17.2--光的粒子性-精品教案
17.2光的粒子性教案1
(其中Ek为电子从金属表面逸出的最大初动能,hν为一个光子的能量,W0为逸出功,与频率的关系是 )
(1)内容:
光不仅在发射和吸收时以能量为hν的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为ν的光是由大量能量为E =hν的光子组成的粒子流,这些光子沿光的传播方向以光速c运动。
②电子只要吸收一个光பைடு நூலகம்就可以从金属表面逸出,所以不需时间的累积。
③从方程可以看出光电子初动能和照射光的频率成线性关系
④从光电效应方程中,当初动能为零时,可得极限频率:
爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。
课堂总结
板书设计
作业设计
1、课本P36问题与练习第1、2、3、4题。
爱因斯坦一辈子很少做实验,他是一个伟大的物理学家,但他非常尊重实验事实,当理论与实验事实相矛盾时他倾向实验,为了解释光电效应实验规律,他接受并发展可普朗克都惶惑的能量子观点,提出光子说提出光子说,从而成功地解释了光电效应规律。
(板书)光子:光本身是由一个个不可分割的能量子组成的,频率为ν的光子能量为hν,其中h为普朗克常量,这些能量子叫做光子。
启发猜想:改用其他的光(比如红光)来照射会不会照射出电子?或用其他的材料做实验会不会照射出电子?
学生根据已有的知识,猜想一定会发生与刚才相同的现象,然而这是做实验却没有电子跑出来。激起学生的认知冲突,学生急于想弄懂:为什么用紫光能照射出电子而用红光就不能照射出电子呢?
1、光电效应的实验规律
我们刚才做的实验是科学史上一个非常重要的实验,这个实验的焦点在于“为什么用红光照射锌板打不出电子”,科学家将实验装置进行了改进,得到了很多出人意料的规律,下面我们一起来学习:
《光的粒子性》教学案
《光的粒子性》教学案课标要求了解光电效应,分析光电效应方程 课型 新授学习目标1.了解光电效应及其实验规律,以及光电效应与电磁理论的矛盾.2.知道爱因斯坦光电效应方程及应用.3.了解康普顿效应及其意义,了解光子的动量.学习重点 1、光电效应及其实验规律 2、爱因斯坦光电效应方程及应用 学习难点爱因斯坦光电效应方程及应用学 习 过 程【合作探究】分析问题情境,提炼核心问题 任务一、光电效应现象及其实验规律 活动: 观察实验,交流思考: (1)在甲图中发现,利用紫外线照射锌板无论光的强度如何变化,验电器都有张角,而用红光照射锌板,无论光的强度如何变化,验电器总无张角,这说明了什么?(2)在乙图中光电管两端加正向电压,用一定强度的光照射时,若增加电压,电流表示数不变,而光强增加时,同样电压,电流表示数会增大,这说明了什么?(3)在乙图中若加反向电压,当光强增大时,遏止电压不变,而入射光的频率增加时,遏止电压却增加,这一现象说明了什么?(4)光电效应实验表明,发射电子的能量与入射光的强度无关,而与光的频率有关,试用光子说分析原因. 【交流总结】1.光电效2.光电效应中的光包括不可见光和可见光.3.光电子:光电效应中发射出来的光电子,其本质还是电子. 4.能不能发生光电效应由入射光的频率决定,与入射光的强度无关. 5.保持入射光频率不变,入射光越强,单位时间内发射的光电子数越多. 6.光的强度与饱和光电流:饱和光电流与光强有关,与所加的正向电压大小无关.且饱和光电流与入射光强度成正比的规律是对频率相同的光照射金属产生光电效应而言的.对于不同频率的光,由于每个光子的能量不同,饱和光电流与入射光强度之间不是简单的正比关系.【例1】现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是( )A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,饱和光电流变大C.入射光的频率变高,光电子的最大初动能变大D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生【针对性训练1】如图所示,电路中所有元件完好,光照射到光电管上,灵敏电流计中没有电流通过.其原因可能是( )A.入射光太弱 B.入射光波长太长C.光照时间太短 D.电源正、负极接反任务二、光电效应方程的理解和应用【导学探究】用如图所示的装置研究光电效应现象.用光子能量为2.75 eV 的光照射到光电管上时发生了光电效应,电流表的示数不为零;移动滑动变阻器的滑动触头,发现当电压表的示数大于或等于1.7 V时,电流表示数为0.(1)光电子的最大初动能是多少?遏止电压为多少?(2)光电管阴极的逸出功又是多少?(3)当滑动触头向a端滑动时,光电流变大还是变小?(4)当入射光的频率增大时,光电子最大初动能如何变化?遏止电压呢?【深化】光电效应方程E k=hν-W0的四点理解(1)式中的E k是光电子的最大初动能,就某个光电子而言,其离开金属时剩余动能大小可以是0~E k范围内的任何数值.(2)光电效应方程实质上是能量守恒方程.①能量为ε=hν的光子被电子吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.②如要克服吸引力做功最少为W0,则电子离开金属表面时动能最大为E k,根据能量守恒定律可知:E k=hν-W0.(3)光电效应方程包含了产生光电效应的条件.若发生光电效应,则光电子的最大初动能必须大于零,即E k=hν-W0>0,亦即hν>W0,ν>W0h=νc,而νc=W0h恰好是光电效应的截止频率.【例2】在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b,光电子的最大初动能分别为E k a和E k b.h为普朗克常量.下列说法正确的是()A.若νa>νb,则一定有U a<U bB.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k bD.若νa>νb,则一定有hνa-E k a>hνb-E k b【例3】如图所示,当开关K断开时,用光子能量为2.5 eV的一束光照射阴极P,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表读数小于0.6 V时,电流表读数仍不为零.当电压表读数大于或等于0.6 V时,电流表读数为零.由此可知阴极材料的逸出功为( )A.1.9 eV B.0.6 eV C.2.5 eV D.3.1 eV【例4】在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示,则可判断出()A.甲光的频率大于乙光的频率B.乙光的波长大于丙光的波长C.乙光的频率大于丙光的频率D.甲光对应的光电子最大初动能大于丙光对应的光电子最大初动能【例5】在某次光电效应实验中,得到的遏止电压U c与入射光的频率ν的关系如图7所示.若该直线的斜率和纵截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________,所用材料的逸出功可表示为________.【巩固训练】A组1、如图所示,用弧光灯照射擦得很亮的锌板,验电器指针张开一个角度,则下列说法中正确的是( )A.用紫外线照射锌板,验电器指针会发生偏转B.用红光照射锌板,验电器指针一定会发生偏转C.锌板带的是负电荷D.使验电器指针发生偏转的是正电荷2、利用光电管研究光电效应实验如图所示,用频率为ν的可见光照射阴极K,电流表中有电流通过,则( )A.用紫外线照射,电流表不一定有电流通过B.用红光照射,电流表一定无电流通过C.用频率为ν的可见光照射K,当滑动变阻器的滑动触头移到A端时,电流表中一定无电流通过D.用频率为ν的可见光照射K,当滑动变阻器的滑动触头向B端滑动时,电流表示数可能不变3、如图所示是光电效应中光电子的最大初动能E k与入射光频率ν的关系图象.从图中可知( )A.E k与ν成正比B.E k与入射光强度成正比C.对同一种金属而言,E k仅与ν有关D.入射光频率必须小于极限频率νc时,才能产生光电效应4、在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属的逸出功为.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为.已知电子电荷量的绝对值、真空中的光速和普朗克常量分别为e、c和h.B组5、物理学家密立根利用图甲所示的电路研究金属的遏止电压U c与入射光频率ν的关系,描绘出图乙中的图象,由此算出普朗克常量h,电子电荷量的绝对值用e表示,下列说法正确的是:A.入射光频率增大,测遏止电压时,应使滑动变阻器的滑片P向M端移动B.增大入射光的强度,光电子的最大初动能也增大C.由U c-ν图象可知,这种金属截止频率为νcD.由U c-ν图象可得普朗克常量的表达式为h=U1eν1-νc6、在某次光电效应实验中,得到的遏止电压U c与入射光的频率ν的关系如图所示,若该直线的斜率和纵截距分别为k和-b,电子电荷量的绝对值为e,则( )A.普朗克常量可表示为k eB.若更换材料再实验,得到的图线的k不改变,b改变C.所用材料的逸出功可表示为ebD.b由入射光决定,与所用材料无关【课堂总结】。
17.2光的粒子性(课时1)
当堂检测
1、在演示光电效应的实验中,原来不带电的 一块锌板与灵敏验电器相连,用弧光灯照射锌 板时,验电器的指针就张开一个角度,如图所 示,这时( B ) A.锌板带正电,指针带负电 B.锌板带正电,指针带正电 C.锌板带负电,指针带正电 D.锌板带负电,指针带负电
ቤተ መጻሕፍቲ ባይዱ
2.下列说法正确的是( B ) A.光子与光电子是同一种粒子。 B.光子与物质微粒发生相互作用时,不仅遵 循能量守恒,还遵循动量守恒。 C.光具有粒子性又具有波动性,这种波是概 率波,不是电磁波。 D.宏观物体也有波动性,这种波就是机械波。
第十七章
波粒二象性
2
光的粒子性
一、学习目标
1、了解光电效应及其实验规律、康普顿效应 及其意义。 2、掌握爱因斯坦光电效应方程及其意义。
二、带着问题先学
1、讨论:在光的照射下锌板为什么会带电? 2、如图17.2-2,金属板A、K两端不加电压 时有电流通过电流表吗?有什么办法增加其中 的电流? 3、观察图17.2-3,光电流可以无限增大电流 吗?若要使光电流为零,又有什么办法?
3、什么是光电效应?光电效应的基本规律是 什么?
4、请写出爱因斯坦的光电效应方程,并用该 方程解释下光电效应
光电效应的4条基本规律:
1、产生光电效应的条件: 任何一种金属,都存在极限频率ν0,只有当入 射光频率ν>ν0时,才能发生光电效应。 2、光电子的最大初动能: 光电子的最大初动能EKm与入射光强度无关,只 随入射光频率的增大而增大。 3、光电效应的发生时间: 几乎是瞬时发生的。 4、光电流强度的决定因素: 当入射光频率ν>ν0时,光电流随入射光强度的增 大而增大。 当入射光的强度不变,频率增大,光电流不变。
17.2 光的粒子性 高中物理选修3-5优秀教案优秀教学设计【精品】 (4)
2光的粒子性一、教学目标1.应该掌握的知识方面.(1)光电效应现象具有哪些规律.(2)人们研究光电效应现象的目的性.(3)爱因斯坦的光子说对光电效应现象的解释.2.培养学生分析实验现象,推理和判断的能力方面.(1)观察用紫外线灯照射锌板的实验,分析现象产生的原因.(2)观察光电效应演示仪的实验过程,掌握分析现象所得到的结论.3.结合物理学发展史使学生了解到科学理论的建立过程,渗透科学研究方法的教育.二、重点、难点分析1.光电效应现象的基本规律、光子说的基本思想和做好光电效应的演示实验是本节课的重点.2.难点是(1)对光的强度的理解,(2)发生光电效应时光电流的强度为什么跟光电子的最大初动能无关,只与入射光的强度成正比.三、教具锌板、验电器、紫外线灯、白炽灯、丝绸、玻璃棒、光电效应演示仪.四、教学过程(一)新课的引入光的波动理论学说虽然取得了很大的成功,但并未达到十分完美的程度.光的有些现象波动说遇到了很大的困难,请观察光电效应现象.(二)教学过程的设计1.演示实验.将锌板与验电器用导线连接,用细砂纸打磨锌板表面.把丝绸摩擦过的玻璃棒放在锌板附近,用紫外线灯照射锌板.边演示边提问:紫外线灯打开前后,验电器指针有什么变化?这一现象说明了什么问题?引导学生分析并得出结论:光线照射金属表面,金属失去了电子导致验电器指针张开一角度.明确指出光电效应是光照射金属表面,使物体发射电子的现象.照射的光可以是可见光,也可以是不可见光.发射出的电子叫光电子.说明:这个实验如果按照课本上的装置进行效果很不理想,因为紫外线照射锌板飞出电子时锌板带正电,在锌板附近形成电场又将电子吸附回去.锌板电势升到很小的值就使逸出和返回的电子达到动态平衡,很难使验电器指针明显地张开.2.进一步研究光电效应.以上实验改用很强的白炽灯照射,却不能发生光电效应.向学生提出问题:光电效应的发生一定是有条件的,存在着一定规律.有什么规律呢?让我们进一步研究.向学生介绍光电效应演示仪.在黑板上画一示意图,如图所示.S为抽成真空的光电管,C是石英窗口,光线可通过它照射到金属板K上,金属板A和K组成一对电极与外部电路相连接.光源为白炽灯,在光源和石英窗口C之间插入不同颜色的滤光片可以改变入射光的频率,光源的亮度可以通过另一套装置调节.观察现象一:在没有光照射K 时,电压表 有示数,电流表没有示数,说明什么?明确:AK 之间有电场存在,但没有光电子逸出,说明没有发生光电效应.提出问题:要发生光电效应,是不是用任何频率的光线照射都行?是不是弱光线不行,只要光的强度足够大就行?是不是只要有足够大的电场电压就行?观察现象二:保持AK 间电压一定,灯泡亮度一定,在窗口 C 前依次放上红色、橙色、绿色滤光片,观察到红光照射金属板K 时没有光电流,橙光和绿光照射时有光电流.用红光照射时改变入射光的亮度和改变电场电压都不发生光电效应.让学生考虑原因.结论一:入射光线的频率大于等于该金属的极限频率υ0才能产生光电效应.观察现象三:逐渐减小KA 间的正向电压,直到电压为零时,电流表仍有示数,说明光电流依然存在.如果在KA 间加一反向电压,则光电流变小,增大反向电压,使光电流刚好为零.提出问题:为什么KA 间没有电场,仍然有光电流?也就是说仍然有光电子从K 极板飞向A 极板呢?在KA 间加反向电压,光电子在电场中受力方向如何?电场力对光电子做正功还是负功?光电子克服电场力做功和它的动能变化关系如何呢?根据学生回答的问题引导分析:KA 间没有电场仍有光电流说明光线照射金属板逸出的光电子具有一定的动能,一部分光电子可以到达极板A 形成光电流.金属中的电子吸收光的能量获得动能,只有达到某一值 U c 时,光电流恰为0。
17.2光的粒子性导学案1(可编辑修改word版)
廊坊八中高二年级物理科导学案年月日教师姓名任课班级课题17.2 光的粒子性导学案类型预习案 1教学目标1、通过实验理解光电效应的实验规律2、光电效应现象的解释;爱因斯坦光电效应方程。
教学内容(含时间设计) 教师活动学生活动【学习目标】1.通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
【重点难点】重点:光电效应的实验规律自主学习难点:爱因斯坦光电效应方程以及意义【自主学习】30 一、光电效应分定义:在照射下从物体发射出的现象,发射出来的电子叫做.说明:(1)光电效应的实质是光现象转化为电现象。
(2)定义中的光包括可见光和不可见光。
二、光电效应的实验规律1、认识研究光电效应的电路图如右图,光线经窗口照在阴极K 上,便有逸出 --- 光电子。
光电子在电场作用下形成。
2、光电效应的实验规律(1)存在饱和电流在上图的实验中,保持光照的条件不变,在初始电流较小的情况下,随着所加电压的增大,光电流,但是存在一个,即:光电流达到此值以后,即使增加电压,光电流也不再增加。
(2)存在遏止电压在上图的实验中,即使电压为0,光电流也不为,只有将所加电压反向的时候组成的。
频率为ν的光的能量子为,这些能量子称为。
(h 为普朗克常量)2、爱因斯坦光电效应方程在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子,另一部分变为光电子逸出后的由能量守恒可得出:h=E +Wk 0W0为电子逸出金属表面所需做的功,称为逸出功W k为光电子的最大初动能。
爱因斯坦光电效应方程:3、爱因斯坦对光电效应的解释:①光强大,光子数多,释放的光电子也多,所以光电流也大。
②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。
③从方程可以看出光电子初动能和照射光的频率成线性关系④从光电效应方程中,当初动能为零时,可得截止频率:=Wc h五、光电效应理论的验证美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915 年证实了爱因斯坦光电效应方程,h 的值与理论值完全一致,又一次证明了“光量子”理论的正确。
17.2 光的粒子性(学案)
课题:17.2 光的粒子性课型:新课姓名:班级:学习目标:1、知道光电效应现象,了解光电效应的实验规律.2、理解爱因斯坦的光子说及对光电效应的解释,会用光电效应方程解决一些简单问题.3、了解康普顿效应及其意义.一、光电效应1.光电效应(1)定义:照射到金属表面的光,能使金属中的电子从表面逸出的现象,叫做光电效应.逸出的电子叫光电子.(2)实验规律①存在着饱和电流:在光的颜色不变的情况下,入射光越强,饱和电流越大.这表明对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多.②存在着遏止电压和截止频率:使光电流减小到0的反向电压U c称为遏止电压.光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应.③光电效应具有瞬时性:光电效应几乎是瞬时发生的,从光照射到金属到产生电流的时间不超过10-9 s.(3)逸出功:使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功.2.爱因斯坦的光电效应方程(1)光子说:光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子组成的,这些能量子被称为光子,频率为ν的光的能量子为hν.(2)爱因斯坦光电效应方程①表达式:hν=E k+W0或E k=hν-W0.②物理意义:金属中的电子吸收一个光子获得的能量是hν,这些能量一部分用于克服金属的逸出功W0,剩下的表现为逸出后电子的初动能E k.二、康普顿效应和光子的动量1.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变的现象.2.康普顿效应:康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应.3.康普顿效应的意义:深入地揭示了光的粒子性的一面,表明光子除了具有能量之外还具有动量.4.光子的动量:p =hλ,其中h 为普朗克常量,λ为光的波长.判一判(1)任何频率的光照射到金属表面都可以发生光电效应.( )(2)金属表面是否发生光电效应与入射光的强弱有关.( ) (3)入射光照射到金属表面上时,光电子几乎是瞬时发射的.( )想一想 康普顿效应说明了什么?为什么说康普顿效应反映了光子具有动量?提示:康普顿效应说明了光的粒子性.解释光子波长变化的问题时运用了能量守恒定律和动量守恒定律,理论与实验符合很好.知识点1:对光电效应现象的理解1.光子与光电子:光子指光在空间传播时的每一份能量,光子不带电,光电子是金属表面受到光照射时发射出来的电子,其本质是电子,光子是光电效应的因,光电子是果.2.光电子的初动能与光电子的最大初动能:光照射到金属表面时,光子的能量全部被电子吸收,电子吸收了光子的能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功,才具有最大初动能.光电子的初动能小于或等于光电子的最大初动能.3.光子的能量与入射光的强度:光子的能量即每个光子的能量,其值为ε=h ν(ν为光子的频率),其大小由光的频率决定.入射光的强度指单位时间内照射到金属表面单位面积上的总能量,入射光的强度等于单位时间内光子能量与单位面积上入射光子数的乘积.4.光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.例题1 (多选)(2017·衡水高二检测)对光电效应的理解正确的是( )A .金属钠的每个电子可以吸收一个或一个以上的光子,当它积累的动能足够大时,就能逸出金属B.如果入射光子的能量小于金属表面的电子克服原子核的引力而逸出时所需做的最小功,便不能发生光电效应C.发生光电效应时,入射光越强,光子的能量就越大,光电子的最大初动能就越大D.由于不同金属的逸出功是不相同的,因此使不同金属产生光电效应,入射光的最低频率也不同对光电效应现象的理解光电效应实验规律可理解记忆:“放(出光电子)不放,比频率;若能放,瞬时放;放多少(光电子),看光强;(光电子的)最大初动能,看(入射光的)频率.”.如图所示为一光电管电路,滑动变阻器滑动触头P位于AB上某点,用光照射光电管阴极,电表无偏转,要使电表指针偏转,可采取的措施有( )A.加大照射光强度B.换用波长短的光照射C.将P向B滑动D.将电源正负极对调知识点2:对光电效应方程的理解和应用1.对光电效应方程E k=hν-W0的理解(1)式中的E k是光电子的最大初动能,就某个光电子而言,其离开金属时剩余动能大小可以是0~E k范围内的任何数值.(2)光电效应方程实质上是能量守恒方程.①能量为ε=hν的光子被电子吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.②如果克服吸引力做功最少为W0,则电子离开金属表面时动能最大为E k,根据能量守恒定律可知:E k=hν-W0.(3)光电效应方程包含了产生光电效应的条件.若发生光电效应,则光电子的最大初动能必须大于零,即E k=hν-W0>0,亦即hν>W0,ν>Wh=νc,而νc=Wh恰好是光电效应的截止频率.2.光电效应规律中的两条线索、两个关系(1)两条线索(2)两个关系光强→光子数目多→发射光电子多→光电流大;光子频率高→光子能量大→产生光电子的最大初动能大.3.在理解光电效应方程的基础上,把其数学关系式与数学函数图象结合起来,经分析、推导得出图象的斜率及在图象横、纵坐标轴上的截距所对应的物理量,从而理解它们的物理意义,有效提高自身应用数学解决物理问题的能力.(1)最大初动能与入射光频率的关系该图象对应的函数式E k =h ν-W 0,图象与横轴的交点坐标为极限频率,图象是平行的是因为图线的斜率就是普朗克常量.(2)光电流与电压的关系图象从图象①③可看出同种光照射同种金属板对应的反向遏止电压相同.而饱和光电流强度随入射光强度增大而增大;从图象①②可知,对于同种金属,入射光的频率越高,反向遏止电压越大.(3)反向遏止电压与入射光频率的关系该图象的对应函数式为U c =h ν-W 0e,故从图象可以直接读出金属的极限频率,由极限频率可算出普朗克常量,由纵轴截距可推算出金属的逸出功.命题视角1 对光电效应方程的理解如图所示装置,阴极K 用极限波长为λ0=0.66 μm 的金属制成.若闭合开关S ,用波长为λ=0.50 μm 的绿光照射阴极,调整两个极板间的电压,使电流表的示数最大为0.64 μA .(1)求阴极每秒发射的光电子数和光电子飞出阴极时的最大初动能.(2)如果将照射阴极的绿光的光强增大为原来的2倍,求阴极每秒发射的光电子数和光电子飞出阴极时的最大初动能.命题视角2 光电效应中图象问题的求解(多选)在做光电效应的实验时,某金属被光照射发生了光电效应,实验测得光电子的最大初动能E k 与入射光的频率ν的关系如图所示,由实验图线可求出( )A .该金属的极限频率和极限波长B .普朗克常量C .该金属的逸出功D .单位时间内逸出的光电子数(1)逸出功和截止频率均由金属本身决定,与其他因素无关.(2)光电子的最大初动能随入射光频率的增大而增大,但不是正比关系.(3)分析、推导得出图象的斜率及在图象横、纵坐标轴上的截距所对应的物理量,从而理解它们的物理意义,有效提高自身应用数学解决物理问题的能力.3.(2015·高考全国卷Ⅰ)在某次光电效应实验中,得到的遏止电压U c与入射光的频率ν的关系如图所示.若该直线的斜率和截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________,所用材料的逸出功可表示为________.知识点3:对康普顿效应的理解1.假定光子与电子发生弹性碰撞,按照爱因斯坦的光子说,一个光子不仅具有能量E=hν,而且还有动量.如图所示.这个光子与静止的电子发生弹性斜碰,光子把部分能量转移给了电子,能量由hν减小为hν′,因此频率减小,波长增大.同时,光子还使电子获得一定的动量.这样就圆满地解释了康普顿效应.2.康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,则碰撞过程中( ) A.能量守恒,动量守恒,且λ=λ′B.能量不守恒,动量不守恒,且λ=λ′C.能量守恒,动量守恒,且λ<λ′D.能量守恒,动量守恒,且λ>λ′[思路点拨] 对康普顿现象的理解,可以类比实物粒子的弹性碰撞.光子不仅具有能量E=hν,而且还具有动量,光子与物质中的微粒碰撞时要遵守能量守恒定律和动量守恒定律.4.白天的天空各处都是亮的,是大气分子对太阳光散射的结果.美国物理学家康普顿由于在这方面的研究而荣获了1927年的诺贝尔物理学奖.假设一个运动的光子和一个静止的自由电子碰撞以后,电子向某一个方向运动,光子沿另一方向散射出去,则这个散射光子跟原来的光子相比( )A.频率变大B.速度变小 C.光子能量变大 D.波长变长巩固训练1.利用光电管研究光电效应实验如图所示,用频率为ν的可见光照射阴极K,电流表中有电流通过,则 ( )A.用紫外线照射,电流表一定有电流通过B.用红光照射,电流表一定无电流通过 C.用红外线照射,电流表一定无电流通过D.用频率为ν的可见光照射K,当滑动变阻器的滑动触头移到A端时,电流表中一定无电流通过2.(多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是( )A .保持入射光的频率不变,入射光的光强变大,饱和光电流变大B .入射光的频率变高,饱和光电流变大C .入射光的频率变高,光电子的最大初动能变大D .保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生3.以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实.光电效应实验装置示意如图1719所示.用频率为ν的普通光源照射阴极K ,没有发生光电效应.换用同样频率ν的强激光照射阴极K ,则发生了光电效应;此时,若加上反向电压U ,即将阴极K 接电源正极,阳极A 接电源负极,在K 、A 之间就形成了使光电子减速的电场.逐渐增大U ,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U 可能是(其中W 为逸出功,h 为普朗克常量,e 为电子电荷量)( )A .U =h νe -W eB .U =2h νe -W e C .U =2h ν-W D .U =5h ν2e -W e4.小明用金属铷为阴极的光电管,观测光电效应现象,实验装置示意如图甲所示.已知普朗克常量h =6.63×10-34 J·s.(1)图甲中电极A 为光电管的________(填“阴极”或“阳极”);(2)实验中测得铷的遏止电压U c 与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc =________Hz ,逸出功W 0=________J ;(3)如果实验中入射光的频率ν=7.00×1014Hz ,则产生的光电子的最大初动能E k =________J.5.若一个光子的能量等于一个电子的静止能量,已知静止电子的能量为m 0c 2,其中m 0为电子质量,c 为光速,试问该光子的动量和波长是多少?(电子的质量取9.11×10-31 kg ,普朗克常量h =6.63×10-34 J·s)。
17-2光的粒子性导学案
§17.2 光的粒子性学习目标:1、通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量。
学习重难点:光电效应的实验规律、爱因斯坦光电效应方程以及意义课前预习案:请你阅读教材,回答问题:一、光电效应的实验规律1、什么是光电效应?什么叫光电子?什么是光电流?2.光电效应的实验规律①存在着电流。
在一定的光照条件下,随着所加电压的增大,光电流趋于一个饱和值,入射光越强,饱和电流越大,即,单位时间内发射的光电子数目越多;②存在着电压和频率。
只有施加反向电压且达到某一值时才会使光电流为零,这一电压称为遏止电压,遏止电压的存在说明光电子具有一定的。
光电子的能量只与入射光的有关,而与入射光的无关.刚好不能发生光电效应时,入射光的频率称为频率;③光电效应具有。
3.用光的电磁理论解释光电效应遇到了那些问题?二.爱因斯坦的光电效应方程1.光子说:光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子组成的,这些能量子被称为,频率为v的光的能量子为 .2.光电效应方程①表达式.②物理意义:金属中电子吸收一个光子获得的能量是,这些能量一部分用于克服金属的逸出功,剩下的表现为逸出后电子的最大初动能。
3.爱因斯坦的光电效应方程是如何解释光电效应的实验规律的?三.康普顿效应①光的散射:光在介质中与物质微粒的相互作用,使光的传播方向的现象。
②康普顿效应:在光的散射中,除了与入射波长λ0的成分外,还有波长大于λ0的成分,这个现象称为。
康普顿的学生,中国留学生测试了多种物质对X射线的散射,证实了康普顿效应的普遍性。
③康普顿效应的意义:康普顿效应表明光子除了具有之外,还具有,深入揭示了光的性的一面.④光子的动量:.课堂探究案探究一:学习光电效应及其实验规律,感受以实验为基础的科学研究方法;1.请你观察演示实验(课本P30):用紫外线灯照射擦得很亮的锌板。
高中物理 17.2 光的粒子性教案 新人教版理选修3-5(2021年整理)
江苏省铜山县高中物理17.2 光的粒子性教案新人教版理选修3-5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省铜山县高中物理17.2 光的粒子性教案新人教版理选修3-5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省铜山县高中物理17.2 光的粒子性教案新人教版理选修3-5的全部内容。
光的粒子性★新课标要求(一)知识与技能1.通过实验了解光电效应的实验规律.2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量(二)过程与方法经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
(三)情感、态度与价值观领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦.★教学重点光电效应的实验规律★教学难点爱因斯坦光电效应方程以及意义★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排 2 课时★教学过程(一)引入新课提问:回顾前面的学习,总结人类对光的本性的认识的发展过程?(多媒体投影,见课件。
)学生回顾、思考,并回答。
教师倾听、点评。
光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。
19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。
然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象—-光电效应现象。
对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
(二)进行新课1.光电效应教师:实验演示。
02第17.2节《光的粒子性》导学案教师版1
高二物理XX3-5-17-02第十七章第 2 节《光的粒子性》导教学设计编写人:刘玉平审察人:高二物理组编写时间: 2017-3-10班级:组别:组名:姓名:完成更正等级等级【学习目标】1、经过实验认识光电效应的实验规律。
2、知道爱因斯坦光电效应方程以及意义。
3、认识康普顿效应,认识光子的动量。
【学法指导】研究法、解析法、归纳法。
【知识链接】1、能量子的看法;2、能量量子化的思想【学习过程】知识点一、光电效应现象1.光电效应:照射到金属表面的光,能使金属中的电子从表面逸出的现象. [ 问题 1] 以下列图,取一块锌板,用砂纸将其一面擦一遍,去掉表面的氧化层,连接在验电器上 ( 弧光灯发射紫外线 ) .(1)用弧光灯照射锌板,看到的现象为__________________,说明 ______________________________________________________.(2)在弧光灯和锌板之间插入一块一般玻璃板,再用弧光灯照射,看到的现象为________________________________________________________________________ ,说明 _____________________________________________________________________.(3)撤去弧光灯,换用白炽灯发出的强光照射锌板,并且照射较长时间,看到的现象为________________________________________________________________________ ,说明 ________________________________________________________________________ .答案: (1) 验电器偏角张开锌板带电了.弧光灯发出的紫外线照射到锌板上,在锌板表面发射出光电子,从而使锌板带上了正电(2)指针偏角明显减小锌板产生光电效应是光中紫外线照射的结果而不是可见光(3)观察不到指针的偏转可见光不能够使锌板发生光电效应2.光电效应中的光包括不能见光和可见光.3.光电子:光电效应中发射出来的光电子,其实质还是电子.光子指光在空间流传时的每一份能量,光子不带电;光子是光电效应的因,光电子是果.知识点二、光电效应的实验规律1.光电效应的四点规律(1)存在着遏止电压和截止频率:入射光的频率低于截止频率时不能够( 填“能”或“不能够” ) 发生光电效应.2遏止电压U C的存在意味着光电子拥有必然的初速度, U C与光电子最大动能的关系为 m e v e /2=eU C。
人教版高中物理教案-光的粒子性
第十七章波粒二象性新課標要求1.內容標準(1)瞭解微觀世界中的量子化現象。
比較宏觀物體和微觀粒子的能量變化特點。
體會量子論的建立深化了人們對於物質世界的認識。
(2)通過實驗瞭解光電效應。
知道愛因斯坦光電效應方程以及意義。
(3)瞭解康普頓效應。
(4)根據實驗說明光的波粒二象性。
知道光是一種概率波。
(5)知道實物粒子具有波動性。
知道電子雲。
初步瞭解不確定性關係。
(6)通過典型事例瞭解人類直接經驗的局限性。
體會人類對世界的探究是不斷深入的。
例1 通過電子衍射實驗,初步瞭解微觀粒子的波粒二象性,體會人類對於物質世界認識的不斷深入。
2.活動建議閱讀有關微觀世界的科普讀物,寫出讀書體會。
新課程學習17.2 科學的轉折:光的粒子性★新課標要求(一)知識與技能1.通過實驗瞭解光電效應的實驗規律。
2.知道愛因斯坦光電效應方程以及意義。
3.瞭解康普頓效應,瞭解光子的動量(二)過程與方法經歷科學探究過程,認識科學探究的意義,嘗試應用科學探究的方法研究物理問題,驗證物理規律。
(三)情感、態度與價值觀領略自然界的奇妙與和諧,發展對科學的好奇心與求知欲,樂於探究自然界的奧秘,能體驗探索自然規律的艱辛與喜悅。
★教學重點光電效應的實驗規律★教學難點愛因斯坦光電效應方程以及意義★教學方法教師啟發、引導,學生討論、交流。
★教學用具:投影片,多媒體輔助教學設備★課時安排2 課時★教學過程(一)引入新課提問:回顧前面的學習,總結人類對光的本性的認識的發展過程?(多媒體投影,見課件。
)學生回顧、思考,並回答。
教師傾聽、點評。
光的干涉、衍射現象說明光是電磁波,光的偏振現象進一步說明光還是橫波。
19世紀60年代,麥克斯韋又從理論上確定了光的電磁波本質。
然而,出人意料的是,正當人們以為光的波動理論似乎非常完美的時候,又發現了用波動說無法解釋的新現象——光電效應現象。
對這一現象及其他相關問題的研究,使得人們對光的又一本質性認識得到了發展。
(二)進行新課1.光電效應教師:實驗演示。
新课标人教版3-5选修三17.2《光的粒子性》优秀教案2(重点资料).doc
普通高中课程标准实验教科书—物理(选修3-5)[人教版]第十七章波粒二象性新课标要求1.内容标准(1)了解微观世界中的量子化现象。
比较宏观物体和微观粒子的能量变化特点。
体会量子论的建立深化了人们对于物质世界的认识。
(2)通过实验了解光电效应。
知道爱因斯坦光电效应方程以及意义。
(3)了解康普顿效应。
(4)根据实验说明光的波粒二象性。
知道光是一种概率波。
(5)知道实物粒子具有波动性。
知道电子云。
初步了解不确定性关系。
(6)通过典型事例了解人类直接经验的局限性。
体会人类对世界的探究是不断深入的。
例1 通过电子衍射实验,初步了解微观粒子的波粒二象性,体会人类对于物质世界认识的不断深入。
2.活动建议阅读有关微观世界的科普读物,写出读书体会。
新课程学习17.2 科学的转折:光的粒子性★新课标要求(一)知识与技能1.通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量(二)过程与方法经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
(三)情感、态度与价值观领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
★教学重点光电效应的实验规律★教学难点爱因斯坦光电效应方程以及意义★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排2 课时★教学过程(一)引入新课提问:回顾前面的学习,总结人类对光的本性的认识的发展过程?(多媒体投影,见课件。
)学生回顾、思考,并回答。
教师倾听、点评。
光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。
19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。
然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。
对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
17.2《科学的转折:光的粒子性》学案全集1(人教版选修3-5)
17.2科学的转折:光的粒子性【学习目标】1、知识与技能(1)通过实验了解光电效应的实验规律。
(2)知道爱因斯坦光电效应方程以及意义。
(3)了解康普顿效应,了解光子的动量2、过程与方法:经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
3、情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
【自主学习】想一想:在光的照射下,从金属表面逸出电子的现象叫做光电效应,逸出的电子叫做光电子。
点一点:在实验中发现:①光电流的大小是由入射光的强度决定的,入射光越强,单位时间内发射的光电子数越多;②若将实验电路的电源反接,能使光电流减小到零的电压U c 称为遏止电压,由于不同颜色光的能量不同,故与不同颜色光对应的遏止电压也就不同,当入射光的频率减小到某一数值截止频率c ν时,与之对应的U c也减小到零,此时光电流也为零,由此可知:光电子的能量与入射光的频率有关,而与入射光的强度无关,只有入射光的频率大于或等于截止频率时才能发生光电效应;③光电效应具有瞬时性。
填一填:爱因斯坦认为光本身由一个个不可分割的能量子组成的,频率为ν的光子的能量为h ν,则爱因斯坦光电效应方程为k o h E W ν=+,其中o W 为逸出功,即使电子脱离某种金属所做功的最小值。
填一填:密立根通过精湛的技术证明了光子与其他粒子一样具有能量,故光电效应证明了光的粒子性。
点一点:在光的散射中产生了大于原波长的光的现象称为康普顿效应,由2mc h ν=得光子的质量m=2h c ν,而它的动量p=h λ,则光子在碰撞后动量要变小,故光子的波长会大,这就不足为奇了。
【典例剖析】[例题1] 一束绿光照射某金属发生了光电效应,则下列说法正确的是( )A .若增加绿光的照射强度,则单位时间内逸出的光电子数目不变B .若增加绿光的照射强度,则逸出的光电子将具有更大的动能C .若改用紫光照射,则逸出的光电子将具有更大的动能D .若改用紫光照射,则单位时间内逸出的光电子数目增加[例题2] 某光电管的阴极是用金属钾制成的,它的逸出功为2 .21eV ,用波长为2.5×10—7m的紫外线照射阴极.已知真空中光速为3.0×108m /s ,元电荷为1.6×10—19C ,普朗克常量为 6.63×10—34J ·s .求得钾的遏止频率和该光电管发射的光电子的最大初动能应分别是( )A.5.3×1034Hz,2.2 JB.5.3×1014Hz,4.4×10—19JC.3.3×1033Hz,2.2JD.3.3×1033Hz,4.4×10—19J[例题3]研究光电效应规律的实验装置如图所示,以频率为ν的光照射光电管阴极K时,有光电子产生,由于光电管K、A间加的是反向电压,光电子从阴极K发射后将向阳极A 做减速运动.光电流i由图中电流计G测出,反向电压U由电压表○V测出.当电流计的示数恰好为零时,电压表的示数称为反向遏止电压U0.在图中表示光电效应实验规律的图象中,错误的是( )【课堂训练】1、光照射到金属表面上,能使金属中的_________从表面逸出,这种现象称之为______________,逸出的电子也叫____________,使电子脱离金属表面所做的功的最小值叫____________,这种现象说明光具有____________性。
人教版选修3-5 17.1能量量子化17.2光的粒子性 学案
1 能量量子化2 光的粒子性[学习目标] 1.了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射.(重点)2.了解黑体辐射的实验规律,了解黑体辐射的强度与波长的关系.(重点)3.知道光电效应中极限频率的概念及其与光的电磁理论的矛盾.4.知道光子说及其对光电效应的解释.(重点)5.掌握爱因斯坦光电效应方程并会用它来解决简单问题.(难点)一、能量量子化1.黑体与黑体辐射(1)热辐射我们周围的一切物体都在辐射电磁波.这种辐射与物体的温度有关,所以叫做热辐射.物体热辐射中随温度的升高,辐射的较短波长的电磁波的成分越来越强.(2)黑体某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.(3)黑体辐射的实验规律①一般材料的物体,辐射电磁波的情况,除与温度有关外,还与材料的种类及表面状况有关.②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.随着温度的升高,一方面,各种波长的辐射强度都有增加;另一方面,辐射强度的极大值向波长较短的方向移动.(4)维恩和瑞利的理论解释①建立理论的基础:依据热学和电磁学的知识寻求黑体辐射的理论解释.②维恩公式:在短波区与实验非常接近,在长波区则与实验偏离很大.③瑞利公式:在长波区与实验基本一致,但在短波区与实验严重不符,由理论得出的荒谬结果被称为“紫外灾难”.2.能量子(1)普朗克的假设振动着的带电微粒能量只能是某一最小能量值ε的整数倍.即能的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.(2)能量子公式ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=6.626×10-34 J·s.(一般取h=6.63×10-34J·s)(3)能量的量子化在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.这种现象叫能量的量子化.(4)普朗克理论①借助于能量子的假说,普朗克得出了黑体辐射的强度按波长分布的公式,与实验符合之好令人击掌叫绝.②普朗克在1900年把能量子列入物理学,正确地破除了“能量连续变化”的传统观念,成为新物理学思想的基石之一.二、光电效应现象和规律1.光电效应定义照射到金属表面的光,能使金属中的电子从表面逸出的现象.2.光电子光电效应中发射出来的电子.3.光电效应的实验规律(1)存在着饱和电流.入射光强度一定,单位时间内阴极K发射的光电子数一定.入射光越强,饱和电流越大.表明入射光越强,单位时间内发射的光电子数越多.(2)存在着遏止电压和截止频率.遏止电压的存在意味着光电子具有一定的初速度.对于一定颜色(频率)的光,无论光的强弱如何,遏止电压都是一样的,即光电子的能量只与入射光的频率有关.当入射光的频率低于截止频率时,不论光多么强,光电效应都不会发生.(3)光电效应具有瞬时性.光电效应几乎是瞬时的,无论入射光怎么微弱,时间都不超过10-9 s.4.逸出功使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功,用W0表示,不同金属的逸出功不同.三、爱因斯坦的光子说及光电效应方程1.光子说(1)内容光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν,这些能量子称为光子.(2)光子能量公式为ε=hν,其中ν指光的频率.2.光电效应方程(1)对光电效应的说明在光电效应中,金属中的电子吸收一个光子获得的能量是hν,其中一部分用来克服金属的逸出功W0,另一部分为光电子的初动能E k.(2)光电效应方程E k=hν-W0.3.对光电效应规律的解释(1)光电子的最大初动能与入射光频率有关,与光的强弱无关.只有当hν>W0时,才有光电子逸出.(2)电子一次性吸收光子的全部能量,不需要积累能量的时间.(3)对于同种颜色的光,光较强时,包含的光子数较多,照射金属时产生的光电子较多,因而饱和电流较大.1.思考判断(正确的打“√”,错误的打“×”)(1)温度越高,黑体辐射电磁波的强度越大.(√)(2)能量子的能量不是任意的,其大小与电磁波的频率成正比.(√)(3)金属表面是否发生光电效应与入射光的强弱有关.(×)(4)在发生光电效应的条件下,入射光强度越大,饱和光电流越大.(√)(5)不同的金属逸出功不同,因此金属对应的截止频率也不同.(√)(6)入射光若能使某金属发生光电效应,则入射光的强度越大,照射出的光电子越多.(√)2.(多选)下列叙述正确的是()A.一切物体都在辐射电磁波B.一般物体辐射电磁波的情况只与温度有关C.一般物体辐射电磁波的情况只与材料有关D.黑体辐射电磁波的强度按波长的分布只与黑体温度有关[解析]根据热辐射定义知A对;根据热辐射和黑体辐射的特点知一般物体辐射电磁波的情况除与温度有关外,还与材料种类和表面状况有关,而黑体辐射电磁波的强度按波长的分布只与黑体温度有关,B、C错、D对.[答案]AD3.(多选)对光电效应的解释正确的是()A.金属内的每个电子可以吸收一个或一个以上的光子,它积累的动能足够大时,就能逸出金属B.如果入射光子的能量小于金属表面的电子克服引力要做的最小功,光电子便不能逸出来,即光电效应便不能发生了C.发生光电效应时,入射光越强,光子的能量就越大,发射的光电子的最大初动能就越大D.由于不同的金属逸出功是不相同的,因此使不同金属产生光电效应的入射光的最低频率也不相同[解析]实验证明,不论入射光的强度多大,只要入射光的频率小于金属的极限频率,就不会发生光电效应,而光电子的最大初动能与入射光频率和金属材料有关,材料不同,逸出功不同,由爱因斯坦光电效应方程hν=W+12m v2m可知,光电子的最大初动能也就不同.当v m=0时,ν0=Wh,W不同则ν0不同.最大初动能与光强无关.[答案]BD1(1)温度一定时,黑体辐射强度随波长的分布有一个极大值.(2)随着温度的升高①各种波长的辐射强度都有增加;②辐射强度的极大值向波长较短的方向移动.[特别提醒]①热辐射不一定要高温,任何温度的物体都发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强;②黑体是一个理想化的物理模型,实际不存在;③黑体看上去不一定是黑的,有些可看作黑体的物体由于自身有较强的辐射,看起来还会很明亮.3.能量子的有关问题(1)对能量子的理解:物体热辐射所发出的电磁波是通过内部的带电谐振子向外辐射的,谐振子的能量是不连续的,只能是hν的整数倍.(2)能量子假说的意义:解决了“紫外灾难”的问题,破除了“能量连续变化”的传统观念.【例1】(多选)黑体辐射的实验规律如图所示,由图可知()A.随温度升高,各种波长的辐射强度都增加B.随温度降低,各种波长的辐射强度都增加C.随温度升高,辐射强度的极大值向波长较短的方向移动D.随温度降低,辐射强度的极大值向波长较长的方向移动[解析]由图可知,随温度升高,各种波长的辐射强度都增加,且辐射强度的极大值向波长较短的方向移动,当温度降低时,上述变化都将反过来,故A、C、D正确,B错误.[答案]ACD1.(多选)关于对热辐射的认识,下列说法正确的是()A.温度越高,物体辐射的电磁波越强B.冷的物体只吸收电磁波C.辐射强度按波长的分布情况只与物体的温度有关,与材料的种类及表面状况无关D.常温下看到的不透明、非发光物体的颜色是反射光的颜色[解析]一切物体都在不停地向外辐射电磁波,且温度越高,辐射的电磁波越强,A正确,B错误;选项C是黑体辐射的特性,C错误;常温下看到的不透明、非发光物体的颜色是反射光的颜色,D正确.[答案]AD1(1)光子与光电子光子指光在空间传播时的每一份能量,光子不带电,光电子是金属表面受到光照射时发射出来的电子,其本质是电子,光子是光电效应的因,光电子是果.(2)光电子的动能与光电子的最大初动能光照射到金属表面时,光子的能量全部被电子吸收,电子吸收了光子的能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功,才具有最大初动能.光电子的初动能小于或等于光电子的最大初动能.(3)光子的能量与入射光的强度光子的能量即每个光子的能量,其值为ε=hν(ν为光子的频率),其大小由光的频率决定.入射光的强度指单位时间内照射到金属表面单位面积上的总能量,入射光的强度等于单位时间内光子能量与入射光子数的乘积.(4)光电流与饱和光电流金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.(5)光的强度与饱和光电流饱和光电流与入射光强度成正比的规律是对频率相同的光照射金属产生光电效应而言的,对于不同频率的光,由于每个光子的能量不同,饱和光电流与入射光强度之间没有简单的正比关系.2.光电效应与经典电磁理论的矛盾(1)矛盾之一:遏止电压由入射光频率决定,与光的强弱无关按照光的经典电磁理论,光越强,光电子的初动能应该越大,所以遏止电压应与光的强弱有关,而实验表明:遏止电压由入射光的频率决定,与光强无关.(2)矛盾之二:存在截止频率按照光的经典电磁理论,不管光的频率如何,只要光足够强,电子都可获得足够的能量从而逸出表面,不应存在截止频率.而实验表明:不同金属有不同的截止频率,入射光频率大于截止频率时才会发生光电效应.(3)矛盾之三:具有瞬时性按照光的经典电磁理论,如果光很弱,电子需几分钟到十几分钟的时间才能获得逸出表面所需的能量.而实验表明:无论入射光怎样微弱,光电效应几乎是瞬时的.【例2】利用光电管研究光电效应实验如图所示,用频率为ν的可见光照射阴极K,电流表中有电流通过,则()A.用紫外线照射,电流表一定有电流通过B.用红光照射,电流表一定无电流通过C.用红外线照射,电流表一定无电流通过D.用频率为ν的可见光照射K,当滑动变阻器的滑动触头移到A端时,电流表中一定无电流通过[解析]因紫外线的频率比可见光的频率高,所以用紫外线照射时,电流表中一定有电流通过,选项A正确.因不知阴极K的截止频率,所以用红光或红外线照射时,也可能发生光电效应,所以选项B、C错误.即使U AK=0,电流表中也可能有电流通过,所以选项D错误.[答案] A在例题2中,若将电路中的电源正负极对调,其他条件不变.则电路中是否还有电流?若将滑动触头左右移动?电流表示数如何变化?【提示】电路中不一定有电流.若将触头向A端移动,则电流可能逐渐增大,向B端移动电流可能逐渐减小.关于光电效应的两点提醒(1)发生光电效应时需满足:照射光的频率大于金属的极限频率,即ν>νc,或光子的能量ε>W0.(2)光电子的最大初动能只与照射光的频率及金属的逸出功有关,而与照射光的强弱无关,强度大小决定了逸出光电子的数目多少.2.(多选)对光电效应的理解正确的是()A.金属钠的每个电子可以吸收一个或一个以上的光子,当它积累的动能足够大时,就能逸出金属B.在光电效应中,一个电子只能吸收一个光子C.如果入射光子的能量小于金属表面的电子克服原子核的引力而逸出时所需做的最小功,便不能发生光电效应D.发生光电效应时,入射光越强,光子的能量就越大,光电子的最大初动能就越大[解析]按照爱因斯坦的光子说,光子的能量由光的频率决定,与光强无关,入射光的频率越大,发生光电效应时产生的光电子的最大初动能越大;但要使电子离开金属,电子必须具有足够的动能,而电子增加的动能只能来源于照射光的光子能量,且一个电子只能吸收一个光子,不能同时吸收多个光子,所以光子的能量小于某一数值时便不能产生光电效应现象;电子从金属逸出时只有从金属表面向外逸出的电子克服原子核的引力所做的功最小.综上所述,选项B、C正确.[答案]BC1k0(1)式中的E k是光电子的最大初动能,就某个光电子而言,其离开金属时剩余动能大小可以是0~E k范围内的任何数值.(2)光电效应方程实质上是能量守恒方程:能量为E=hν的光子被电子所吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.如果克服吸引力做功最少为W0,则电子离开金属表面时动能最大为E k,根据能量守恒定律可知:E k=hν-W0.(3)光电效应方程包含了产生光电效应的条件:若发生光电效应,则光电子的最大初动能必须大于零,即E k=hν-W0>0,亦即hν>W0,ν>W0h=νc,而νc=W0h恰好是光电效应的截止频率.(4)E km-ν图线:如图所示是光电子最大初动能E km随入射光频率ν的变化图线.这里,横轴上的截距是截止频率或极限频率;纵轴上的截距是逸出功的负值;斜率为普朗克常量.2.光电效应规律中的两条线索、两个关系(1)两条线索:(2)两个关系:光强→光子数目多→发射光电子多→光电流大;光子频率高→光子能量大→产生光电子的最大初动能大.【例3】在研究光电效应现象时,先后用两种不同色光照射同一光电管,所得的光电流I与光电管两端所加电压U间的关系曲线如图所示,下列说法正确的是()A.色光乙的频率小、光强大B.色光乙的频率大、光强大C.若色光乙的强度减为原来的一半,无论电压多大,色光乙产生的光电流一定比色光甲产生的光电流小D.若另一光电管所加的正向电压不变,色光甲能产生光电流,则色光乙一定能产生光电流[解析]由题中图象可得用色光乙照射光电管时遏止电压大,使其逸出的光电子最大初动能大,所以色光乙的频率大,光子的能量大.由题中图象可知,色光甲的饱和光电流大于色光乙的饱和光电流,故色光甲的光强大于色光乙的光强,AB错误;如果使色光乙的强度减半,则只是色光乙的饱和光电流减半,在特定的电压下,色光乙产生的光电流不一定比色光甲产生的光电流小,C错误;因色光乙的频率大于色光甲的,故另一个光电管加一定的正向电压,如果色光甲能使该光电管产生光电流,则色光乙一定能使该光电管产生光电流,D正确.[答案] D3.(多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是()A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,饱和光电流变大C.入射光的频率变高,光电子的最大初动能变大D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生[解析]产生光电效应时,光的强度越大,单位时间内逸出的光电子数越多,饱和光电流越大,说法A正确.饱和光电流大小与入射光的频率无关,说法B 错误.光电子的最大初动能随入射光频率的增加而增加,与入射光的强度无关,说法C正确.减小入射光的频率,如低于极限频率,则不能发生光电效应,没有光电流产生,说法D错误.[答案]AC4.爱因斯坦因提出了光量子概念并成功地解释了光电效应的规律而获得1921年诺贝尔物理学奖.某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图所示,其中ν0为极限频率.从图中可以确定的是()A.逸出功与ν有关B.E km与入射光强度成正比C.当ν<ν0时,会逸出光电子D.图中直线的斜率与普朗克常量有关[解析]金属的逸出功只和金属的极限频率有关,与入射光的频率无关,A 错误;最大初动能取决于入射光的频率,而与入射光的强度无关,B错误;只有ν>ν0时才会发生光电效应,C错误;由爱因斯坦光电效应方程E k=hν-W0和W0=hν0(W0为金属的逸出功)可得,E k=hν-hν0,可见图象的斜率表示普朗克常量,D正确.[答案] D1.关于黑体及黑体辐射,下列说法正确的是()A.黑体是真实存在的B.普朗克引入能量子的概念,得出黑体辐射的强度按波长分布的公式,与实验符合得非常好,并由此开创了物理学的新纪元C.随着温度升高黑体辐射的各波长的强度有些会增强,有些会减弱D.黑体辐射无任何实验依据[解析]黑体并不是真实存在的,A错误;普朗克引入能量子的概念,得出黑体辐射的强度按波长分布的公式,与实验符合得非常好,并由此开创了物理学的新纪元,故B正确;随着温度的升高,各种波长的辐射强度都有增加,故C错误;黑体辐射是有实验依据的,故D错误.[答案] B2.(多选)光电效应实验的装置如图所示,则下列说法正确的是()A.用紫外线照射锌板,验电器指针会发生偏转B.用红色光照射锌板,验电器指针会发生偏转C.锌板带的是负电荷D.使验电器指针发生偏转的是正电荷[解析]锌板连接验电器,在紫外光的照射下,锌板中有一部分自由电子从表面飞出来,锌板中缺少电子,于是带正电,则验电器也带正电并且指针发生偏转,故AD正确,C错误;红光不能使锌板发生光电效应,B错误.[答案]AD3.入射光照射到某金属表面上发生光电效应,若入射光的强度减小,而频率保持不变,那么()A.从光照到金属表面上到发射出光电子之间的时间间隔将明显增加B.逸出的光电子的最大初动能将减小C.单位时间内从金属表面逸出的光电子数将减少D.有可能不发生光电效应[解析]发生光电效应几乎是瞬间的,所以A错误;入射光的频率不变,则逸出的光电子的最大初动能也就不变,B错误;入射光强度减弱,说明单位时间内入射光子数减少,则单位时间内从金属表面逸出的光电子数也减少,C正确;入射光照射到某金属上发生光电效应,说明入射光频率大于这种金属的极限频率,即使入射光的强度减小,也一定能发生光电效应,D错误.[答案] C4.如图所示为一真空光电管的应用电路,关于电路中光电流的饱和值,下列说法正确的是()A.发生光电效应时,电路中光电流的饱和值取决于入射光的频率B.发生光电效应时,电路中光电流的饱和值取决于入射光的强度C.发生光电效应时,电路中光电流的饱和值取决于光电管所加的正向电压的大小D.发生光电效应时,电路中光电流的饱和值取决于入射光的光照时间[解析]在光电管中若发生了光电效应,单位时间内发射光电子的数目只与入射光的强度有关,光电流的饱和值只与单位时间内发射光电子的数目有关,故B正确,ACD错误.[答案] B。
教学案(35)
高二物理导学案(35)17.2 光的粒子性编写:杜建平审阅:顾正山姓名:________ 【学习目标】1.通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量【重点难点】1.光电效应的实验规律2.爱因斯坦光电效应方程以及意义【课前导学】一、预习:1.光电效应:⑴在光(包括不可见光)的照射下,的现象叫做光电效应。
⑵发射出来的电子叫做。
2.光电效应的实验规律:⑴任何一种金属都有发生光电效应的,入射光的频率必须这个频率才能产生光电效应。
⑵光电子的最大初动能与入射光的强度,随而增大。
⑶光电效应的产生,一般不超过10-9s。
⑷当入射光的频率大于,光电流强度与成正比。
3.光电效应方程:⑴光子说:在空间传播的光不是,而是一份一份的,每一份称为,光子的能量与成正比,即E= 。
⑵光电效应方程:。
二、预习中的问题:三、典型例题:【例1】对于任何一种金属,必须满足下列哪种条件,才能发生光电效应( )A.入射光的强度大于某一极限强度B.入射光的波长大于某一极限波长C.入射光照射时间大于某一极限时间D.入射光的频率大于某一极限频率【例2】关于光电效应,下列几种叙述正确的是( )A.金属电子的逸出功与入射光的频率成正比B.光电流的强度与入射光的强度无关C.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大D.对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应【例3】关于光子说的基本内容有以下几点,正确的是( )A.在空间传播的光是不连续的,而是一份一份的,每一份叫一个光子B.光是具有质量、能量和体积的物质微粒子C.光子的能量跟它的频率成正比D.光子客观并不存在,而是人为假设的【例3】在做光电效应实验中,某金属被光照射发生了光电效应,实验测出了光电子的最大初动能E K与入射光的频率 的关系如图所示,由实验图像可求出( )A.该金属的逸出功B.该金属的极限频率C.单位时间内逸出的光电子数D.普朗克恒量【例4】如图是研究光电效应的实验电路.现用等离子态的氢气(电离态)跃迁时所发出的光照射光电管的阴极K,测得微安表的示数是40 μA,电压表的示数是20V.已知光电管阴极材料的逸出功是3.6eV.求:(1) 氢气发光的最短波长;(2) 光电管阴极材料的极限波长;(3) 光电子到达阳极A的最大动能.高二物理同步作业(35)姓名:________1.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器指针张开一个角度,如图所示,这时( )A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带正电D.锌板带负电,指针带负电2.钠在紫光照射下,产生光电效应并形成光电流,若减小紫光的强度,则随之减小的物理量是()A.光电流强度B.光电子的最大初动能C.紫光光子的能量D.钠的极限频率3.某种金属材料在绿光照射下恰能产生光电效应,则下列说法中错误的是()A.改用黄光照射,不能产生光电效应B.增加绿光强度,光电子最大初动能增加C.减弱绿光强度,光电管中的光电流减小D.改用紫光照射,光电子最大初动能增加4.关于光子说的基本内容有以下几点,正确的是( )A.在空间传播的光是不连续的,而是一份一份的,每一份叫一个光子B.光是具有质量、能量和体积的物质微粒子C.光子的能量跟它的频率成正比D.光子客观并不存在,而是人为假设的5.对光电效应的解释,正确的是()A.金属内的每个电子可以吸收一个或一个以上的光子,当它积累的能量足够大时,就能逸出金属B.如果入射光子的能量小于金属表面的电子克服原子核的引力逸出时需要做的最小功,光电效应便不能发生了C.发生光电效应时,入射光越强,光子的能量就越大,光电子的最大初动能就越大D.由于不同金属的逸出功不相同,因此使不同金属产生光电效应的入射光的最低频率也不相同6.用波长为λ1和λ2的单色光1和2分别照射金属1和2的表面.色光1照射金属1和2的表面时都有电子射出,色光2照射金属1时有电子射出,照射金属2时没有电子射出.设金属1和2的逸出功分别为W1和W2,则有()A.λ1>λ2,W1> W2 B.λ1>λ2,W1< W2C.λ1<λ2,W1> W2 D.λ1<λ2,W1< W27.用如图所示的装置研究光电效应现象, 当用光子能量为2.5eV的光照射到光电管上时, 电流表G的读数为0.2mA. 移动变阻器的触点c,当电压表的示数大于或等于0.7V时,电流表读数为0. 则()A.光电管阴极的逸出功为1.8eVB.电键k断开后, 有电流流过电流表GC.光电子的最大初动能为0.7eVD.改用能量为1.5eV的光子照射,电流表G也有电流,但电流较小8.用某一频率的绿光照射某金属时恰好能产生光电效应,则改用强度相同的蓝光和紫光分别照射该金属,下列说法正确的是( ) A.用蓝光照射时,光电子的最大初动能比用紫光照射时小B.用蓝光和紫光照射时,在相同时间内逸出的电子数相同C.用蓝光照射时,在同样时间内逸出的电子数目较多D.用紫光照射时,在同样时间内逸出的电子数目较多9.使电子脱离铯金属所需的功eVW,在下列各图中,能正确地表示放出的电子的9.1动能E与入射光的能量hv的关系的是()k10.某种金属的逸出功是1.25eV,为了使它发生光电效应,照射光的频率至少应为多少?或用可见光照射它,能否发生光电效应?(可见光波长为400nm—700nm)。
高中物理17.2 光的粒子性导学案 新人教版选修
高中物理17.2 光的粒子性导学案新人教版选修17、2 光的粒子性导学案新人教版选修3-5【学习目标】1、通过实验了解光电效应的实验规律。
2、知道爱因斯坦光电效应方程以及意义。
3、了解康普顿效应,了解光子的动量【重点、难点】重点:光电效应的实验规律难点:爱因斯坦光电效应方程以及意义【自主学习】一、光电效应定义:在照射下从物体发射出的现象,发射出来的电子叫做、二、光电效应的实验规律1、认识研究光电效应的电路图如右图,光线经窗口照在阴极K上,便有逸出光电子。
光电子在电场作用下形成。
2、光电效应的实验规律(1)存在饱和电流在上图的实验中,保持光照的条件不变,在初始电流较小的情况下,随着所加电压的增大,光电流,但是存在一个,即:光电流达到此值以后,即使增加电压,光电流也不再增加。
(2)存在遏止电压在上图的实验中,即使电压为0,光电流也不为,只有将所加电压反向的时候(在光电管间形成使电子减速的电场),光电流才可能为。
使光电流减小到0的反向电压称为,用符号表示。
遏止电压的存在表明:,初速度的上限应该满足关系:。
实验表明:对于一定颜色的光,遏止电压都是,与光照强度,这表明:光电子的能量只与有关,而与无关。
(3)存在截止频率实验还表明,当入射光的频率减小到某一数值νc时,即使不施加反向电压也没有光电流,这表明已经没有了,这个频率称为,也就是说当:入射光的频率小于时,将不发生光电效应。
(4)光电效应具有瞬时性当入射光频率超过截止频率νc 时,无论入射光怎样微弱,几乎在照到金属时产生光电流,这个时间不超过。
三、光电效应解释中的疑难按照经典电磁理论,对于光电效应该如何解释?还应得出如下的结论:(1)(2)(3)但是这些结论与观察到的现象不符,为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。
四、爱因斯坦的光量子假设1、内容:光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的组成的。
物理_光的粒子性
阴极
A
阳极
K
实验结果:即使入射光的强度 非常微弱,只要入射光频率大 于被照金属的极限频率,电流 表指针也几乎是随着入射光照 射就立即偏转。
G
V
更精确的研究推知,光电子发 -9 射所经过的时间不超过10 秒 (这个现象一般称作“光电子 的瞬时发射”)。
光电效应在极短的时间内完成
一.光电效应的实验规律
3.光子说对光电效应的解释 ①爱因斯坦方程表明,光电子的初动能Ek与 入射光的频率成线性关系,与光强无关。只 W0就是 有当hν>W0时,才有光电子逸出, c h 光电效应的截止频率。 ②电子一次性吸收光子的全部能量,不需要 积累能量的时间,光电流自然几乎是瞬时发 生的。 ③光强较大时,包含的光子数较多,照射金 属时产生的光电子多,因而饱和电流大。
U E v
-
பைடு நூலகம்
K
+ + + + + +
1 2 me vc eU c 2
一 一
F
E
则I=0,式中UC为遏止电压
速率最大的是 vc 最大的初动能
一.光电效应的实验规律
(2)存在遏止电压和截止频率
阴极
光电效应伏安特性曲线
饱 和 电 流 遏 止 电 压
A
阳极
K
I
黄光( 强) 兰光 黄光( 弱)
O
G
V
Is
问题1:回顾前面的学习,总结 人类对光的本性的认识的发展 过程?
一、光电效应现象
用弧光灯照射擦得很 亮的锌板,(注意用导 线与不带电的验电器 相连),使验电 器张 角增大到约为 30度时, 再用与丝绸磨擦过的 玻璃棒去靠近锌板, 则验电器的指针张角 会变大。。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.2--光的粒子性-精品教案17.2 科学的转折:光的粒子性★教学目标(一)知识与技能1.通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量(二)过程与方法经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
(三)情感、态度与价值观领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
★教学重点光电效应的实验规律★教学难点爱因斯坦光电效应方程以及意义★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排 2 课时★教学过程(一)引入新课提问:回顾前面的学习,总结人类对光的本性的认识的发展过程?(多媒体投影,见课件。
)学生回顾、思考,并回答。
教师倾听、点评。
光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。
19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。
然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。
对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
(二)进行新课1.光电效应教师:实验演示。
(课件辅助讲述)用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。
学生:认真观察实验。
教师提问:上述实验说明了什么?学生:表明锌板在射线照射下失去电子而带正电。
概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。
发射出来的电子叫做光电子。
2.光电效应的实验规律(1)光电效应实验如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。
光电子在电场作用下形成光电流。
概念:遏止电压将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。
当 K 、A 间加反向电压,光电子克服电场力作功,当电压达到某一值 U c 时,光电流恰为0。
U c 称遏止电压。
根据动能定理,有(2)光电效应实验规律① 光电流与光强的关系饱和光电流强度与入射光强度成正比。
② 截止频率νc ----极限频率对于每种金属材料,都相应的有一确定的截止频率νc 。
当入射光频率ν>νc 时,电子才能逸出金属表面;当入射光频率ν <νc 时,无论光强多大也无电子逸出金属表面。
③ 光电效应是瞬时的。
从光开始照射到光电子逸出所需时间<10-9s 。
3.光电效应解释中的疑难经典理论无法解释光电效应的实验结果。
经典理论认为,按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。
也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。
光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初221c e v m c eU动能也与频率有关。
只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。
光电效应具有瞬时性。
而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。
为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。
4.爱因斯坦的光量子假设(1)内容光不仅在发射和吸收时以能量为h ν的微粒形式出现,而且在空间传播时也是如此。
也就是说,频率为ν 的光是由大量能量为 E =h ν的光子组成的粒子流,这些光子沿光的传播方向以光速 c 运动。
(2)爱因斯坦光电效应方程在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功W 0,另一部分变为光电子逸出后的动能 E k 。
由能量守恒可得出:W 0为电子逸出金属表面所需做的功,称为逸出功W k 为光电子的最大初动能。
(3)爱因斯坦对光电效应的解释:①光强大,光子数多,释放的光电子也多,所以光电流也大。
②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。
③从方程可以看出光电子初动能和照射光的频率成线性关系 ④从光电效应方程中,当初动能为零时,可得极限频率:hW c 0=ν 爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。
5.光电效应理论的验证美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦光电效应方程,h 的值与理论值完全一致,又一次证明了“光量子”理论的正确。
展示演示文稿资料:爱因斯坦和密立根由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。
密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。
获得1923年诺贝尔物理学奖。
点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。
W E h k +=ν例题 (教材36页)学生通过运算得出相应的正确结果。
点评:理论联系实际,适量的练习题可以进一步巩固和掌握所学理论知识。
6.康普顿效应(1)光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。
(2)康普顿效应1923年康普顿在做 X 射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长 和散射物质都无关。
(3)康普顿散射的实验装置与规律:按经典电磁理论:如果入射X 光是某种波长的电磁波,散射光的波长是不会改变的!散射中出现0λλ≠的现象,称为康普顿散射。
康普顿散射曲线的特点:① 除原波长0λ外出现了移向长波方向的新的散射波长λ② 新波长λ随散射角的增大而增大。
波长的偏移为0λλλ-=∆波长的偏移只与散射角ϕ有关,而与散射物质种类及入射的X 射线的波长0λ无关,)cos 1(0ϕλλλλ-=-=∆c c λ= 0.0241Å=2.41×10-3nm (实验值)称为电子的Compton 波长只有当入射波长0λ与c λ可比拟时,康普顿效应才显著,因此要用X 射线才能观察到康普顿散射,用可见光观察不到康普顿散射。
(4)经典电磁理论在解释康普顿效应时遇到的困难①根据经典电磁波理论,当电磁波通过物质时,物质中带电粒子将作受迫振动,其频率等于入射光频率,所以它所发射的散射光频率应等于入射光频率。
②无法解释波长改变和散射角的关系。
(5)光子理论对康普顿效应的解释 ①若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。
②若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。
③因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。
(6)康普顿散射实验的意义①有力地支持了爱因斯坦“光量子”假设; ②首次在实验上证实了“光子具有动量”的假设;③证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。
展示演示文稿资料:康普顿康普顿的成功也不是一帆风顺的,在他早期的几篇论文中,一直认为散射光频率的改变是由于“混进来了某种荧光辐射”;在计算中起先只考虑能量守恒,后来才认识到还要用动量守恒。
康普顿于1927年获诺贝尔物理奖。
展示演示文稿资料:吴有训对研究康普顿效应的贡献1923年,吴有训参加了发现康普顿效应的研究工作.1925—1926年,吴有训用银的X 射线(0λ=5.62nm) 为入射线,以15种轻重不同的元素为散射物质,在同一散射角( ︒=120ϕ)测量各种波长的散射光强度,作了大量X 射线散射实验。
对证实康普顿效应作出了重要贡献。
点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。
(7)光子的能量和动量说明:动量能量是描述粒子的,频率和波长则是用来描述波的(三)课堂小结教师活动:让学生概括总结本节的内容。
请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。
2mc E =Θλννh c h c c h mc P ==•==∴2νh E =2c h m ν=∴学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。
点评:总结课堂内容,培养学生概括总结能力。
教师要放开,让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。
(四)作业:“问题与练习”1~6题。
★教学体会思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。
学生素质的培养就成了镜中花,水中月。