铰链:p=4 液压杆:l=4 自由度:F = 3 下平台自由度为3,分别是绕x轴旋转、绕y轴 旋转、以及沿z轴的平移。
六自由度平台
设计内容
上平台设计
如图所示,上平台由方形机架,三根液压杆 以及中间的圆形平台组成,液压杆与机架和 圆形平台用转动副连接。 圆形平台初始位置位于方形机架正中心。 每两根液压杆之间夹角为120°。
上平台机构简图
设计内容
上平台自由度验算
该机构只能做平面内运动。 活动构件:n=4 转动副:p=6 液压杆:l=3 自由度:F = 3 × 4 − 2 × 6 + 3 = 3 上平台自由度为3,分别是沿x轴、y轴平移和 绕z轴的旋转。
六自由度并联平台
设计内容
设计方向
针对六自由度平台的操控难度大和装配要求 高,在此提出一种新的六自由度平台。 该六自由度平台由两个三自由度机构组合形 成,它结构简单,易于组装,大大减少了装 配误差,提高了系统定位精度。而且这种设 计策略将降低操作控制算法的实现难度,同 时还提高系统的稳定性,确保系统具有良好 的动态特性、快速响应和更高的抗外界扰动 性。
六自由度平台
(一)
六自由运动平台介绍
六自由度液压平台技术参数
六自由度运动平台是由六支油缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,
借助六只油缸的伸缩运动,完成上平台在空间六个自由度(α,β,γ, X,Y,Z)的运动,从而可以模拟出各种空间运动姿态。
六自由度运动平台涉及到机械、液压、电气、控制、计算机、传感器,空间运动
数学模型、实时信号传输处理等一系列高科技领域,因此六自由度运动平台是液压和控制领域水平的标志
性象征。
主要包括平台的空间运动机构、空间运动模型、液压系统、控制系统。
1 六自由度平台空间机构技术参数
六自由度平台结构效果图如图1所示。
图1 六自由度平台
六自由度运动平台由上下平台和六个液压油缸组成。
六个液压缸上端点两两组成上平台三个支点,六个液
压缸下端点两两组成下平台三个支点。
上下三个支点分别在假设的圆周上,并且是120o等分,既分别是两个等边三角形的顶点。
根据不同的运动范围,油缸的行程和上下平台半径不同。
结构如图2所示。
图2 六自由度平台结构图
根据标书要求,六自由度平台结构参数如下:
上平台半径: 0.8m;。
Stewart六自由度并联平台动力学模型振动分析论文
Stewart六自由度并联平台动力学模型振动分析论文Stewart六自由度并联平台动力学模型振动分析论文关键词:Stewart并联平台;动力学分析;振动仿真;固有特性Stewart六自由度并联平台的运动学及动力学分析是后续结构优化及控制器设计的基础,因此研究其运动学及动力学理论具有重要的意义.目前针对Stewart平台的动力学模型分析方法主要有拉格朗日法[12-14](Lagrange)和牛顿欧拉法[15-16](Newton-Euler)两种.其中,拉格朗日法只需计算系统的动能和势能就能确定系统的动力学特性,因此该方法相对比较简单且有利于控制策略的制定.本文针对所设计的Stewart六自由度并联平台进行了运动学和动力学分析,并在此基础上通过Adams软件建立了模型的动力学模型及振动模型,分析Stewart六自由度并联平台动力学模型振动特性,为提高Stewart六自由度并联减振平台控制精度提供理论与技术支持.1Stewart六自由度并联平台力学分析1.1Stewart六自由度并联平台结构Stewart六自由度并联平台主要由负载平台、基平台和六根驱动杆组成,每根驱动杆通过铰接方式分别连接负载平台和基平台.根据铰接方式的不同可以分为球铰连接(Spherical joint)SPS型和万向铰连接(Universal joint)UPS型;根据驱动杆与负载平台和基平台的连接点数又可分为3-3型Stewart平台,3-6型Stewart平台及6-6型Stewart平台.应用最为广泛的Stewart平台为驱动杆与负载平台和基平台都有6个连接点数的UPS型平台,即6-UPS型Stewart六自由度并联平台,其结构简图如图1所示.2Stewart六自由度并联仿真平台动力学研究2.1Stewart六自由度并联机构虚拟样机建立本文所研究的三维实体模型如图3所示,模型由上端负载平台、底端基平台以及6根压电驱动杆组成.该平台的特征参数为:上端载物平面直径为250 mm,下端平面直径为350 mm,上下平面之间的距离为330 mm.其中驱动杆和上下两平台通过万向铰连接.为了仿真的方便并满足软件对模型的需要,对模型进行了一系列简化,包括构件的合并、细小特性单元的删除等.根据设计原理,在驱动杆和上下两平台之间的万向铰通过建立2个旋转副实现其功能;驱动杆的上下两部分之间通过平移副连接,并根据驱动杆的设计原理添加了弹簧和阻尼单元,以实现减振的目的.由于本Stewart六自由度平台运用在无重力环境下,因此在Adams中取消了重力单元.为了约束的需要及和实际使用时具有相同的条件,在下平台和地之间通过一个Bushing单元连接,考虑到实际运用中是固定的,所以将Bushing单元的刚度设置得比较大,该单元可以同时传递力与力矩.为了研究下端平台的扰动对上端载荷平台的影响,在下端平台底端建立了扰动力,在仿真初始时刻施加垂直于底端向上的1 N的力STEP(time,0,1,1,0),其形式如图4所示.2.2 Stewart六自由度并联机构动力学仿真结果将上节所建立的动力学仿真模型进行仿真分析,设置仿真时间为10 s,仿真500步.针对该扰动力,上端平台的位移响应、速度响应及加速度响应如图5所示.根据动力学仿真结果图可以看出,上端平台的响应较小,最大的位移出现在0.7 s左右且能够很快地保持稳定. 图6所示为6根驱动杆在收到扰动后所受到的力.由图6可看出,6根驱动杆在收到扰动的干扰后,分别输出了相应的力以对抗扰动对上端平台的影响,且在3 s后能快速保持稳定.3Stewart六自由度并联平台的振动仿真3.1Stewart六自由度振动仿真平台建立为得到Stewart六自由度并联平台的振动特性,在Adams中调用Vibration模块,建立了振动仿真平台.Adams/Vibration是在频率域上求解系统特性的模块,且可以计算仿真平台不同位置的振动特性,可以采用自由振动及强迫振动的方式.本文中采用了强迫振动的方式对平台进行振动特征的求解,在底端平面建立振动的输入激励,分别为x,y,z方向的简弦力,通过扫频的方式进行计算,即激励的幅值不变,而激励的频率不断增大,其激励的方程式可写为式(34).3.2Stewart六自由度振动仿真结果分析经过振动仿真,得出了系统输入和输出之间的频响特性,其结果如图8-图10所示分别为3个输入通道的激励对3个输出通道x,y和z的频响曲线.由图8-图10的频响曲线图可以看出,Stewart六自由度并联平台的一阶固有频率在0.6 Hz左右,具有较低的固有频率,且在100 Hz 的频率范围内响应平稳,表明了Stewart六自由度并联平台具有较宽的工作频率范围.表1给出了本文所研究的'Stewart六自由度并联平台的前5阶模态参数的仿真结果.4结论1)分析了Stewart六自由度并联平台的运动学及动力学特性,并以Adams软件搭建了相应的仿真平台.在下端面建立了幅值为1 N的扰动力,进行了模型的动力学仿真.结果显示,本文建立的虚拟样机很好地模拟了Stewart六自由度并联平台的工作状况.2)为进一步分析Stewart六自由度并联平台的动力学固有特性,调用Adams/Vibration模块,在下端平台建立了系统的输入通道,在上端平台建立了系统的输出通道,仿真分析了系统输入通道和输出通道之间3个方向的频响特性.结果显示了3个方向的频响曲线且计算得出了前5阶模态参数,从数据中可以看出Stewart六自由度并联平台的一阶固有频率较小,具有较好的低频特性且在大范围的频率段内,响应稳定.参考文献[1]STEWART D. A platform with six degrees of freedom [J]. Proceedings of the Institution of Mechanical Engineers, 1965,180: 371-386.[2]PREUMONT A, HORODINCA M, ROMANESCU I, et al.A six-axis single-stage active vibration isolator based on Stewart platform [J]. Journal of Sound and Vibration, 2007, 300(3):644-661.[8]MUKHERJEE P,DASGUPTA B,MALLIK A K. Dynamicstability index and vibration analysis of a flexible Stewart platform [J]. Journal of Sound and Vibration, 2007, 307(3/5):495-512.[9]ZHOU Wan-yong, CHEN Wu-yi, LIU Hua-dong, et al.A new forward kinematic algorithm for a general Stewart platform[J]. Mechanism and Machine Theory, 2015, 87: 177-190.[14]JI Z M. Dynamics decomposition for Stewart platforms [J]. ASME Journal of Mechanical Design, 1994, 116(1): 67-69.。
六自由度运动平台PID控制系统仿真研究
六自由度运动平台PID控制系统仿真研究摘要Stewart 平台的出现始于 1965 年德国学者 Stewart 发明的具有六自由度运动能力的并联机构飞行模拟器。
目前经典的 Stewart 平台机构由上、下两个平台和六个可伸缩的支腿以及它们之间的连接铰链构成,其下平台通常为基台(Base-platform),上平台通常为负载平台(Payload-platform)(即 Stewart 平台的工作平台)。
Stewart平台通过六个支腿的伸缩运动可以实现负载平台在工作空间范围内的六自由度运动,并具有刚度高、精度高、承载能力强、动态特性好等优点,因此近年来被广泛应用于并联机床、精密定位平台和振动隔离平台等方面。
Stewart 平台在并联机床和精密定位平台方面的应用相对成熟,已有实用化的商品供应市场。
Stewart 平台应用于六自由度振动隔离平台的研究与开发相对发展较晚,不仅开发的系统远未达到实用化水平,其理论领域的研究也多属空白,其根本原因是应用于振动隔离的 Stewart 平台的基台是运动的,随之而带来许多新的问题。
到目前为止,在 Stewart 平台的理论研究方面已取得一些研究成果,比如Mille(r1992)使用 Lagrange 动力学方程建立了 Stewart 平台的动力学模型;Dasgupta和 Mruthyunjaya(1998)使用 Newton-Euler 动力学方程推导出闭合形式的 Stewart平台的动力学模型;Codourey 和 Burdet(1997)、Wang 和 Gosselin(1998)、Tsai(2000)等人分别利用虚功原理建立了 Stewart 平台的逆动力学模型。
但是,上述关于 Stewart 平台的动力学模型都是在假设Stewart 平台的基台固定不动的情况下建立的。
本文的主要研究工作和意义如下:1、基于 Dasgupta 提出的在基台固定情况下的 Stewart 平台的动力学模型,在Matlab/Simulink 环境下建立了 Stewart 平台闭环动力学仿真系统。
六自由度运动平台
六自由度运动平台
六自由度运动平台是一种使用机械臂于电动机和传感器的组合,可实现六自由度运动的运动系统。
能够实现的运动可包括六种不同的方向—头部旋转、左右横、上下前后移动,以及左右摆动的六种活动形式,在实现先进机械臂的产品中,这是一项核心技术,也是最基础技术。
六自由度运动平台通常由机械手臂部分和电动机支架部分组成。
机械臂部分包括各种连接体,主要是用于支撑型臂的受力部分,传送旋转力量,支撑机械臂,定位,实现各种六自由度运动。
电动机支架部分主要用于支撑电动机和实现变矩传递,其中结合严格的机械参数,保证机械臂的精确运动。
六自由度运动平台充分利用六种不同的运动方式,实现各种活动,可以满足多种运动应用场景,无论是复杂环境下做导航,还是在固定环境下作定点抓取物体。
六自由度运动平台也可以应用到医疗行业,在未来医疗技术中,我们将看到越来越多的机器人和六自由度运动平台的应用,为疾病的预防,诊断和治疗提供更好的解决方案。
六自由度运动平台具备多项优势,它可以支持各种复杂的运动,提供稳定的动态数据,用于精确的控制和精确的定位,此外,六自由度运动平台的配置灵活,可以根据不同的环境需求,进行定制配置,以满足各方面的应用需求,是目前不可替代的关键部件。
总而言之,六自由度运动平台可以实现复杂的机械臂运动,解决多种应用场景下的运动要求,具有广泛的应用前景,是一项关键技术,受到多个行业的瞩目。
基于六自由度并联平台的模拟目标追踪
基于六自由度并联平台的模拟目标追踪系统设计摘要六自由度并联(Stewart)平台具有承载能力强、结构刚度大、精度高、系统动态响应快、累计误差小、反解容易等优点,经年来已被广泛应用于运动模拟器、并联机床、精密定位平台及各种娱乐场合。
在此发展趋势下,将六自由度并联平台应用于模拟目标追踪,设计出了一套新型、高效的系统。
上位机应运Visual Basic编程语言,通过Modbus协议实现PC机与PAC控制器的通讯,运用基于神经网络整定的PID控制算法,从而控制液压系统实现对平台的控制,完成目标追踪任务。
关键词:六自由度并联平台 Visual Basic编程 PAC控制器神经网络PIDAbstractSix degrees of freedom parallel (Stewart) platform with strong bearing capacity, stiffness, high precision, fast dynamic responses of the system, the cumulative error is small, and easy in the solution, the years have been widely applied in motion simulator, a parallel machine tool, precision positioning platform and various kinds of entertainment places. Under this development tendency, six degree-of-freedom parallel platform is first used to simulate target tracking, designed a set of new and efficient system. PC use Visual Basic programming language, through the Modbus protocol implementation PC communications with PAC controller, using PID control algorithm based on neural network setting, so as to control hydraulic system to realize the control of the platform, target tracking task.Keywords: six degree-of-freedom parallel Visual Basic programming PAC controller Neural network PID0引言目标追踪在现代化战争、民用、工业、科研等领域都具有重要的影响。
并联六自由度运动平台
并联六自由度运动平台1.概述并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。
并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。
图0-1:六自由度及其坐标系定义图我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。
六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。
2.系统组成2.1液压伺服类典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。
机械系统主要包括:承载平台、上下连接铰链、固定座。
液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。
控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。
控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。
2.2电动伺服类电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增加运动控制单元。
具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。
3.主要技术参数以下参数为液压类平台典型值,具体可按用户要求设计制造。
3.1平台主要参数平台最大负载:静态≥2000KG,动态≥3000KG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并联六自由度运动平台
1.概述
并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。
并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。
图0-1:六自由度及其坐标系定义图
我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。
六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。
2.系统组成
2.1液压伺服类
典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。
机械系统主要包括:承载平台、上下连接铰链、固定座。
液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。
控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。
控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。
2.2 电动伺服类
电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增
加运动控制单元。
具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。
3.主要技术参数
以下参数为液压类平台典型值,具体可按用户要求设计制造。
3.1平台主要参数
平台最大负载:静态≥2000KG,动态≥3000KG。
上平台球铰分布园直径1400mm,相邻球心距离157mm;
下平台球铰分布园直径1600mm,相邻球心距离167mm;
伺服缸最小球铰球心距离800mm,最大长度1200mm;(采用Φ63/45~400缸体)。
平台初始高度约700mm。
3.2 泵站技术指标
额定流量:90L/min
最大系统压力:12Mpa;
泵站电机功率:22KW;
空间尺寸:1400×1200×1320
3.3 运动参数
伺服缸运动速度≥200mm/S;有效行程≥400mm。
主要运动参数如下表:
3.4 电动伺服平台
电动伺服平台省去了泵站系统及伺服阀、伺服油缸,而直接用电动缸、伺服电机和相应的伺服放大器代替。
电动缸:电动缸可根据用户要求选用进口(Exlar系列)或国产产品(由本公司自行研发生产,采用进口滚珠丝杠成套)。
伺服电机:伺服电机可选用三菱、安川、松下、台达等产品。
伺服放大器:采用与伺服电机品牌对应的伺服放大器。
4.平台控制系统
4.1 伺服运动控制器
平台控制系统由伺服运动控制器、控制计算机、其配电操作柜等组成。
伺服运动控制器安装在配电操作柜内部,操作柜另配置触屏便于一些基本参数的设置和显示。
伺服运动控制器是六自由度平台控制系统的核心,它是一种高性能闭环实时控制器,集成了高速模拟量采集、高速浮点处理器、高速DA端口,是针对Stewart平台应用的专用控制器。
伺服运动控制器包括相对独立的六组控制回路,对于每组回路由位置控制环组成,它和线性位移传感器、伺服比例阀和伺服缸构成快速高精度数字闭环控制系统,从而使单伺服缸控制稳态误差小于0.1毫米。
4.2 控制系统主要功能:
1) 操作监控计算机,可以进行运动函数编程,与运动控制器接口,完成各种命令和参数设定。
2) 所有输入输出均具有硬件保护电路,具有故障定位和冻结能力。
3)控制器在即使在复杂控制条件下,仍能保证闭环控制周期小于10ms。
4)控制器具有保护算法,当超出模拟台运动范围的指令给出时会发出报警信号并进行运动限制。
5)控制器能自动判断识别非法命令,避免设备误动作。
6)实现泵站的基本起停控制,状态监视。
4.3 数据接口:
伺服运动控制器可以通过Modbus TCP协议与用户控制操作计算机连接,控制器提供上位机应用函数接口,便于第三方应用软件连接。
伺服运动控制器可以通过RS232/485与具有串行通讯能力的设备进行通讯,通讯协议为Modbus RTU 或自行定义的自由协议。
5.主要应用示例
5.1 列车风档液压仿真试验台
列车运动仿真测试系统实现对列车各种工况下的运动轨迹进行计算仿真、模拟运动,同时对列车产品如折棚式风档等进行产品性能测试。
图0-2列车风档液压仿真试验台现场实景图
并联六自由度运动平台
系统能够根据给定的列车轨迹参数,计算出列车运动轨迹及其他相关参数。
列车轨迹计算主要参数如下:
a) S曲线半径R
b) S曲线直线段长度W
c) 平台正三角形边长A
d) 列车长度L
e) 列车轮距N
f) 连杆长度P
g) 连杆绞点至轮轴距M
h) 列车速度v
图0-3列车风档液压仿真试验台HMI界面
试验台能够仿真如下运动轨迹:
a)含直线段S曲线水平运动
b)园曲线水平运动
c)切园曲线水平运动
d)含直线段S曲线垂直运动
e)园曲线垂直运动
f)切园曲线垂直运动
g)翻转运动
h)混合运动
5.2 F1赛车运动仿真台
F1赛车运动仿真台用于上海F1国际赛车场,操作者可以坐到仿真平台上,平台前方放置一液晶显示屏,显示赛车动画场景,操作者可以通过操纵杆进行起动、加速、左右拐、侧滑、刹车、颠簸行使等动作,同时仿真台根据这些动作进行动态模拟,让操作者亲身体验赛
车动感。
图0-4 F1赛车运动仿真台现场实景图
F1赛车运动仿真台为六自由度运动平台的开发应用,主要由计算机操作动画系统、六缸液压伺服运动系统和实时控制系统组成。
计算机操作动画系统采用高性能服务器主机与34”液晶显示屏,动态模拟赛车场景。
六缸液压伺服运动系统采用进口比例伺服阀控制,频响时间小于20ms,液压缸内置高精度位移传感器。
另单独配有提供动力的泵站单元。
实时控制系统根据计算机系统的动作指令信号动态运算并调节控制液压缸动作,实现与动画场景动作同步。
5.3 特种机车驾驶模拟器
特种机车驾驶模拟器主要由六自由度平台、实物驾驶室、模型小车、地貌沙盘、视景影像系统等组成。
实现了特种机车驾驶视觉、听觉、操纵、环境、不同路况、不同气候等的综合模拟。
实物驾驶室内主要部件如档位、方向盘、仪表板、座椅等均采用实车部件。
方向盘力矩按实车模拟,力求在操纵上有实车感觉。
图0-5特种机车驾驶模拟器现场实景图
模型小车按照实物驾驶室内发出的各种指令(加减速、左右转向、刹车、颠簸等),在地貌沙盘上行驶,同时将地貌状况传输给影像虚拟场景系统,模型小车实际空间坐标参数(中心点空间位置X,Y,Z及欧拉夹角α,β,γ)反馈给六自由度控制器,控制系统计算并仿真出模型小车实际动感状态。
5.4 海浪模拟器
六自由度平台可以模拟海浪动作,以验证舰艇、船舶等在实际航行时的各项参数指标。
图0-6海浪模拟器现场实景图
5.5 飞机和飞碟模拟器
飞机和飞碟模拟器主要应用于娱乐行业,如科技馆、游乐场等。
可以模拟飞行器的空中各种飞行姿态,辅以空间魔幻场景,给人一种身临其境的美感。
图0-7飞机模拟现场实景图
精品
图0-8飞碟模拟现场实景图
-可编辑-。