高中数学第十章-排列组合

合集下载

高中数学排列组合知识点

高中数学排列组合知识点

高中数学排列组合知识点高中数学排列组合知识点在高中数学中,排列组合是一个比较重要的知识点。

掌握了排列组合的概念和应用,不仅可以解决很多实际问题,还能够加深对数学知识体系的理解。

本文将为大家详细地介绍高中数学中排列组合的知识点。

一、排列的概念排列是指从n个不同元素中取出m个元素,一次排成一列的不同方案数。

排列分为有序排列和无序排列两种。

有序排列:从n个元素中取m个元素,一次排成一列的不同方案数用Anm表示,可以得到公式:Anm = n(n-1)(n-2)......(n-m+1)无序排列:从n个元素中取m个元素,不考虑顺序,一共有多少种排列方案,用Cnm表示,可以得到公式:Cnm = n!/[(n-m)!m!]二、组合的概念组合是指从n个不同元素中取出m个元素,不考虑它们的排列顺序,共有多少种组合方式。

组合用Cnm表示。

Cnm = n!/[(n-m)!m!]三、排列组合的应用排列组合在现实生活中应用广泛,例如:1.密码问题。

我们常用4位数字密码,如果不允许重复,那么一共有多少种不同的密码可能性?这个问题可以用无序排列来解决,答案为P48 = 4!/(4-8)! = 24×23×22×21 = 3,110,016种。

2.选课问题。

某学校有3门选修课程可供选择,学生必须选1门或2门或3门,问他有多少种选课方案。

这个问题可以用组合来解决,答案为C31 + C32 + C33 = 3+3+1=7种。

3.桥牌问题。

桥牌是一种智力游戏,每张牌有4个不同的花色,每个花色都有13张牌。

问从52张牌中取出13张牌一共有多少种取牌方案。

这个问题可以用有序排列来解决,答案为A13^52 = 52*51*50*...*40*39 = 6.6 * 10^28种。

四、注意事项在排列组合计数中,需要注意以下事项:1.选择运用有序排列、无序排列、组合的方式。

2.正确确定元素个数n和取出的元素个数m。

10.人教版 高中数学 第十章 排列、组合和概率 知识网络图及导读分析

10.人教版 高中数学 第十章 排列、组合和概率 知识网络图及导读分析

第十章排列、组合和概率编写:王建宏【网络图】【网络导读】1、排列组合应用题。

采用的方法有直接计算法与间接计算法(又叫排除法,即用所有可能的种数,减去不符全的种数),分类法(相加)与分步法(相乘),元素分析法与位置分析法(先满足特殊元素或特殊位置的要求),捆绑法(元素必须相邻时可先将相邻元素看作是一个整体)和插空法(元素不相邻时可以制造空档插进去)。

2、求二项式展开式中某一项、某一项的系数、某些项的系数和、含字母项中该字母的值等。

要熟悉通项公式,灵活运用。

3、二项式的应用,如近似计算,整除性问题、组合恒等式证明等。

4、等可能事件的概率计算。

必须判定是等可能性试验,弄清楚基本事件、基本事件总数、所求事件包含的基本事件个数。

5、和事件、积事件的概率计算。

概率内容的新概念较多,相近概念容易混淆,如“对立事件”与“互斥事件”,“互斥”与“相互独立”等。

概率的运算公式常附加条件,对“是否互斥或对立?”、“是否为相互独立事件?”等在具体问题中一定要鉴别清楚。

概率的综合问题更应注意各种情况的前提条件;n 次独立重复试验中某事件上发生k次的概率的计算公式体现了概率的加乘运算、组合知识、二项式定理的综合运用;还要弄清关键词语,如“恰有”、“至少”、“都”、“或”等。

6、会用样本频率分布估计总体分布,会用样本平均数估计总体期望值,会用样本方差。

【易错指导】易错点1:对于排列组合问题,不能分清是否与顺序有关而导致方法出错.不能正确分析几种常见的排列问题,不能恰当地选择排列的方法导致出错.易错点2:二项式展开式中的项的系数与二项式系数的概念掌握不清,容易混淆,导致出错.二项式展开式的通项公式为1r n r rr n T C a b -+=,事件A 发生k 次的概率()(1)k k n kn n P k C P P -=-.二项分布列的概率公式k k n k k n p C P q -=,(1,2,3,,k n =⋅⋅⋅)且01,1p p q <<+=,三者在形式上相似,在应用时容易混淆而导致出错.易错点3:对概率事件分析理解不到位.导致概率求解出现偏差. 例题1右图中有一个信号源和五个接收器。

排列组合ppt课件

排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量

学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。

排列组合基本原理.课件

排列组合基本原理.课件
总结
电话号码的排列问题告诉我们,即使是很小的数字变化,也能产生巨大的排列组合数量。
组合综合实例:彩虹形成原理的数学解析
总结词
详细描述
总结
彩虹是一种自然界的现象,其形成原 理与数学中的组合有密切关系。
彩虹的形成是由于太阳光经过雨滴的 折射和反射后分解成七种颜色。这七 种颜色是红、橙、黄、绿、青、蓝、 紫。太阳光可以看作是白光,其由这 七种颜色的光组成。当太阳光经过雨 滴时,这些颜色会以特定的顺序折射 和反射,从而形成彩虹。这个特定的 顺序就是数学中的组合。
遗传学中的基因组合 在遗传学中,研究基因的组合和遗传变异时,需要用到组 合的原理来分析基因型和表现型之间的关系。
组合在解决实际问题中的运用
密码学中的密钥生成
在密码学中,生成随机密钥的过程实际上就是从大量可能的 密钥中选取一个特定的密钥,这个过程就需要用到组合的原理。
计算机科学中的数据压缩
在计算机科学中,数据压缩算法通常需要从大量的数据中选 取有代表性的数据进行编码,这里也需要用到组合的原理。
计算机程序中的算法优化问题
04
组合的应用
组合的常见应用场景
彩票中奖概率计算 在计算彩票中奖概率时,通常需要考虑从数百万个彩票号 码中选取特定组合的情况,这时就需要使用组合的原理来 计算。
投资组合风险与收益评估 在投资领域,投资者需要根据不同资产的风险和收益特性 构建投资组合,以实现风险分散和资产保值增值,这里的 投资组合构建就需要用到组合的原理。
03
排列的应用
排列的常见应用场景
01
彩票中奖概率计算
02
03
04
计算机科学中的排列算法
统计学中的样本排列
金融领域中的投资组合优化

高中数学排列组合

高中数学排列组合

高中数学排列组合一、基本概念排列组合是数学中比较重要的一个分支,它是研究对象按照一定的规则,从有限个数中选出若干个数进行排列和组合的方法和样式。

1、排列排列是由一些元素按照一定顺序排列而成的整体。

排列是从n个不同元素中取出m个元素按一定顺序排列的方法数,用符号$A^m_n$表示。

例如:n个不同的元素依次排成m列,第一列有n种取法,第二列有(n-1)种取法,第三列有(n-2)种取法,依此类推,第m列有(n-m+1)种取法,则这n个元素排成m列有式子:$$ A_n^m=n(n-1)(n-2)...(n-m+1) $$2、组合组合是由一些元素按照任意排列组成的新整体。

组合是从n个不同元素中取出m个元素的不同组合数,用符号$C^m_n$表示。

例如:从4个球员中选出3人组成篮球队,有如下四种选法:$$ ABC,ABD,ACD,BCD $$将三个球员组成的篮球队作为一个整体,不考虑其顺序,则这4种选法仅算一种,所以这四种球员的组合方式有:$$ C_4^3=4 $$二、排列按顺序选择元素的方式叫做排列。

排列的计算方法是:从n个元素中取m个元素进行排列的方法有:$$ A_n^m=n(n-1)(n-2)...(n-m+1) $$特别地,当m=n时,有:$$ A_n^n=n! $$其中,n!表示n的阶乘,$n!=n(n-1)(n-2)...1$。

例1:从一组大小为6的数字中,任取4个数进行排列,求排列个数。

设全集为{1,2,3,4,5,6},任取其中4个元素进行排列。

$$ A_6^4=6\times 5\times 4\times 3=360 $$例2:一共有5位弟子,要从其中选出3位去参加武术比赛,求有多少种不同的组合方式。

设全集为{A,B,C,D,E},要从其中任选3个弟子参加武术比赛。

$$ C_5^3=10 $$三、组合组合是指从一组元素中任选m个元素,并将其看作一个整体。

组合的计算方法是:从n个元素中取m个元素进行组合的方法有:$$ C_n^m=\frac{A_n^m}{A_m^m}=\frac{n(n-1)(n-2)...(n-m+1)}{m!} $$特别地,当m=n时,有:$$ C_n^n=\frac{n!}{n!}=1 $$如果m>n,则组合数为0。

高中数学排列组合PPT课件

高中数学排列组合PPT课件

中去取 ,有2种方法 ; 根据分步乘法计,数 从1,原 2,3,理 4这4个不同的数
字中 ,每次取3个 出数字 ,按"百""十""个"位的顺序
排成一,共 列有43224种不同的排 ,因法而
共可得2到 4个不同的三,位 如数 图 .
1
2
3
4
23 4 1 34 1 24 1 23
342423 341413 241412 231312
即 有 Am n nn1n2321,
就 是 说 ,n个 不 同 元 素 全 部排取列出,数的 等 于 正 整1到 数n的 连 乘.正积整1数 到n的 连 乘,积 叫 做n的阶乘 ,用n!表 示.所 以n个 不 同 元 素 的 全 排式列可数以公写 成
Ann n!
另 外 ,我 们 规0!定 1.
事 , A m n n 实 n 1 n 2 上 n m 1
思考上述问 1,2的 题共同特点 ?你是 能什 将么 们推广到一?般情形吗 一 般,从 地 n个 不 同 的 元 素 m(m 中n取 )个出 元, 素 按 照 一 定 顺 序,叫 排做 成n从 个 一不 列同 元 素
出m个 元 素 的排一 列 (a个rrangetm ). en
思考 你能归纳一下排列的 征特 吗?
解 任意两队间进1行 次主场比赛1与 次 客场比赛 ,对应于从14个元素中任2取个 元素的一个排.因列此,比赛的总场次是 A124 1413182.
所有不同的排列有 abc , abd , acb , acd , adb , adc , bac , bad , bca , bcd , bda , bdc , cab , cad , cba , cbd , cda , cdb , dab , dac , dba , dbc , dca , dcb . 共有 4 3 2 24 种 .

高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。

本文将对这两个知识点进行总结和说明。

1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。

组合是指从一组元素中不考虑顺序地取出一部分元素的方式。

排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。

1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。

1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。

2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。

二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。

二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。

其中C(n, k)表示从n个元素中选择k个元素的组合数。

二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。

二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。

它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。

3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。

例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。

高中数学排列与组合课件(经典)

高中数学排列与组合课件(经典)

或 A120 10 9 90
例3.(1)凸五边形有多少条对角线? (2)凸n( n>3)边形有多少条对角线? 解:(1) (5 3) 5 5
2
(2) (n 3) n
2
例4、在100件产品中有98件合格品,2件次品。产品 检验时,从100件产品中任意抽出3件。 (1)一共有多少种不同的抽法? (2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?
m个元素的组合数,用符号 Cnm表示.
注意: Cnm 是一个数,应该把它与“组合”区别开来.
如:从 a , b , c三个不同的元素中取出两个元素的所
有组合个数是: C32 3
如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个
元素的所有组合个数是:C42 6
练一练
1.写出从a,b,c,d 四个元素中任取三个元素的所有组合。
(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲、丙甲、丁甲、丙乙、丁乙、丁丙
例1、一位教练的足球队共有17名初级学员,按照足球 比赛规则,比赛时一个足球队的上场队员是11人。问:
(1)这位教练从这17名学员中可以形成多少种学员上 场方案?
(2)如果在选出11名上场队员时,还要确定其中的守 门员,那么教练员有多少种方式做这件事情?
从7位同学中 选出3位同学 构成一个组合
剩下的4位同 对应 学构成一个组

从7位同学中 选出3位同学
从7位同学中 选出4位同学
的组合数
C
3 7
的组合C数74
即:C73 C74
思考二:上述情况加以推广可得组合数怎样的性质?
一般地,从n个不同元素中取出m个不同元素后,剩下n–m个元素, 因此从n个不同元素中取出m个不同元素的每一个组合,与剩下的n– m个元素的每一个组合一一对应,所以从n个不同元素中取出m个不同 元素的组合数,等于从这n个元素中取出 n-m个元素的组合数.即

高中数学排列组合常用方法与技巧精讲 PPT课件 图文

高中数学排列组合常用方法与技巧精讲 PPT课件 图文
结论2 捆绑法:要求某几个元素必须排在一起的问题, 可以用捆绑法来解决问题.即将需要相邻的元素合并为 一个元素,再与其它元素一起作排列,同时要注意合并元 素内部也可以作排列.
例3 在高二年级中的8个班,组织一个12个人的年级学 生分会,每班要求至少1人,名额分配方案有多少种?
分析 此题若直接去考虑的话,就会比较复杂.但如果我 们将其转换为等价的其他问题,就会显得比较清楚,方 法简单,结果容易理解.
种选A法74 .根据乘法原理,共有的不同坐法为
种A.88 A74
结论1 插空法:对于某两个元素或者几个元素要求不 相邻的问题,可以用插入法.即先排好没有限制条件的 元素,然后将有限制条件的元素按要求插入排好元素 的空档之中即可.
例2 5个男生3个女生排成一排,3个女生要排在一起, 有多少种不同的排法?
结论4 剩余法:在组合问题中,有多少取法,就有多少种 剩法,他们是一一对应的,因此,当求取法困难时,可转化 为求剩法.
例5 期中安排考试科目9门,语文要在数学之前考,有 多少种不同的安排顺序? 分析 对于任何一个排列问题,就其中的两个元素来讲的 话,他们的排列顺序只有两种情况,并且在整个排列中,他 们出现的机会是均等的,因此要求其中的某一种情况,能 够得到全体,那么问题就可以解决了.并且也避免了问题 的复杂性.
分析 此题若是直接去考虑的话,就要将问题分成好几 种情况,这样解题的话,容易造成各种情况遗漏或者重 复的情况.而如果从此问题相反的方面去考虑的话,不 但容易理解,而且在计算中也是非常的简便.这样就可 以简化计算过程.
解 43人中任抽5人的方法有C 453种,正副班长,团支部书
记都不在内的抽法有 种C 450,所以正副班长,团支部书记至
解数学不之加前任考何”限,与制“条数件学,整安个排排在法语有文之种A前99 ,“考语”文的安排排法在是

排列组合ppt课件高中

排列组合ppt课件高中
10$
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等

建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义

高考数学一轮总复习 第十章 排列与组合

高考数学一轮总复习 第十章  排列与组合

组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数
(1)从中任取4张,共有________种不同取法;
(3)甲、乙两人至少有一人参加,有多少种选法?
• 拓直展接提法高 求把解符排合列条应件用的问排题列的数主直要接方列法式计算
优先法 优先安排特殊元素或特殊位置
故共有 C16C25C33=60(种).
(2)有序不均匀分组问题. 由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑 再分配,共有 C16C25C33A33=360(种). (3)无序均匀分组问题. 先分三步,则应是 C26C24C22种方法,但是这里出现了重复.不 妨记六本书为 A,B,C,D,E,F,若第一步取了 AB,第二步 取了 CD,第三步取了 EF,记该种分法为(AB,CD,EF),则 C26C24C22种分法中还有(AB,EF,CD),
拓展提高 组合问题常有以下两类题型:
法二 (特殊位置优先法)首尾位置可安排另 6 人中的两人, 拓展提高 均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还
是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关;
正难则有反、A等价26种转化排的方法法 ,其他有 A55种排法,共有 A26A55=3 600(种).
• 思路点拨 要注意分析特殊元素是“含”、“不含”、“至少”、 “至多”.
[解] (1)共有 C318=816(种). (2)共有 C518=8 568(种). (3)分两类:甲、乙中有一人参加,甲、乙都参加,共有 C12C418+C318=6 936(种). (4)(间接法):由总数中减去五名都是内科医生和五名都是 外科医生的选法种数,得 C520-(C512+C58)=14 656(种).

排列组合ppt课件

排列组合ppt课件
排列组合基本公式 • 排列组合的应用 • 排列组合的扩展知识 • 练习题与答案解析
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。

高中数学排列组合算法

高中数学排列组合算法

高中数学排列组合算法高中数学排列组合的定义及公式排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示。

计算公式:此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号C(n,m)表示。

计算公式:;C(n,m)=C(n,n-m)。

(n≥m)其他排列与组合公式从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!×n2!×...×nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。

高中数学排列组合的基本计数原理⑴加法原理和分类计数法⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

⒊分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

⑵乘法原理和分步计数法⒈乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

高中数学-排列组合21种模型

高中数学-排列组合21种模型

高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。

(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合课件

排列组合课件
不相邻问题
将需要排列的元素按照一定的顺序排 列,如果元素之间没有间隔,则它们 是相邻的。
复杂排列组合问题解析
排列组合的顺序性
在排列组合的过程中,需要考虑元素的顺序,不同的顺序会 产生不同的结果。
排列组合的可重复性
在排列组合的过程中,需要考虑元素的重复使用,不同的重 复方式也会产生不同的结果。
常见排列组合问题解析
排列特点
与元素的顺序有关,是"有序"的。
组合定义与特点
组合定义
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个元素中取出m个元 素的一个组合。
组合特点
与元素的顺序无关,是"无序"的。
排列与组合的联系与区别
联系
都是从n个不同元素中取出m个元 素的不同方式。
区别
排列注重的是取出元素后,元素 的顺序是否相同;组合则不考虑 取出元素后的顺序。
排列组合课件总结
排列组合基础知识
排列组合课件应涵盖排列组合的 基本概念、公式和定理,帮助学
生建立正确的排列组合思维。
排列组合问题解析
通过典型例题的解析,让学生掌握 解决排列组合问题的方法和技巧, 提高解题能力。
排列组合应用实例
引入实际应用场景,让学生了解排 列组合在生活、科技、经济等领域 中的应用,增强学习的兴趣和动力 。
组合数公式广泛应用于组合数学、概率论、统计学等学科中,也是解 决实际问题的有力工具。
排列组合综合公式
排列组合综合公式定义
排列组合综合公式表示从n个不同元素中取出m个元素的所有排列和组合的个数,用符号 P(n,m)表示。
排列组合综合公式计算方法
排列组合综合公式可以表示为P(n,m)=A(n,m)+C(n,m),即P(n,m)=n!/(n-m)!+C(n,m)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学总复习高考复习科目:数学 高中数学总复习(九)复习内容:高中数学第十章-排列组合 复习范围:第十章 编写时间:2004-7修订时间:总计第三次 2005-4 一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) 二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示. ⑷排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n=.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m n mmmn m n -=+--==Λ⑶两个公式:①;m n n m n C C -= ②mn m n m n C C C 11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m nC C C--=⋅一类是不含红球的选法有mn C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n种,依分类原理有m n m n m n C C C11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式n n n n n n C C C 2210=+++Λλ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n kn m n m m n m m m m m m n n n n n n n n C n C k nCkC C C C C C C C C C C C ΛΛΛ②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n Λ(利用!1)!1(1!1n n n n --=-)ii. 导数法. iii. 数学归纳法. iv. 倒序求和法. v. 递推法(即用m n m nmn C CC 11+-=+递推)如:413353433+=+++n n C C C C C Λ.vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++Λ证明:这里构造二项式nn n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅--ΛΛ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而mm A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-.②有n 件不同商品,若其中A 、B 排在一起有2211A A nn ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?m m n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则. ⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有nn A 种,)(n m m π个元素的全排列有mm A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C Λ)1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mmm m n m n m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义. ⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某rx 2x 4个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有m n A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

先C 后A 策略,排列k k r k r n r r A C C --;组合rk r n r r C C --.ii. 从n 个不同元素中每次取出k 个不同元素作排列(或组合),规定某r 个元素都不包含在内。

先C 后A 策略,排列k k k r n A C -;组合kr n C -.iii 从n 个不同元素中每次取出k 个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r 个元素中的s 个元素。

先C 后A 策略,排列k k s k r n s r A C C --;组合sk r n s r C C --. II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略; ⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略. 2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为r r A A /(其中A 为非均匀不编号分组中分法数).如果再有K 组均匀分组应再除以k kA . 例:10人分成三组,各组元素个数为2、4、4,其分法种数为1575/224448210=A C C C .若分成六组,各组人数分别为1、1、2、2、2、2,其分法种数为44222224262819110/A A C C C C C C ⋅ ②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为m mA A ⋅ 例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:335538210A C C C ⋅⋅⋅种. 若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有334538210A C C C ⋅种 ③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为mmr r A A A ⋅/. 例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为33224448210A A C C C ⋅④非均匀不编号分组:将n 个不同元素分成不编号的m 组,每组元素数目均不相同,且不考虑各组间顺序,不管是否分尽,其分法种数为1mn C A =21m m -n C …k m)m ...m (m -n 1-k 21C +++例:10人分成三组,每组人数分别为2、3、5,其分法种数为25205538210=C C C 若从10人中选出6人分成三组,各组人数分别为1、2、3,其分法种数为126003729110=C C C .五、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+--ΛΛ.展开式具有以下特点: ① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210nn r n n n n C C C C C ΛΛ③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大;II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C ΛΛΛ附:一般来说b a by ax n,()(+为常数)在求系数最大的项或最小的项...........时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组11111(,+-+-+⎩⎨⎧≤≤⎩⎨⎧≥≥k k k k k k k k k k T A A A A A A A A A 为或的系数或系数的绝对值)的办法来求解.⑷如何来求nc b a )(++展开式中含r q p c b a 的系数呢?其中,,,N r q p ∈且n r q p =++把n n c b a c b a ])[()(++=++视为二项式,先找出含有r C 的项r r n rn C b a C -+)(,另一方面在r n b a -+)(中含有q b 的项为q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为rq p q r n r n c b a C C -.其系数为rr q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!.2. 近似计算的处理方法.当a 的绝对值与1相比很小且n 不大时,常用近似公式na a n+≈+1)1(,因为这时展开式的后面部分n n n n n a C a C a C +++Λ3322很小,可以忽略不计。

相关文档
最新文档