大学文科数学第三版答案

合集下载

2018年全国普通高等学校招生统一考试文科数学(新课标III卷)(答案版)

2018年全国普通高等学校招生统一考试文科数学(新课标III卷)(答案版)
11. 的内角 的对边分别为 , , ,若 的面积为 ,则
A. B. C. D.
【答案】C
【解析】
分析:利用面积公式 和余弦定理 进行计算可得.
详解:由题可知
所以
由余弦定理
所以
故选C.
点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理.
12.设 是同一个半径为4的球的球面上四点, 为等边三角形且其面积为 ,则三棱锥 体积的最大值为
10.已知双曲线 的离心率为 ,则点 到 的渐近线的距离为
A. B. C. D.
【答案】D
【解析】
分析:由离心率计算出 ,得到渐近线方程,再由点到直线距离公式计算即可.
详解:
所以双曲线的渐近线方程为
所以点(4,0)到渐近线的距离
故选D
点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题.
2.
A. B. C. D.
【答案】D
【解析】
【分析】
由复数的乘法运算展开即可.
【详解】解:
故选D.
【点睛】本题主要考查复数的四则运算,属于基础题.
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当 平面 时,三棱锥 体积最大很关键,由M为三角形ABC的重心,计算得到 ,再由勾股定理得到OM,进而得到结果,属于较难题型.
二、填空题:本题共4小题,每小题5分,共20分.
13.已知向量 , , .若 ,则 ________.

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。

2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。

高考全国卷3文科数学及答案(word精校版)之欧阳理创编

高考全国卷3文科数学及答案(word精校版)之欧阳理创编

2019年普通高等学校招生全国统一考试全国卷3文科数学考试时间:2019年6月7日15:00——17:00使用省份:云南、广西、贵州、四川、西藏本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合2,,则A B=()=-=≤{1,0,1,2}{1}A B x xA.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,22.若(1i)2iz+=,则z=()A.1i--B.1+i-C.1i-D.1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.16B.14C.13D.124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6C.0.7D.0.85.函数()2sin sin2f x x x=-在[0,2π]的零点个数为()A.2B.3C.4D.56.已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A. 16B. 8C.4 D. 27.已知曲线e lnxy a x x=+在点(1,a e)处的切线方程为y=2x+b,则()A.a=e,b=-1B.a=e,b=1C.a=e-1,b=1D.a=e-1,1b=-8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于( ) A.4122- B.5122- C.6122- D.7122- 10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为( )A .32B .52C .72D .92 11.记不等式组6,20x y x y +⎧⎨-≥⎩表示的平面区域为D .命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分。

XX高考文科数学全国卷3试题及详细解析答案Word版

XX高考文科数学全国卷3试题及详细解析答案Word版

- 1 - 2021年普通高等学校招生全国统一考试全国卷III 文科数学考前须知1答题前先将自己的姓名、准考证号填写在试题卷和答题卡上并将准考证号条形码粘贴在答题卡上的指定位置。

2选择题的作答每题选出答案后用2B铅笔把答题卡上对应题目的答案标号涂黑写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3非选择题的作答用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4考试结束后请将本试题卷和答题卡一并上交。

一、选择题此题共12小题每题5分共60分在每题给的四个选项中只有一项符合1集合|10Axx≥012B那么ABA0 B1 C12 D012解析∵{|10}{|1}Axxxx{0,1,2}B∴{1,2}AB.故答案为C.212iiA3iB3i C3i D3i解析2(1)(2)23iiiii故答案为D.3中国古建筑借助榫卯将木构件连接起来构件的凸出局部叫棒头凹进局部叫卯眼图中木构件右边的小长方体是棒头假设如图摆放的木构件与某一带卯眼的木构件咬合成长方体那么咬合时带卯眼的木构件的俯视图可以是- 2 - 解析由几何体及选项可知答案为A.4假设1sin3那么cos2A89 B79 C79D89解析227cos212sin199.故答案为B.5既用现金支付也用非现金支付的概率为那么不用现金支付的概率为A0.3 B0.4 C0.6 D0.7解析由题意.故答案为B.6函数2tan1tanxfxx的最小正周期为A4 B2 C D2解析 22222sintansincos1cos()sincossin2sin1tansincos21cosxxxxxfxxxxxxxxx∴()fx的周期22T.故答案为C.7以下函数中其图像与函数lnyx的图像关于直线1x对称的是Aln1yx B ln2yx C ln1yx D ln2yx 解析()fx关于1x对称那么()(2)ln(2)fxfxx.故答案为B.8直线20xy分别与x轴y轴交于A B两点点P在圆 2222xy上那么ABP面积的取值范围是A26 B48 C232D2232解析由直线20xy得(2,0),(0,2)AB∴22||2222AB圆22(2)2xy的圆心为(2,0)∴圆心到直线20xy的距离为222211∴点P- 3 - 到直线20xy的距离的取值范围为222222d即232d∴1||[2,6]2ABPSABd.故答案为A .9函数422yxx的图像大致为解析排除法。

版高考全国3卷文科数学及答案

版高考全国3卷文科数学及答案

绝密★启用前2019年一般高等学校招生全国一致考试文科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考据号码填写清楚,将条形码正确粘贴在条形码地区内。

2.选择题一定使用2B铅笔填涂;非选择题一定使用0.5毫米黑色笔迹的署名笔书写,字体工整、笔迹清楚。

3.请依据题号次序在各题目的答题地区内作答,高出答题地区书写的答案无效;在底稿纸、试题卷上答题无效。

4.作图可先使用铅笔划出,确立后一定用黑色笔迹的署名笔描黑。

5.保持卡面洁净,不要折叠、不要弄破、弄皱,禁止使用涂改液、修正带、刮纸刀。

一、选择题:此题共12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项是切合题目要求的。

1.已知会合A{1,0,1,2},B{xx21},则AIBA.1,0,1B.0,1C.1,1D.0,1,2 2.若z(1i)2i,则z=A.1i B.1+i C.1i D.1+i 3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是1B.11D.1A.4C.2634.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学珍宝,并称为中国古典小说四大名著.某中学为认识本校学生阅读四大名著的状况,随机检查了100学生,此中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该检阅读过《西游记》的学生人数与该校学生总数比值的预计值为A.0.5B.0.6C.0.7D.0.8 5.函数f(x)2sinxsin2x在[0,2π]的零点个数为A.2B.3C.4+4a D.56.已知各项均为正数的等比数列{a}的前4项和为15,且a=3a,则a= n5313A.16B.8C.4D.27y x xlnx在点(1,a ey=2x+b,则.已知曲线ae )处的切线方程为A.a=e,b=-1B.a=e,b=1-1,b=1D.a=e-1,C.a=e b1文科数学试题第1页(共9页)8.如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD ⊥平面 ABCD ,M是线段ED 的中点,则D .BM=EN ,且直线 .BM ≠EN ,且直线C .BM=EN ,且直线.BM ≠EN ,且直线BM 、EN 是订交直线BM ,EN 是订交直线 BM 、EN 是异面直线BM ,EN 是异面直线9.履行下面的程序框图,假如输入的为,则输出s的值等于A .2124 1 B .225 1C .2 261D .227x 2y 210.已知F 是双曲线C :1的一个焦点,点P 在C 上,O 为坐标原点,若OP=OF ,45则△OPF 的面积为357 9A .B .C .D .222211.记不等式组x y ⋯6,D .命题p: (x,y)D,2xy ⋯9;命题2x y表示的平面地区为q:(x,y)D,2xy,12.下面给出了四个命题①pq② pq ③pq④ pq这四个命题中,全部真命题的编号是A .①③B .①②C .②③D .③④12.设fx 是定义域为R 的偶函数,且在0,单一递减,则1)>f3223A .f (log 3(2 2)>f (23)B .f (log 3 1)>f (23)>f(22 )443223C .f (22)>f (23)>f (log 31)D .f (23 )>f (22)>f (log 31 )44文科数学试题 第2页(共 9页)二、填空题:此题共4小题,每题5分,共20分。

高考全国卷3文科数学及答案(word精校版)之欧阳数创编

高考全国卷3文科数学及答案(word精校版)之欧阳数创编

2019年普通高等学校招生全国统一考试全国卷3文科数学考试时间:2019年6月7日15:00——17:00使用省份:云南、广西、贵州、四川、西藏本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合2{1,0,1,2}{1}A B x x=-=≤,,则A B=()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,22.若(1i)2iz+=,则z=()A.1i--B.1+i-C.1i-D.1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.16B.14C.13D.124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6C.0.7D.0.85.函数()2sin sin2f x x x=-在[0,2π]的零点个数为()A.2B.3C.4D.56.已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A. 16B. 8C.4 D. 27.已知曲线e lnxy a x x=+在点(1,a e)处的切线方程为y=2x+b,则()A .a=e ,b =-1B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于( ) A.4122- B.5122- C.6122- D.7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为( ) A .32B .52C .72D .9211.记不等式组6,20x y x y +⎧⎨-≥⎩表示的平面区域为D .命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 第Ⅱ卷(非选择题,共90分) 二、填空题:本题共4小题,每小题5分,共20分。

高等数学文科类教材答案

高等数学文科类教材答案

高等数学文科类教材答案一、导数与微分1.1 导数的定义及性质1.1.1 导数的定义导数的定义是:设函数f(x)在点x_0的某个邻域内有定义,则称函数f(x)在点x_0处可导,如果极限lim_(Δx→0) [f(x_0+Δx)-f(x_0)]/Δx存在。

若该极限存在,则称该极限为函数f(x)在点x_0处的导数,记为f'(x_0)。

具体表达式为:f'(x_0)=lim_(Δx→0) [f(x_0+Δx)-f(x_0)]/Δx。

1.1.2 导数的性质导数具有以下性质:- 若函数f(x)在点x_0处可导,则函数f(x)在点x_0处连续;- 若函数f(x)在点x_0处可导,则函数f(x)在点x_0的邻域内具有局部线性近似性质,即函数f(x)在点x_0处可通过一条斜率为f'(x_0)的切线局部近似;- 若函数f(x)在点x_0处可导,则函数f(x)在点x_0的邻域内单调性与导数正负性质一致;- 若函数f(x)在点x_0处可导,则函数f(x)在点x_0处的切线方程为y=f'(x_0)(x-x_0)+f(x_0)。

1.1.3 常见函数导数- 常数函数的导数为0,即d/dx(c)=0,其中c为常数;- 幂函数的导数为幂函数的导数,即d/dx(x^n) = nx^(n-1),其中n为正整数;- 指数函数的导数为自身的导数,即d/dx(a^x) = ln(a)*a^x,其中a为正实数且a≠1;- 对数函数的导数为自身导数的倒数,即d/dx(log_a x) =1/(ln(a)*x),其中a为正实数且a≠1;1.2 微分的定义及应用1.2.1 微分的定义微分的定义是:设函数y=f(x)在点x_0的某个邻域内有定义,当自变量x在x_0处发生增量Δx时,函数增量为Δy=f(x_0+Δx)-f(x_0),则称Δy是函数y=f(x)在点x_0处的微分。

具体表达式为:dy=f`(x_0)dx1.2.2 微分的应用微分在实际问题中有广泛的应用,例如:- 利用微分可以进行近似计算,例如可以利用微分计算较小增量下函数值的变化情况;- 微分可以帮助求极值,通过分析函数的单调性和导数的变化可以确定函数的最大值和最小值;- 在物理学中,微分可以用于描述质点在某个瞬间的运动情况,例如速度和加速度等。

高等数学复旦大学出版第三版下册课后答案习题全(陈策提mai供huan)

高等数学复旦大学出版第三版下册课后答案习题全(陈策提mai供huan)

习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s==(4) s==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故2s=xs==ys==5zs==.6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149z=173174即所求点为M (0,0,149). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有|AC |2+|AB |2=49+49=98=|BC |2.故△ABC 为等腰直角三角形.8. 验证:()()++=++a b c a b c .证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a 2225D A BA BD =-=--c a 3335D A BA BD =-=--c a 444.5D A BA BD =-=--c a 11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则1Pr j cos604 2.2u OM OM =︒=⨯= 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----175解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP ==(3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PP PP ===+e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点.求合力R 的大小和方向余弦. 解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==R cos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c=-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a ,b ,c .解:||==a||==b ||3==c176, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有c o s (1,1)3x a i a a i a iπ⋅====⋅ 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 4a ba b π⋅=⇒=⋅ 则214y a = 求得12y a =± 又1,a =则2221x y z a a a ++=从而求得11{,,}222a =±或11{,,}222-± 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩177故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949).20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算:(1) a ·b ; (2) (3a -2b )·(a + 2b ).解:(1)a ·b =2π1cos ||||cos 3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b(2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=17822. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角.解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ; (2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b179π2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =-180 22222235233100122MN MP ----⨯=++=++--i j k i jk44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯.30.(1)解: x y zx y z i j ka b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()()则 C=-C +-+-y z z y x z x x z y x y y x ya b a b a b a b a b C a b a b C ⨯⋅()()()() x y zx y z x y za a ab b b C C C =若 ,,C a b 共面,则有 a b ⨯后与 C 是垂直的.从而 C 0a b ⨯⋅=() 反之亦成立.(2) C x y zx y z x y za a a ab b b b C C C ⨯⋅=()a x y zx y z x y zb b b b C C C C a a a ⨯⋅=()b x y z x y z x y zC C C C a a a a b b b ⨯⋅=()由行列式性质可得:x y z x y z x y zx y z x y z x y z x y z x y z x y za a ab b b C C C b b b C C C a a a C C C a a a b b b ==故 C a ?b a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()18131. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积.解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+.32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅,而11948222BCD S BC BD i j k =⨯=--+=又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅=33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程.解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程.35. 求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).182 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程. 解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=183得b =2. 故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x – y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4)(4) x –y =0表示过z 轴的平面(如图7-5)(5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-642. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面.解:设平面方程为Ax +By +Cz +D =0则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1}过已知两点的向量l ={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得2k=±44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=018418546. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量.解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n 故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k47. 求下列直线与平面的交点: (1) 11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0.解:(1)直线参数方程为1126x ty t z t=+⎧⎪=--⎨⎪=⎩代入平面方程得t =1故交点为(2,-3,6).(2) 直线参数方程为221332x ty t z t=-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z xy z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321i j k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}186由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为 234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n 故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z ++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;187(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程. 解:直线的方向向量为12123111-=++-ij k i j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程.解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++=其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0188 得23t =- 于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离. 解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---ij k n s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d == 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.189解:设该动点为M (x ,y ,z )3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22aax y -+=; (2)22149x y -+=;(3)22194x z +=; (4)20y z -=;(5)220x y -=; (6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7-7.(2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9.(4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11.(6)z 轴,如图7-12.图7-11 图7-1219059. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=;(3)222149y z x --=; (4)2221149y z x +-=;(5)22209z x y +-=.解:(1)半轴分别为1,2,3的椭球面,如图7-13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15.(4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形:(1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0;(3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.191解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-2161. 求下列曲面和直线的交点: (1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2).(2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1,得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.192 解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程.(1) 平面x =2; (2) 平面y =0;(3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.193故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x , y )|x ≠0};(2) {(x , y )|1≤x 2+y 2<4}; (3) {(x , y )|y <x 2};(4) {(x , y )|(x -1)2+y 2≤1}∪{(x , y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x , y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x , y )|1≤x 2+y 2≤4},边界:{(x , y )|x 2+y 2=1}∪{(x , y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x , y )|y ≤x 2}, 边界:{(x , y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x , y )|(x -1)2+y 2=1}∪{(x , y )|(x +1)2+y 2=1}. 2. 已知f (x , y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(3)z =(4)u =+(5)z =(6)ln()z y x =-+194(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→ 22001(2)lim;x y x y →→+00x y →→x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+1956. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x+-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩196解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z = x 2y +2xy;(2)s =22u v uv+;(3)z = x; (4)z = lntan x y; (5)z = (1+xy )y ; (6)u = z xy ;(7)u = arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+197[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .yyzz yy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y =+,求证:3u uxy u x y∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1981121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y ) = x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x 4+ y 4-4x 2y 2; (2)z = arctan y x; (3)z = y x ;(4)z = 2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,1992222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x , y , z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15315.设z = x ln ( x y ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =;(3)zy u x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )xy xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴ 223/2d (d d ).()x z y x x y x y =--+ (3)∵11,ln z z z y y z u uy x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂154ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则155d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y ,则d f (x ,y )=yx y -1d x +x y ln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm, 当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm. 20.解:因为圆锥体的体积为21.3V r h π=⋅ 0030,0.1,60,0.5r r h h ====- 而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂0030,0.1,60,0.5r r h h ====-时, 2213.1430600.130(0.5)33V π≈⨯⨯⨯⨯+⨯⨯- 230()cm =-21.解:设水池的长宽深分别为,,x y z 则有:V xyz =精确值为:50.242 2.850.22 3.6 2.V =⨯⨯+⨯⨯⨯+⨯⨯⨯ 313.632()m = 近似值为:156V dV zx y xy z ≈=+0.4,0.4,0.2x y z ===430.4530.454V d V ≈=⨯⨯+⨯⨯+⨯⨯ 314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,zv∂∂; (2)z =arc tanx y , x =u +v ,y =u -v , 求z u ∂∂,z v∂∂; (3)ln(e e )xyu =+, y =x 3, 求d d ux; (4) u =x 2+y 2+z 2, x =e cos tt , y =e sin tt , z =e t, 求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.15723. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+15825. 设22()yz f x y =-,其中f (u )为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,zf x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂ 由对称性知,22224.z f y f y∂'''=+∂27. 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂1592212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,zy yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂ ()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x y ξη=-=-,可将方程。

新课标Ⅲ高考数学文科试题文档版(含答案)

新课标Ⅲ高考数学文科试题文档版(含答案)

绝密★启封并使用完毕前试题类型:新课标Ⅲ2021年普通高等学校招生全国统一考试文科数学考前须知: 1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第一卷一. 选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合{0,2,4,6,8,10},{4,8}A B ==,那么A B = 〔A 〕{48},〔B 〕{026},,〔C 〕{02610},,,〔D 〕{0246810},,,,,〔2〕假设43i z =+,那么||zz = 〔A 〕1〔B 〕1-〔C 〕43+i 55〔D 〕43i 55-〔3〕向量BA →=〔12,BC →=12〕,那么∠ABC =〔A 〕30°〔B 〕45°〔C 〕60°〔D 〕120°〔4〕某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面表达不正确的选项是〔A〕各月的平均最低气温都在0℃以上〔B〕七月的平均温差比一月的平均温差大〔C〕三月和十一月的平均最高气温根本相同〔D〕平均最高气温高于20℃的月份有5个〔5〕小敏翻开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,那么小敏输入一次密码能够成功开机的概率是〔A〕815〔B〕18〔C〕115〔D〕130〔6〕假设tanθ=13,那么cos2θ=〔A〕45-〔B〕15-〔C〕15〔D〕45〔7〕4213332,3,25a b c===,那么(A)b<a<c (B) a<b<c (C) b<c<a (D) c<a<b〔8〕执行右面的程序框图,如果输入的a=4,b=6,那么输出的n= 〔A〕3〔B〕4〔C〕5〔D〕6〔9〕在ABC中,B=1,,sin43BC BC A π=边上的高等于则(A)310(B)10(C)5(D)310〔10〕如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,那么该多面体的外表积为 〔A 〕18365+ 〔B 〕54185+ 〔C 〕90 〔D 〕81〔11〕在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.假设AB ⊥BC ,AB =6,BC =8,AA 1=3,那么V 的最大值是 〔A 〕4π〔B 〕9π2〔C 〕6π〔D 〕32π3〔12〕O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .假设直线BM 经过OE 的中点,那么C 的离心率为 〔A 〕13〔B 〕12〔C 〕23〔D 〕34第II 卷本卷包括必考题和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每题5分〔13〕设x ,y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩那么z =2x +3y –5的最小值为______.〔14〕函数y =sin x –错误!未指定书签。

高等数学复旦大学出版第三版课后答案

高等数学复旦大学出版第三版课后答案

206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。

文科高等数学第三版教材答案

文科高等数学第三版教材答案

文科高等数学第三版教材答案第一章:函数及其图像1. 函数的概念及性质函数是一种特殊的关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。

函数有定义域和值域,可以用图像来表示。

2. 函数的表示方法函数可以用函数表、公式、图像等方式表示。

其中,函数表是一种列出定义域与值域对应关系的方式,而函数公式则是通过数学表达式来表示。

3. 常见的函数类型常见的函数类型包括线性函数、幂函数、指数函数、对数函数、三角函数等。

不同类型的函数有不同的性质和特点。

4. 函数的性质函数有奇偶性、单调性、周期性等性质。

奇偶性指的是函数的对称性,单调性指的是函数在定义域内的增减性,周期性指的是函数具有重复性。

5. 函数的限制函数的限制是指函数在某些条件下的取值范围。

常见的限制包括定义域的限制、值域的限制以及其他约束条件的限制。

第二章:导数与微分1. 导数的定义与性质导数是函数在某一点处的变化率,表示函数曲线在该点处的切线斜率。

导数具有线性性、乘法性、和法则、差法则等性质。

2. 导数的计算方法导数的计算方法包括求导法则、链式法则、参数法则等。

其中,求导法则包括常规函数的求导公式,链式法则适用于复合函数的求导,参数法则适用于含有参数的函数的求导。

3. 函数的凹凸性与拐点函数的凹凸性与拐点与其导数的变化有关。

例如,函数的二阶导数大于零时,函数凹,二阶导数小于零时,函数凸,二阶导数为零时,可能存在拐点。

4. 微分的概念与应用微分表示函数在某一点处的变化量,是导数的微小改变量。

微分在近似计算、极值问题等方面有广泛的应用。

第三章:不定积分与定积分1. 不定积分的基本概念不定积分是确定函数的原函数的过程,表示函数在一个区间内的积分。

不定积分可以通过求导的逆运算来求得。

2. 基本积分法和基本积分公式基本积分法包括基本积分公式、分部积分法、换元积分法等。

基本积分公式是一些常见函数的不定积分公式,可以直接应用于计算。

3. 定积分的基本概念与性质定积分是确定函数在一个区间内的面积的过程,可以看作是在坐标轴下所夹图形的面积。

高等数学习题答案第三版

高等数学习题答案第三版

高等数学习题答案第三版高等数学学习题答案第三版是一本备受学生喜爱的参考书籍。

它为学生提供了高等数学学习过程中的习题答案,帮助他们更好地理解和掌握数学知识。

本文将从不同角度探讨这本书的特点和价值。

首先,高等数学学习题答案第三版的特点之一是全面性。

无论是微积分、线性代数还是概率论,这本书都涵盖了高等数学各个分支的习题答案。

它的全面性使得学生能够在一个书本中找到各个章节的习题答案,方便他们进行查阅和学习。

同时,这也帮助学生更好地理解和应用不同数学概念之间的联系,提高他们的综合运用能力。

其次,高等数学学习题答案第三版的特点之二是详细性。

书中的每个习题答案都给出了详细的解题步骤和推导过程,帮助学生了解解题的思路和方法。

这对于那些初学者来说尤为重要,他们可以通过参考书中的答案,逐步理解和掌握解题的方法,提高他们的数学水平。

同时,这也有助于学生巩固已学知识,加深对数学概念的理解。

此外,高等数学学习题答案第三版的特点之三是实用性。

书中的习题答案不仅仅是简单地给出答案,还提供了详细的解题思路和方法,帮助学生更好地理解和掌握数学知识。

这对于那些自学数学的学生来说尤为重要,他们可以通过参考书中的答案,自主学习和解决问题。

同时,这也为教师提供了一个很好的辅助教材,可以引导学生进行自主学习和思考。

最后,高等数学学习题答案第三版的特点之四是灵活性。

书中的习题答案不仅仅是给出标准答案,还提供了不同解题方法和思路的讨论。

这有助于学生培养灵活的思维和解决问题的能力。

学生可以通过比较不同的解题方法,选择最适合自己的方法,提高解题的效率和准确性。

同时,这也有助于培养学生的创新意识和独立思考能力。

综上所述,高等数学学习题答案第三版是一本具有全面性、详细性、实用性和灵活性的参考书籍。

它为学生提供了高等数学学习过程中的习题答案,帮助他们更好地理解和掌握数学知识。

无论是初学者还是自学者,都可以通过参考这本书,提高数学水平,培养解决问题的能力。

高考文科数学全国卷3试题及详细解析答案Word版

高考文科数学全国卷3试题及详细解析答案Word版

- 1 - 2018年一般高等学校招生全国一致考试全国卷III 文科数学注意事项1答题前先将自己的姓名、准考据号填写在试题卷和答题卡上并将准考据号条形码粘贴在答题卡上的指定地点。

2选择题的作答每题选出答案后用2B铅笔把答题卡上对应题目的答案标号涂黑写在试题卷、底稿纸和答题卡上的非答题地区均无效。

3非选择题的作答用署名笔挺接答在答题卡上对应的答题地区内。

写在试题卷、底稿纸和答题卡上的非答题地区均无效。

4考试结束后请将本试题卷和答题卡一并上交。

一、选择题此题共12小题每题5分共60分在每题给的四个选项中只有一项切合1已知会合|10Axx≥012B则ABA0 B1 C12 D012分析∵{|10}{|1}Axxxx{0,1,2}B∴{1,2}AB.故答案为C.212iiA3iB3i C3i D3i分析2(1)(2)23iiiii故答案为D.3中国古建筑借助榫卯将木构件连结起来构件的凸出部分叫棒头凹进部分叫卯眼图中木构件右侧的小长方体是棒头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体则咬合时带卯眼的木构件的俯视图能够是- 2 - 分析由几何体及选项可知答案为A.4若1sin3则cos2A89 B79 C79D89分析227cos212sin199.故答案为B.5既用现金支付也用非现金支付的概率为则不用现金支付的概率为A0.3 B0.4 C0.6 D0.7分析由题意.故答案为B.6函数2tan1tanxfxx的最小正周期为A4 B2 C D2分析 22222sintansincos1cos()sincossin2sin1tansincos21cosxxxxxfxxxxxxxxx∴()fx的周期22T.故答案为C.7以下函数中其图像与函数lnyx的图像对于直线1x对称的是Aln1yx B ln2yx C ln1yx D ln2yx 分析()fx对于1x对称则()(2)ln(2)fxfxx.故答案为B.8直线20xy分别与x轴y轴交于A B两点点P在圆 2222xy上则ABP面积的取值范围是A26 B48 C232D2232分析由直线20xy得(2,0),(0,2)AB∴22||2222AB圆22(2)2xy的圆心为(2,0)∴圆心到直线20xy的距离为222211∴点P- 3 - 到直线20xy的距离的取值范围为222222d即232d∴1||[2,6]2ABPSABd.故答案为A .9函数422yxx的图像大概为分析清除法。

大学文科数学习题答案

大学文科数学习题答案

大学文科数学习题答案大学文科数学习题答案在大学的文科数学课程中,学习题是非常重要的一部分。

通过解答这些习题,我们可以巩固和应用所学的数学知识,提高解决实际问题的能力。

然而,有时候我们可能会遇到一些难以理解或者无法解答的题目,这时候就需要寻找答案来帮助我们。

在寻找答案之前,我们首先要明确一个原则,那就是课堂学习的重要性。

老师在课堂上讲解的内容是我们学习的基础,通过课堂的讲解和练习,我们可以掌握数学的基本概念和解题方法。

因此,在遇到难题时,我们应该先回顾课堂上的内容,思考是否有相关的知识点可以应用。

如果在回顾课堂内容后仍然无法解答题目,我们可以寻找一些辅助材料,如教材的附加习题、参考书籍或者网络资源。

这些资源通常会提供一些例题和解析,帮助我们理解题目的思路和解题方法。

在使用这些资源时,我们要注意选择合适的难度和适合自己的学习风格的材料。

同时,我们也要注意不要过度依赖这些答案,而是要尽量自己思考和解答题目。

除了教材和参考书籍,我们还可以寻找一些学习群体或者学习社区来交流和讨论。

在这些群体中,我们可以与其他同学一起分享和解答习题,互相帮助和启发。

通过与他人的交流,我们可以获取不同的解题思路和方法,拓宽自己的数学思维。

同时,我们也要注意遵守学术诚信的原则,不要抄袭他人的答案或者依赖他人的解题过程。

另外,我们还可以向老师请教。

老师是我们学习的指导者,他们对于课程内容有着更深入的理解和掌握。

在遇到难题时,我们可以向老师请教,寻求他们的指导和帮助。

老师会给予我们一些建议和解题思路,帮助我们克服困难。

同时,与老师的交流也是我们与他人交流的重要一环,通过与老师的交流,我们可以加深对数学知识的理解和应用。

总之,大学文科数学习题的答案是我们学习的重要辅助工具。

在寻找答案时,我们应该首先回顾课堂内容,再寻找适当的辅助材料和资源。

同时,我们也要注重与他人的交流和请教,以获取更多的解题思路和方法。

通过不断的练习和思考,我们可以提高自己的数学水平,更好地应用数学知识解决实际问题。

江西省高等数学第三版教材答案

江西省高等数学第三版教材答案

江西省高等数学第三版教材答案第一章:极限与连续1. a) 极限的定义:设函数 f(x) 在点 x0 的某个去心邻域内有定义(除去 x0 本身),若存在常数 A,对于任意给定的正数ε,都存在正数δ,使得当 0 < |x - x0| < δ 时,有 |f(x) - A| < ε 成立,则称函数 f(x) 在x0 处有极限 A,记作lim_(x→x0)⁡f(x) = A。

b) 极限的性质:唯一性、有界性、局部有界性、保号性等。

通过运用这些性质,可以简化计算极限的过程。

c) 使用极限的计算方法:夹逼准则、无穷小量代换原理、无穷小代换原理等。

2. a) 极限存在的判定条件:夹逼准则、单调有界原理、子数列收敛原理等。

b) 左极限与右极限:左极限可记作lim_(x→x0-) f(x),右极限可记作lim_(x→x0+) f(x)。

若左右极限都存在且相等,则称函数 f(x) 在 x0 处有极限。

若左右极限存在但不相等,则称函数 f(x) 在 x0 处无极限。

3. 连续的定义:设函数 f(x) 在点 x0 处有定义,如果lim_(x→x0)⁡f(x) = f(x0) 成立,则称函数 f(x) 在 x0 处连续。

4. 连续函数的性质:若函数lim_(x→x0)⁡f(x) = f(x0),lim_(x→x0)⁡g(x) = g(x0) 均存在,则有:a) 常数函数、幂函数、指数函数、对数函数、三角函数等都是连续函数。

b) 两个连续函数的和、差、积、商仍然是连续函数。

c) 复合函数的连续性:若 g(x) 在 x0 处连续,f(x) 在 g(x0) 处连续,则复合函数 f(g(x)) 在 x0 处连续。

5. 利用连续函数的性质求解问题:通过将问题转化为函数的连续性问题,可以简化计算与证明的过程。

第二章:导数与微分1. 导数的定义:设函数 f(x) 在点 x0 的某个邻域内有定义,如果极限lim_(x→x0)⁡((f(x) - f(x0))/(x - x0)) 存在,则称该极限为函数 f(x) 在点 x0 处的导数,记作 f'(x0) 或 dy/dx |_(x=x0)。

大学文科数学第三版答案浅谈大学文科数学教学理念内容方法的研究与改革论文

大学文科数学第三版答案浅谈大学文科数学教学理念内容方法的研究与改革论文

大学文科数学第三版答案|浅谈大学文科数学教学理念、内容、方法的研究与改革论文论文摘要:文章分析了大学文科数学教学现状,研究了大学文科数学的教学理念、教学内容、教学方法改革。

试图从根本上解决大学文科数学开设的目的和意义;从学生终身发展的高度,形成文科数学教学大纲;从内容安排上探讨适合学生和教师的文科数学教材;从现实状况出发,思考了文科数学的教学方法。

论文关键词:大学文科数学教学理念教学内容教学方法我校及国内很多大学的文科类专业,都开设了数学必修基础课,对提高文科学生数学素养起到了一定作用。

但是,效果不是非常明显,文科数学基本上是理工类几门数学基础课的压缩和简化。

一方面试图把大量的基础数学知识介绍给学生,另一方面又受课时较少的限制必须精简内容,于是普遍采取了重结论,不重证明;重计算,不重推理,重知识,不重思想的讲授方法。

大多数学生,只能是依葫芦画瓢,以应付考试为目的,谈不到提高数学素养,失去了学习数学的目的。

文科学生往往觉得高等数学不可理解,难以接受,许多学生容易产生畏难情绪。

显然,我们在教学中首先要改变这种状态,使学生感到可以理解,并且能轻松、愉快地完成这门课程的学习任务。

要求教师转变观念,从培养学生的数学素养和持续学习能力的高度,来把握教学原则。

目的不是教学生如何做题,而是教会学生如何利用数学思想和数学思维方式来考虑问题。

要解决这些问题,必须针对文科类学生的学习特点、学习规律和学习需求,不仅从学生获取知识的层面,更要从培养学生获取知识的能力(可持续学习,终身学习)的高度,明确文科数学课程的教学目的和要求,即着力解决文科学生为什么要学数学,数学学什么,如何学习等当前一直困惑的问题。

该项目力争探索出适合文科学生学习特点,确定恰当的教学原则,通过合理选取教学内容,合理架构教学内容,编写一本适合文科类学生学习和教师教学的大学文科类数学教材。

从教学大纲及教材的层面对大学文科数学的教学理念、内容、方法进行改革的研究和探索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档